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1 INTRODUCTION

The least squares solution with the least norm in matrix theory has important applications in modeling human faces, gene
analysis, information retrieval and extraction, size reduction and data compression, signal and image processing-restoration,
computational mathematics, some fields of pure and appliedmathematics and so on1,2,3,4,5,6,7,8,9,10,11. With the rapid development
of these fields, more and more researchers are interested in least squares problems and have obtained many valuable results.
For the least squares solution with the least norm, they mainly consider real matrix equations, complex matrix equations and
quaternion matrix equations.
On the other hand, there is an approach that allows one to generalize the complex numbers with three different classes of
generalized complex numbers12. In this approach, generalized complex numbers are two-component number of the form

z = x + iy (x, y ∈ ℝ)
where i2 = p (p ∈ ℝ) . Depending on the sign of p, the number systems are classified as follows:

1. for p < 0; Elliptic complex numbers (In particular, p = −1 corresponds to complex numbers),
2. for p = 0; Parabolic (dual) numbers,
3. for p > 0; Hyperbolic numbers.
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Each of these number systems has many applications in science and technology13,14,15,16,17,18,19,20. On the other hand, since
many physical systems have elliptical behaviours, it is getting more and more necessary for us to further study the theoretical
properties and numerical computations of elliptic complex numbers and their matrices.
In this paper, we introduce concepts of norms of elliptic complex matrices and investigate three kinds elliptic complex least
squares problem such

‖AX − B‖ = min.
by using the real representation of elliptic complex matrices.
Problem 1: Let A ∈ ℂm×n

p , B ∈ ℂm×q
p ,

CL = {X ∶ X ∈ ℂn×q
p , ‖AX − B‖ = min.}

Find out XE ∈ ℂn×q
p such that ‖XE‖ = min

X∈CL
{‖X‖} where XE is called elliptic least square solution with the least norm of the

elliptic complex matrix equation AX = B.
Problem 2: Let A ∈ ℂm×n

p , B ∈ ℂm×q
p ,

IL = {X ∶ X ∈ Iℂn×q
p , ‖AX − B‖ = min.}

Find outXI ∈ Iℂn×q
p such that ‖XI‖ = min

X∈IL
{‖X‖} whereXI is called pure imaginary least square solution with the least norm

of the elliptic complex matrix equation AX = B.
Problem 3: Let A ∈ ℂm×n

p , B ∈ ℂm×q
p ,

RL = {X ∶ X ∈ ℝn×q , ‖AX − B‖ = min.}

Find out XR ∈ ℝn×q such that ‖XR‖ = min
X∈RL

{‖X‖} where XR is called pure real least square solution with the least norm of
the elliptic complex matrix equation AX = B.
Throughout this paper, the following notations are used. Let ℝ, ℂp and Iℂp denote the sets of real, elliptic complex and pure
elliptic complex numbers, respectively. ℝm×n and ℂm×n

p denote the set of all matrices on ℝ and ℂp, respectively. Moreover, all
computations in this study are performed on an Intel i7-3630QM@2.40 Ghz/16GB computer usingMATLABR2016a software.

2 ALGEBRAIC PROPERTIES OF ELLIPTIC COMPLEX NUMBERS

The set of elliptic complex numbers is denoted by

ℂp =
{

z = x + iy ∶ x, y ∈ ℝ, i2 = p < 0, p ∈ ℝ
}

. (1)
The conjugate and norm of elliptic complex number z = x + iy are defined as

z = x − iy and ‖z‖ =
√

zz =
√

x2 − py2, (2)
respectively. p−multiplication of the elliptic complex numbers z1 = x1 + iy1, z2 = x2 + iy2 ∈ ℂp is defined

z1z2 =
(

x1 + iy1
) (

x2 + iy2
)

=
(

x1x2 + py1y2
)

+ i
(

x1y2 + x2y1
)

.
We note that ℂp is 2D vector space over a field ℝ according to addition and scalar multiplication. Also, each elliptic complex
number can be represented in a single form in a plane which is called elliptic complex plane. In elliptic complex plane, the
distance between the elliptic complex numbers z1 and z2 is defined as

‖

‖

z1 − z2‖‖ =
√

(

x1 − x2
)2 − p

(

y1 − y2
)2. (3)

