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Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disease in the elderly. It is the most

common cause of  dementia  in  human.  AD is  characterized by accumulation of  abnormal

protein aggregates including amyloid plaques (composed of beta-amyloid (Aβ) peptides) and

neurofibrillary tangles (formed by  hyper-phosphorylated tau protein). Besides, synaptic

plasticity, neuroinflammation, calcium signaling etc. are found to be dysfunctional as

well in AD patients. Autophagy is an evolutionarily conserved lysosome-dependent cellular

event in eukaryotes. It is closely linked to the modulation of protein metabolism, through

which  damaged  organelles  and  mis-folded  proteins  are  degraded  and  then  recycled  to

maintain protein homeostasis. Accumulating evidence has showed that impaired autophagy

contributes to AD pathogenesis. In the present review, we highlight the role of autophagy,

including bulk and selective autophagy, in regulating metabolic circuits in AD pathogenesis.

We also discuss the potential and future perspectives of autophagy-inducing strategy in AD

therapeutics.

1. Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder that causes the

most  common  (approximately  60-80%)  type  of  human  dementia  cases  (Crous-Bou,



Minguillon,  Gramunt  &  Molinuevo,  2017).  It  is  estimated  that  more  than  35  million

individuals worldwide are living with AD and the number may rise to 65.7 million in a decade

and 115.4 million in 2050 (Gulland, 2012). Despite the continuous research on AD since its

first description in 1906, the molecular basis of AD pathogenesis is still not fully understood

and there are no effective interventions to block or revere AD progression.

There are two critical hallmark features in AD patients’ brains: the extracellular

senile plaques and intracellular neurofibrillary tangles (NFTs). Senile plaques consist

of  short  peptides  called  beta-amyloid  (Aβ)  and  NFTs  are  formed  by

hyperphosphorylated  microtubule  associated  protein  tau  (MAPT)  (Suh & Checler,

2002). In addition to the abnormal protein aggregates,  synapse loss, mitochondrial

dysfunction,  neuroinflammation  activation,  insulin  signaling  disturbance,  disrupted

calcium homeostasis, cholesterol metabolism defect and so on, have been observed as

well in AD patients and rodent animal models (Querfurth & LaFerla, 2010).

The etiology of AD is extremely complex and it is believed to be the comprehensive

results of multiple factors including age, family history, genetic background, education, brain

injury and other risk factors (2020). According to the age of onset, AD is usually categorized

into early-onset AD (EOAD, onset < 65 years) and late-onset AD (LOAD, onset ≥ 65 years).

EOAD is  caused by the pathogenic mutations in  three genes including  APP,  PSEN1 and

PSEN2, and is inherited in an autosomal dominant manner (Hardy, 2017; Rogaev et al., 1995;

Sherrington et al., 1995). Though EOAD is more aggressive, it just accounts less than 3% in

all AD cases (Sun, Xie, Tang, Li & Shen, 2017). More than 90% of all AD cases are LOAD.

The genetic components of LOAD are much more complex than EOAD. APOE ε4 has been

viewed as  the  strongest  LOAD risk gene  (Farrer  et  al.,  1997;  Saunders  et  al.,  1993).  In

addition  to  APOE,  more  than  20  risk  genes  for  LOAD,  including  ADAM10, PICALM,

TREM2,  CLU,  SORL1,  CR1,  BIN1,  CD33 and so on, have been identified recently through

genome-wide association studies (GWAS) (Jansen et al., 2019; Lambert et al., 2013). These

risk  genes  are  involved  in  multiple  signaling  pathways,  providing  more  perspectives  to

understand AD pathogenesis.

In recent years, it has been demonstrated that dysfunctional autophagy is closely linked



with AD. Originally, immature autophagosome accumulation and dystrophic neurites were

observed in the brains from AD patients via electron microscopy analysis (Nixon et al., 2005).

Consistently, accumulated autophagosomes were detected as well in both neuronal dendrites

and soma in rodent AD models (Yu et al., 2005). Interestingly, it is found that the abnormal

autophagosome accumulation occurs prior to the formation of amyloid plaques  (Yu et al.,

2005). Besides, the expression of several autophagy-related proteins was reported to be down-

regulated with  the  progression  of  AD  (Rubinsztein  et  al.,  2005).  These findings strongly

suggest that autophagy is defective in AD and compromised autophagy contributes to AD

pathogenesis.