In elliptic complex plane, unit circle are defined by requiring
‖z‖ =

√

x2 − py2 = 1

as in Figure 1. In special case p = −1, the elliptic complex plane corresponds to the Euclidean plane12,21.
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FIGURE 1 Unit circles in ℂ−0.5, ℂ−1, ℂ−5

Theorem 1. 22 Let z = x+ iy ∈ ℂp be given. Then z and its conjugate z satisfy the following universal similarity factorization
equality (or for short USFE):

P −1
(

z 0
0 z

)

P =
(

x py
y x

)

= �p (z) ∈ ℝ2×2 (4)
where P is

P = P −1 = 1
√

2

(

1 i
i
p
−1

)

. (5)

In here, �p (z) =
(

x py
y x

)

is called fundamental matrix of z. USFE over the elliptic complex numbers clearly reveals three
basic facts:

1. ℂp is algebraically isomorphic to the matrix algebra

ℂ′p =
{(

x py
y x

)

∶ x, y ∈ ℝ
}

⊆ ℝ2×2 (6)
through the bijective map

�p ∶ ℂp → ℂ′p

z = x + iy→ �p (z) =
(

x py
y x

) (7)

2. Every elliptic complex number z = x + iy ∈ ℂp has a real matrix representation

�p (z) =
(

x py
y x

)

(8)
over the real number field.

3. All real matrices in ℂ′p can uniformly be diagonalized over the elliptic complex numbers.

Meanwhile, we denote any elliptic complex number z = x+ iy ∶=
(

x
y

)

. Then the p−multiplication of z and z1 = x1 + iy1 can
be written by the aid of the ordinary matrix multiplication as

zz1 =
(

x py
y x

)(

x1
y1

)

= �p (z) z1.

Theorem 2. 22 Let z1 = x2 + iy2 and z2 = x2 + iy2 ∈ ℂp, the followings are satisfied:
1. �p

(

�p
(

z1
)

z2
)

= �p
(

z1
)

�p
(

z2
)

,

2. z1 = z2 ⇔ �p
(

z1
)

= �p
(

z2
)

,
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3. �p
(

z1 + z2
)

= �p
(

z1
)

+ �p
(

z2
)

,

4. �p
(

z1z2
)

= �p
(

z1
)

�p
(

z2
)

,

5. �p
(

�z1
)

= ��p
(

z1
)

,

6. trace (�p
(

z1
))

= z1 + z1,

7. det (�p
(

z1
))

= ‖

‖

z1‖‖
2.

3 ELLIPTIC COMPLEX MATRICES

The set of m× n matrices with elliptic complex number entries, which is denoted by ℂm×n
p , is a ring under usual matrix addition

and multiplication. Conjugate of A = A1 + iA2 ∈ ℂm×n
p (A1, A2 ∈ ℝm×n) is A = A1 − iA2. A matrix AT = AT1 + iAT2 ∈ ℂn×m

p

is transpose of A = A1 + iA2 ∈ ℂm×n
p . Also A∗ =

(

A
)T

= AT1 − iA
T
2 ∈ ℂn×m

p is called conjugate transpose23.
Theorem 3. 23 A and B be elliptic complex matrices of appropriate sizes. Then the followings are satisfied:

1. (A−1)−1 = A,
2. (AB)−1 = B−1A−1,
3. (Ak)−1 = (

A−1
)k where k is any positive integer number,

4. (�A)T = �AT ,
5. (AB)T = BTAT ,
6. (Ak)T = (

AT
)k where k is any positive integer number,

7.
(

A
)

= A, (A∗)∗ = A,

8. (A + B) = A + B, (A + B)∗ = A∗ + B∗,
9. (AB) = AB, (AB)∗ = B∗A∗.

Theorem 4. 22 Let A = A1 + iA2 ∈ ℂm×n
p be given. Then A and its conjugate A satisfy the following equality:

P2m

(

A 0
0 A

)

Q2n =
(

A1 pA2
A2 A1

)

= Φp (A) ∈ ℝ2m×2n (9)
where

P2m = P −12m =
1
√

2

(

Im iIm
i
p
Im −Im

)

, Q2m = Q−1
2m =

1
√

2

(

In iIn
i
p
In −In

)

(10)

In here, Φp (A) =
(

A1 pA2
A2 A1

)

is called fundamental matrix of A.