2. Overview of autophagy

Autophagy is a conserved catabolic process to degrade defective proteins or organelles in

lysosomes, followed by recycling the basic components in eukaryotic cells. According to the

distinct  mechanisms  through  which  the  autophagic  cargos  are  delivered  to  lysosomes,

autophagy is usually classified into three different types: macroautophagy, chaperon-mediated

autophagy (CMA) and microautophagy (Nixon, 2013) (Figure 1). 

2.1 Macroautophagy

Macroautophagy is the dominant type of autophagy and has been extensively studied, so

it  is  commonly referred to as “autophagy” for short.  Autophagy is  a highly dynamic and

tightly regulated cellular event in eukaryotic cells  (Ohsumi, 2014; Takeshige, Baba, Tsuboi,

Noda & Ohsumi, 1992; Tsukada & Ohsumi, 1993). The basal level of autophagy is low under

physiological condition, however, it can be rapidly induced by multiple stimuli such as energy

deprivation  (Kim, Kundu, Viollet  & Guan, 2011), nutrient  starvation  (Kuma et  al.,  2004),

misfolded proteins  (Kraft,  Peter  & Hofmann, 2010),  damaged organelles  (Glick,  Barth &

Macleod, 2010), infection, inflammation (Deretic, Saitoh & Akira, 2013) and other stressors

(Kroemer & White, 2010). The key event of autophagy is the formation of autophagosome,

which is mediated by a variety of proteins called ATGs (autophagy-related genes)  (Lamb,

Yoshimori & Tooze, 2013) (Figure 2). The whole autophagy process is termed “autophagic

flux”, and based on the status of autophagosome, it  is generally divided into four stages:

initiation,  autophagosome formation,  maturation (or  fusion) and degradation  (Kiriyama &



Nochi, 2015). Each step is tightly regulated by multiple molecules.

2.1.1 Autophagy initiation

Autophagy initiation is mediated by the ULK (UNC-51-like kinases) complex. ULKs are

serine/threonine kinases, including ULK1 (ATG1, homolog in yeast) and ULK2 (ULK1/2).

The ULK complex consists of the core component ULK1 or ULK2, and other interacting

proteins  including  ATG13,  FIP200  and  ATG101  (Figure  2).  In  response  to  autophagy

inducers,  the  ULK complex  is  activated,  thus  promotes  the  activation  of  its  downstream

effector, VPS34 complex, which mediate the autophagy nucleation process  (Backer, 2016).

The VPS34 complex is comprised of VPS34, Beclin-1 (ATG6 in yeast), VPS15 and ATG14L

(Ohashi,  Tremel  &  Williams,  2019) in  mammals,  and  it  is  activated  through  the

phosphorylation of ATG14L and/or Beclin-1 by ULK1 (Park et al., 2016; Park et al., 2018;

Russell  et  al.,  2013).  VPS34  complex  acts  as  a  lipid  kinase  termed  class  III  PI3K

(phosphatidylinositol-3-phosphate  kinase),  which  phosphorylates  PtdIns

(phosphatidylinositol) to generate PI3P (phosphatidylinositol 3-phosphate). PI3P serves as a

scaffold to recruit PI3P-binding molecules such as the PX-BAR protein SNX18 (Knaevelsrud

et  al.,  2013),  WIPI  (Axe  et  al.,  2008),  and  FYVE domain-containing  proteins  including

DFCP1 and Alfy (Marat & Haucke, 2016). PI3P and its binding proteins initiate the formation

of an isolated pre-autophagosomal structure known as phagophore (Figure 2).  It  has been

reported  that  PI3P  produced  at  endoplasmic  reticulum  (ER)  mediates  the  formation  of

membrane  structures  called  omegasomes  where  phagophores  begin  to  be  synthesized

(Ktistakis  &  Tooze,  2016).  However,  in  addition  to  the  ER,  membranes  required  for

phagophore expansion are likely to originate from multiple sources such as plasma membrane

and Golgi apparatus  (Lahiri, Hawkins & Klionsky, 2019). Recently, two independent group

revealed that RAB11A-positive recycling endosomes contribute to phagophore formation as

well in starvation or viral infection induced autophagy (Kuroki, Osari, Nagata & Kawaguchi,

2018;  Puri  et  al.,  2018).  Moreover,  it  is  proposed  that  PI3P-WIPI2-RAB11A signaling

cascade  enables  recycling  endosomes,  instead  of  the  ER,  as  the  primary  sources  for

phagophore  initiation  (Puri  et  al.,  2018).  In  summary,  autophagy is  initiated  through the

sequential activation of ULK complex, VPS34 complex and the subsequent production of



PI3P (Figure 2).