Theorem 5. 22 Let A, B ∈ ℂm×n
p , C ∈ ℂn×q

p and � ∈ ℂp then the followings are satisfied:
1. Φp

(

In
)

= I2n,

2. Φp (A + B) = Φp (A) + Φp (B) ,

3. Φp (AC) = Φp (A) Φp (C) ,

4. Φp (�A) = �Φp (A) ,



Hidayet Huda Kosal and Muge Pekyaman 5

5. If m = n and A is regular then Φp (A) is regular and
(

Φp (A)
)−1 = Φp

(

A−1
).

6. (Φp (A)
)− = Φp (A−), where A− and (Φp (A)

)− are Moore-Penrose generalized inverse of A and Φp (A), respectively.

7. For A = 1
2

(

Im iIm
)

Φp (A)

(

In
i
p
In

)

.

4 NORMS OF ELLIPTIC COMPLEX MATRICES

This section gives the definition and properties of Frobenius norm of elliptic complex matrices.
Definition 1. Frobenius norm of an elliptic complex matrix A = A1 + iA2 ∈ ℂm×n

p is defined by

‖A‖ =
√

trace(AA∗) =
√

‖

‖

A1‖‖
2 − p‖

‖

A2‖‖
2.

For all � ∈ ℂp and for all elliptic complex matrix A, B ∈ ℂm×n
p , we have

• ‖�A‖ = ‖�‖ ‖A‖,
• ‖A + B‖ ≤ ‖A‖ + ‖B‖,
• ‖A‖ ≥ 0,
• ‖A‖ = 0⇔ A = 0m×n, where 0m×n is zero matrix with m × n dimension.

Theorem 6. Let A = A1 + iA2 ∈ ℂm×n
p . Then we get ‖A‖ ≤ 1

√

2
‖

‖

‖

Φp (A)
‖

‖

‖

.

Proof. For A = A1 + iA2 ∈ ℂm×n
p , we have

‖

‖

‖

Φp (A)
‖

‖

‖

=
√

‖

‖

A1‖‖
2 + ‖

‖

pA2‖‖
2 + ‖

‖

A2‖‖
2 + ‖

‖

A1‖‖
2

=
√

2‖
‖

A1‖‖
2 +

(

p2 + 1
)

‖

‖

A2‖‖
2.

On the other hand, we get
‖

‖

‖

Φp (A)
‖

‖

‖

2
= 2‖

‖

A1‖‖
2 +

(

p2 + 1
)

‖

‖

A2‖‖
2

= 2‖
‖

A1‖‖
2 +

(

p2 + 2p + 1 − 2p
)

‖

‖

A2‖‖
2

= 2‖
‖

A1‖‖
2 + (p + 1)2‖

‖

A2‖‖
2 − 2p‖

‖

A2‖‖
2.

Thus
‖

‖

‖

Φp (A)
‖

‖

‖

2

2
= ‖

‖

A1‖‖
2 − p‖

‖

A2‖‖
2 +

(p + 1)2

2
‖

‖

A2‖‖
2.

Also, since

‖A‖2 = ‖

‖

A1‖‖
2 − p‖

‖

A2‖‖
2 ≤ ‖

‖

A1‖‖
2 − p‖

‖

A2‖‖
2 +

(p + 1)2

2
‖

‖

A2‖‖
2

we have

‖A‖ ≤ 1
√

2
‖

‖

‖

Φp (A)
‖

‖

‖

.

It is clear that for complex numbers, ‖A‖ = 1
√

2
‖

‖

Φ−1 (A)‖‖ equality is obtained.
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5 ALGEBRAIC METHOD FOR LEAST SQUARES PROBLEM FOR ELLIPTIC COMPLEX
MATRICES

Lemma 1. 24 The real matrix equation AX = B, with A ∈ ℝm×n and B ∈ ℝm×q , has a solution X ∈ ℝn×q if and only if
AA−B = B. In this case it has the general solution X = A−B +

(

In − A−A
)