The  initiation  stage  is  sophisticatedly  regulated  by  various  molecules.  In  starvation-

induced autophagy,  mTORC1 serves  as  one  of  the  key  upstream regulators  of  the  ULK

complex  (Laplante & Sabatini,  2013).  In nutrient-rich conditions  full  of  amino acids and

growth factors, mTORC1 is activated through the modulation of two GTPase, Rheb and Rag

(Kim  &  Guan,  2019).  Active  mTORC1  phosphorylates  ULK1,  ULK2  and/or  ATG13  to

suppress ULK complex activation. Additionally, TFEB, the master transcription factor of a

variety of lysosomal and autophagy related genes, is suppressed by the activated mTORC1

(Martina, Chen, Gucek & Puertollano, 2012; Pena-Llopis et al., 2011; Settembre et al., 2012).

Taken  together,  autophagy  initiation  is  blocked.  Upon  starvation,  however,  mTORC1  is

inactivated followed by the activation of ULK complex through a series of dephosphorylation

and  phosphorylation  (Perluigi,  Di  Domenico  &  Butterfield,  2015),  and  subsequently

autophagy is induced. Another upstream regulatory factor of ULK complex is AMPK, which

is a kinase and a well-characterized energy sensor. AMPK can promote autophagy through

phosphorylating ULK1. Interestingly, AMPK and mTORC1 are likely to compete on ULK1

phosphorylation,  as  mTORC1-mediated  ULK1  phosphorylation  blocks  its  further

phosphorylation  by  AMPK  (Kim,  Kundu,  Viollet  & Guan,  2011).  In  addition,  AMPK is

demonstrated  to  activate  autophagy  through  directly  suppressing  mTORC1  activity  or

activating mTORC1 inhibitor TSC2 (Gwinn et al., 2008; Inoki et al., 2006) (Figure 2).

Autophagy induction is tightly modulated via the VPS34 complex as well. Beclin-1 is

the key subunit in the complex, and various molecules regulate autophagy through interacting

with Beclin-1. It has been demonstrated that UVRAG (Liang et al., 2006), AMBRA1 (Fimia,

Corazzari, Antonioli & Piacentini, 2013) and Bif-1 (Takahashi et al., 2007) stimulate VPS34

complex  activity  and enhance  autophagy through association  with  Beclin-1.  Additionally,

besides its role in ULK complex activity and mTORC1 activation, AMPK is found to promote

autophagy through Beclin-1 phosphorylation at Thr388 (Zhang et al., 2016). For the negative

regulators, Bcl-2 (Pattingre et al., 2005) and Bcl-xL (Maiuri et al., 2007) bind to Beclin-1 to

suppress VPS34 complex, thus autophagy is compromised. Accordingly, mutations in Bcl-2

(G145A) or Bcl-xL (G138A) that disrupt the interaction with Beclin-1 rescue the suppressed



autophagy  (Sinha  &  Levine,  2008).  Notably,  the  small  GTPase  Rab5  is  found  to  be

indispensable for autophagy initiation through modulating VPS34 complex  (Jean & Kiger,

2014). Rab5 is viewed as one of the core molecules that mediate endocytosis (Langemeyer,

Frohlich & Ungermann, 2018). However, it has been demonstrated that Rab5 is required for

autophagosome  formation  through  interacting  with  VPS34  and  Beclin-1  in  both  HD

(Huntington’s disease) cell and Drosophila models  (Ravikumar, Imarisio, Sarkar, O'Kane &

Rubinsztein, 2008). Consistently, in growth factor withdrawal induced autophagy, Rab5 was

shown to interact with class IA PI3K subunit p110β, which causes Rab5 activation through

enhancing the transformation from GDP-bound state (Rab5-GDP) to GTP-bound state (Rab5-

GTP). Then VPS34 complex was activated and autophagy was induced  (Dou et al., 2013).

Similar functions for Rab5 were reported in hepatitis C virus NS4B-induced autophagy (Su,

Chao, Huang, Weng, Jeng & Lai, 2011).

2.1.2 Autophagosome formation

Autophagosome formation  is  the  key event  for  the  whole  autophagic  flux,  which  is

mediated by two ubiquitin-like conjugation systems in eukaryotic cells. After autophagy is

initiated and phagophore is synthesized, phagophore then expands and finally it seals to form

an isolated compartment termed autophagosome. Firstly, ATG7 acts as the E1-like enzyme,

ATG10 as the E2-like enzyme, to catalyze the conjugation of ATG12 to ATG5. ATG16L is

then recruited to the ATG5-ATG12 subcomplex to form ATG5-ATG12-ATG16L multimeric

protein complex (Mizushima et al., 2003). The other conjugation system is the lipidation of

MAP1LC3/LC3 (ATG8 in yeast). Full-length LC3 is firstly cleaved by the protease ATG4 at

its carboxyl terminus to generate the cytosolic LC3 type I (LC3I). The cleavage exposes the

C-terminal glycine residue where phosphatidylethanolamine (PE) is conjugated to LC3I. This

process  is  known as  LC3 lipidation and the lipidated LC3 is  called LC3 type II  (LC3II)

(Tanida,  Ueno  &  Kominami,  2004).  LC3  lipidation  is  mediated  in  an  ubiquitin-like

conjugation manner, in which ATG7 serves as the E1-like enzyme as well, ATG3 as the E2-

like enzyme, and  ATG5-ATG12-ATG16L complex as  the E3-like ligase  (Romanov et  al.,

2012).  Thus,  LC3II  is  covalently  attached  to  the  phagophore  membrane  where  proteins

containing LC3-interacting region (LIR) are recruited. Subsequently, phagophore elongates



until it seals at some point to form a vesicle termed autophagosome.

2.1.3 Autophagosome maturation and degradation

Once  autophagosome  is  formed,  LC3II  bound  to  the  exterior  membrane  of

autophagosome  (cytosolic  phase)  is  immediately  removed  by  the  ATG4  proteinases

(Kauffman et  al.,  2018).  Usually,  autophagosomes are  then transported to  the  perinuclear

region and fused with proximal  lysosome to form autolysosomes (Figure  2).  It  has  been

demonstrated that the fusion step is mediated by several tethering proteins including SNAREs

and  the  HOPS  complex  (Jiang  et  al.,  2014;  Wang  et  al.,  2016).  In  an  alternative  way,

autophagosomes may firstly fuse with late endosomes to temporarily form amphisomes, and

amphisomes then undergo fusion with lysosomes to make autolysosomes  (Galluzzi  et  al.,

2017).  Autophagosomes (or  amphisomes)  and autophagy cargos are  degraded by resident

lysosomal hydrolases, and the generated small molecules such as amino acids are reused by

the cells.

2.1.4 Selective autophagy

Originally, it is thought that autophagy cargos are sequestered in a bulk and non-selective

way  (bulk  autophagy)  induced  by  stimuli  such  as  nutrient  deprivation.  However,

accumulating evidence has demonstrated that autophagosomes selectively recognize specific

cargos through adaptor proteins. This form of autophagy is known as selective autophagy

(Figure 3). Based on the type of cargos, selective autophagy that degrades protein aggregates

is termed as aggrephagy, damaged mitochondria as mitophagy, peroxisomes as pexophagy,

cytosolic pathogens as xenophagy, and so forth (Kirkin & Rogov, 2019) (Figure 3). Typically,

the aberrant proteins are firstly labeled with ubiquitins, and then the ubiquitinated cargos are

recognized by the ubiquitin-binding domain (UBD) of adapter proteins such as p62/SQSTM1,

NBR1, NDP52, OPTN, TAX1BP1, TOLLIP and RPN10 (Menzies et al., 2017). These adaptor

proteins also contain LIR (LC3-interacting region) motifs through which they associate with

LC3, thus the adaptor proteins link the ubiquitinated cargos with autophagosomes. Currently,

the adaptor proteins are usually referred to as selective autophagy receptors (SARs)  (Chu,

2019;  Kirkin  & Rogov,  2019) (Figure  3).  Selective  autophagy  has  recently  gained  more

attention due to its therapeutic potential for neurodegenerative diseases and aging.