Z, where Z ∈ ℝn×q is an arbitrary real matrix,
and it has the unique solution X = A−B for the case when rank (A) = n.
Lemma 2. 24 The least squares solutions of the matrix equation AX = B, with A ∈ ℝm×n and B ∈ ℝm×q , can be represented
as X = A−B +

(

In − A−A
)

Z, where Z ∈ ℝn×q is an arbitrary real matrix, and the least squares solution with the least norm
of the matrix equation AX = B is X = A−B.
Now, we consider the elliptic complex least squares problem

‖AX − B‖ = min . (11)
where A ∈ ℂm×n

p , B ∈ ℂm×q
p and X ∈ ℂn×q

p . We define the real representation of the elliptic complex least squares problem of
(11) by

‖

‖

‖

Φp (A) Y − Φp (B)
‖

‖

‖

= min . (12)
Theorem 7. The elliptic complex least squares problem of (11) has a solutionX if and only if the real least squares problem in
(12) has a solution Y = Φp (X) .

Proof. By Theorems 5 and 6, we have

‖AX − B‖ ≤ 1
√

2
‖

‖

‖

Φp (AX) − Φp (B)
‖

‖

‖

= 1
√

2
‖

‖

‖

Φp (A) Φp (X) − Φp (B)
‖

‖

‖

.

This means that the elliptic complex least squares problem (11) has a solution X if and only if the real least squares problem
(12) has a solution Y = Φp (X).

Theorem 8. Let A ∈ ℂm×n
p , B ∈ ℂm×q

p . The least squares solution with the least norm of the matrix equation AX = B can be
represented as

X = 1
2
(

In iIn
) (

Φp (A)
)−Φp (B)

(

Iq
i
p
Iq

)

. (13)

Proof. By Lemma 2, the least squares solution with the least norm of (12) isΦp (X) =
(

Φp (A)
)−Φp (B) . Then by the Theorem

7, the least squares solution with the least norm of (11) becomes

X = 1
2
(

In iIn
) (

Φp (A)
)−Φp (B)

(

Iq
i
p
Iq

)

.

Theorem 9. Let A = A1 + iA2 ∈ ℂm×n
p , B = B1 + iB2 ∈ ℂm×q

p . The pure imaginary least solution with the least norm of the
matrix equation AX = B can be represented as

X = i
(

⃖⃖A⃖
)− (

⃖⃖⃗B
)

(14)
where

⃖⃖A⃖ =

⎛

⎜

⎜

⎜

⎜

⎝

pA2
pA1
A1
pA2

⎞

⎟

⎟

⎟

⎟

⎠

and ⃖⃖⃗B =

⎛

⎜

⎜

⎜

⎜

⎝

B1
pB2
B2
B1

⎞

⎟

⎟

⎟

⎟

⎠

.
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Proof. Suppose that X = iX2 is a pure imaginary elliptic complex matrix. Then Φp (X) =
(

0 pX2
X2 0

)

. Also,
‖AX − B‖ ≤ 1

√

2
‖

‖

‖

Φp (A) Φp (X) − Φp (B)
‖

‖

‖

= 1
√

2

‖

‖

‖

‖

‖

(

A1 pA2
A2 A1

)(

0 pX2
X2 0

)

−
(

B1 pB2
B2 B1

)

‖

‖

‖

‖

‖

= 1
√

2

‖

‖

‖

‖

‖

(

pA2X2 pA1X2
A1X2 pA2X2

)

−
(

B1 pB2
B2 B1

)

‖

‖

‖

‖

‖

= 1
√

2

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎜

⎜

⎝

pA2
pA1
A1
pA2

⎞

⎟

⎟

⎟

⎟

⎠

X2 −

⎛

⎜

⎜

⎜

⎜

⎝

B1
pB2
B2
B1

⎞

⎟

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

.

Thus, we have

X = i

⎛

⎜

⎜

⎜

⎜

⎝

pA2
pA1
A1
pA2

⎞

⎟

⎟

⎟

⎟

⎠

−
⎛

⎜

⎜

⎜

⎜

⎝

B1
pB2
B2
B1

⎞

⎟

⎟

⎟

⎟

⎠

.

Theorem 10. Let A = A1 + iA2 ∈ ℂm×n
p , B = B1 + iB2 ∈ ℂm×q

p . The pure real least solution with the least norm of the matrix
equation AX = B can be represented as

X =
(

⃖⃖⃗A
)− (

⃖⃖⃗B
)

. (15)
where

⃖⃖⃗A =

⎛

⎜

⎜

⎜

⎜

⎝

A1
pA2
A2
A1

⎞

⎟

⎟

⎟

⎟

⎠

and ⃖⃖⃗B =

⎛

⎜

⎜

⎜

⎜

⎝

B1
pB2
B2
B1

⎞

⎟

⎟

⎟

⎟

⎠

.

Proof. Suppose that X = X1 is a pure real elliptic complex matrix. Then Φp (X) =
(

X1 0
0 X1

)

. Also,
‖AX − B‖ ≤ 1

√

2
‖

‖

‖

Φp (A) Φp (X) − Φp (B)
‖

‖

‖

= 1
√

2

‖

‖

‖

‖

‖

(

A1 pA2
A2 A1

)(

X1 0
0 X1

)

−
(

B1 pB2
B2 B1

)

‖

‖

‖

‖

‖

= 1
√

2

‖

‖

‖

‖

‖

(

A1X1 pA2X1
A2X1 A1X1

)

−
(

B1 pB2
B2 B1

)

‖

‖

‖

‖

‖

= 1
√

2

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎜

⎜

⎝

A1
pA2
A2
A1

⎞

⎟

⎟

⎟

⎟

⎠

X1 −

⎛

⎜

⎜

⎜

⎜

⎝

B1
pB2
B2
B1

⎞

⎟

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

.

Thus, we have
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X =

⎛

⎜

⎜

⎜

⎜

⎝

A1
pA2
A2
A1

⎞

⎟

⎟

⎟

⎟

⎠

−
⎛

⎜

⎜

⎜

⎜

⎝

B1
pB2
B2
B1

⎞

⎟

⎟

⎟

⎟

⎠

.

6 NUMERICAL ALGORITHMS

We now provide numerical algorithms for problems 1,2 and 3 based on the Theorems 8, 9 and 10.

Algorithm 1 Pseudocode for Problem 1

1. Begin.
2. Input A, B and p.
3. Form Φp (A) and Φp (B) according to equation (9).

4. Compute X = 1
2

(

In iIn
) (

Φp (A)
)−Φp (B)

(

Iq
i
p
Iq

)

.

5. Output X.
6. Stop.

Algorithm 2 Pseudocode for Problem 2

1. Begin.
2. Input A, B and p.
3. Form ⃖⃖A⃖ and ⃖⃖⃗B according to Theorem 9.
4. Calculate X = i

(

⃖⃖A⃖
)−
(⃖⃖⃗B).

5. Output X.
6. Stop.

Algorithm 3 Pseudocode for Problem 3

1. Begin.
2. Input A, B and p.
3. Form ⃖⃖⃗A and ⃖⃖⃗B according to Theorem 10.
4. Compute X =

(

⃖⃖⃗A
)−
(⃖⃖⃗B).
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5. Output X.
6. Stop.

7 NUMERICAL EXAMPLES

Let
A =

⎛

⎜

⎜

⎝

2 + 8i 1 + i 1 + 6i
1 + 3i 2 + 5i 1 + 7i
1 + 4i 1 + 9i 2 + 2i

⎞

⎟

⎟

⎠

, B =
⎛

⎜

⎜

⎝

8 + 0.5i 1 − 0.5i 6 − 0.5i
3 − 0.5i 5 + 0.5i 7 − 0.5i
4 − 0.5i 9 − 0.5i 2 + 0.5i

⎞

⎟

⎟

⎠

.

Figure 2 shows the least norms for elliptic, pure imaginary and pure real solutions of elliptic complex least square problem
according to the values of p ∈ [−100,−1] .

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

p

0

0.5

1

1.5

2

2.5

3

||A
X

-B
||

10 -13 Elliptic complex least solution: optimal p value=-2

(a)
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Pure imaginary elliptic complex least solution: optimal p value=-3

(b)
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Pure real elliptic complex least solution: optimal p value=-1

(c)

FIGURE 2 Optimal p values for the Problem 1, 2, 3, respectively

According to this graph, the optimal p value of the elliptic least squares solution with the least norm is -2, the optimal p value
of the pure imaginary elliptic least squares solution with the least norm is -3 and the optimal p value of the pure real elliptic
least squares solution with the least norm is -1.

Now, find elliptic, pure imaginary and pure real solutions of elliptic complex least square problems according to the optimal p
values.
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With Algorithm 1, we can get easily

Φ−2 (A) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 1 1 −16 −2 −12
1 2 1 −6 −10 −14
1 1 2 −8 −18 −4
8 1 6 2 1 1
3 5 7 1 2 1
4 9 2 1 1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

Φ−2 (B) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

8 1 6 −1 1 1
3 5 7 1 −1 1
4 9 2 1 1 −1

0.5 −0.5 −0.5 8 1 6
−0.5 0.5 −0.5 3 5 7
−0.5 −0.5 0.5 4 9 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From Φ−2 (X) =
(

Φ−2 (A)
)−Φ−2 (B), we have

Φ−2 (X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.2159 −0.2127 0.0934 0.9506 0.0118 0.0118
−0.0903 0.0322 0.1546 0.0118 0.9506 0.0118
−0.0290 0.2771 −0.1515 0.0118 0.0118 0.9506
−0.4753 −0.0059 −0.0059 0.2159 −0.2127 0.0934
−0.0059 −0.4753 −0.0059 −0.0903 0.0322 0.1546
−0.0059 −0.0059 −0.4753 −0.0290 0.2771 −0.1515

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Thus, we get

X =
⎛

⎜

⎜

⎝

0.2159 − 0.4753i −0.2127 − 0.0059i 0.0934 − 0.0059i
−0.0903 − 0.0059i 0.0322 − 0.4753i 0.1546 − 0.0059i
−0.0290 − 0.0059i 0.2771 − 0.0059i −0.1515 − 0.4753i

⎞

⎟

⎟

⎠

.

With Algorithm 2, we can get easily

⃖⃖A⃖ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−24 −3 −18
−9 −15 −21
−12 −27 −6
−6 −3 −3
−3 −6 −3
−3 −3 −6
2 1 1
1 2 1
1 1 2

−24 −3 −18
−9 −15 −21
−12 −27 −6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ⃖⃖⃗B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

8 1 6
3 5 7
4 9 2

−1.5 1.5 1.5
1.5 −1.5 1.5
1.5 1.5 −1.5
0.5 −0.5 −0.5
−0.5 0.5 −0.5
−0.5 −0.5 0.5

8 1 6
3 5 7
4 9 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From X = i
(

⃖⃖A⃖
)−
B⃗, we have

X =
⎛

⎜

⎜

⎝

−0.1560i −0.0004i −0.0256i
−0.0004i −0.1812i −0.0004i
−0.0256i −0.0004i −0.1560i

⎞

⎟

⎟

⎠

.

With Algorithm 3, we can get easily
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⃖⃖⃗A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 1 1
1 2 1
1 1 2
−8 −1 −6
−3 −5 −7
−4 −9 −2
8 1 6
3 5 7
4 9 2
2 1 1
1 2 1
1 1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ⃖⃖⃗B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

8 1 6
3 5 7
4 9 2

−0.5 0.5 0.5
0.5 −0.5 0.5
0.5 0.5 −0.5
0.5 −0.5 −0.5
−0.5 0.5 −0.5
−0.5 −0.5 0.5

8 1 6
3 5 7
4 9 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From X =
(

⃖⃖⃗A
)−
⃖⃖⃗B we have

X =
⎛

⎜

⎜

⎝

0.3646 −0.3889 0.2422
−0.0498 0.0726 0.1951
−0.0969 0.5342 −0.2194

⎞

⎟

⎟

⎠

.

8 CONCLUSION

In this study, we derive the least squares solution, the pure imaginary least squares solution, and the pure real least squares solu-
tion with the least norm for the elliptic complex matrix equation AX = B by using the real representation of elliptic complex
matrices. The least squares method has important applications in modeling human faces, gene analysis, information retrieval
and extraction, size reduction and data compression, signal and image processing-enhancement processes. The use of elliptic
matrices in these application areas will enable the previously known definitions and theorems to be interpreted with a wider per-
spective, and by selecting the ideal space for the problems, great flexibility and efficiency will be brought to existing techniques.
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