2.2 Chaperon-Mediated Autophagy



In  chaperon-mediated  autophagy  (CMA),  the  cargos  are  also  selective.  Only  the

substrate proteins containing a KFERQ-like motif  can be recognized by chaperon protein

complex  (Olson, Terlecky & Dice, 1991) (Figure 1). In contrast to selective autophagy, the

targeted cargos are delivered to lysosomal surface without formation intermediate vesicles

such  as  autophagosome  or  autolysosome.  Instead,  the  KFERQ-containing  substrates  are

recognized by chaperon protein HSPA8 (also known as Hsc70) together with associated co-

chaperons. Subsequently, the cargo-HSPA8 complex is transported to lysosomal membrane

where  the  complex  interacts  with  the  cytosolic  domain  of  the  lysosomal  transmembrane

protein  LAMP2A  (Cuervo  & Dice,  1996) ,  an  isoform  of  another  lysosomal  membrane

protein LAMP2.  Before  the docking of cargo-HSPA8 complex,  LAMP2A exists  either  in

monomeric or homodimeric state. Once the substrate complex binds to LAMP2A, HSPA8 is

released from the complex and LAMP2A quickly undergoes oligomerization to form a pore-

like complex. The substrates are firstly unfolded and then translocated into lysosomal lumen

where they are degraded. And the LAMP2A oligomer undergoes disassembly to be monomer

or dimer for next round of delivery (Bandyopadhyay, Kaushik, Varticovski & Cuervo, 2008;

Bandyopadhyay,  Sridhar,  Kaushik,  Kiffin  &  Cuervo,  2010) (Figure  1).  Although

macroautophagy is believed to be the major type of autophagy in mammals, CMA-mediated

protein  degradation  may  be  largely  underestimated.  Recent  findings  suggest  that  CMA

pathway plays a critical role in degrading intracellular proteins (Kaushik & Cuervo, 2018). If

certain gene is down-regulated at the protein level, the possibility that it might be degraded

through CMA pathway should not be overlooked.

2.3 Microautophagy

Microautophagy is the most straightforward type of autophagy in which the cytoplasmic

cargos are  directly engulfed by the lysosome or  vacuole through membrane invagination.

Ultimately, a vesicle surrounding the cargos is formed, then both of the vesicle and cargos are

degraded by lysosomal  hydrolases  (Li,  Li  & Bao,  2012) (Figure  1).  Microautophagy can

randomly select the substrates or specifically degrade some cargos such as peroxisomes. The

peroxisome selective microautophagy is termed micropexophagy (Oku & Sakai, 2016).

3. Autophagy in Alzheimer’s disease pathogenesis



Alzheimer’s disease (AD) is characterized with amyloid deposition due to aberrant Aβ

metabolism, and neurofibrillary tangles consisting of phosphorylated tau. Besides, synaptic

loss,  overactive  neuroinflammation,  impaired  mitochondria,  dysfunctional  calcium  and

insulin signaling and so on, are also observed in AD pathologies (Querfurth & LaFerla, 2010).

The mammalian nervous system, especially for neurons, depends heavily (if not solely) on

autophagy to maintain the protein homeostasis  (Chung, Hernandez, Sproul & Yu, 2019). In

addition,  the  unique  features  of  neuronal  cells  confer  vulnerability  to  dysfunctional

autophagy. For instance, axonal autophagosomes in neurons have to move to the cell body to

fuse with lysosomes, because lysosomes are rarely distributed in distal axons (Cheng, Zhou,

Lin, Cai & Sheng, 2015; Maday, Wallace & Holzbaur, 2012). 

Accumulating  evidence  has  indicated  that  impaired  autophagy  contributes  to  AD

pathogenesis. Initially, it is found that autophagosomes and autolysosomes are accumulated in

AD patients’ brains through electron microscopy (Nixon et al., 2005). The core subunits of

VPS34 complex, Beclin-1 and VPS34 have been demonstrated to be significantly reduced

with AD progression  (Jaeger, Pickford, Sun, Lucin, Masliah & Wyss-Coray, 2010; Lucin et

al., 2013; Pickford et al., 2008; Rohn, Wirawan, Brown, Harris, Masliah & Vandenabeele,

2011). In line with these findings, PI3P production, which is mediated by the VPS34 complex,

was shown to be down-regulated as well in AD patients’ brains (Morel et al., 2013). So, it is

believed  that  the  accumulation  of  autophagic  structures  including  autophagosomes  and

autolysosomes are due to the blockage of autophagic flux (Wolfe, Lee, Kumar, Lee, Orenstein

& Nixon, 2013). However, Ralph A. Nixon’s group recently reported that the expression of

genes required for autophagosome formation and some lysosomal genes were up-regulated at

AD early stages when they were studying the CA1 neurons in hippocampus from AD patients

(Bordi et al., 2016). The findings suggest that the enhanced autophagy at the early stage of

AD is protective in response to stress, but autophagic flux is ultimately compromised with AD

progression (Chung, Hernandez, Sproul & Yu, 2019). Taken together, growing evidence has

indicated that dysfunctional autophagy is closely correlated with AD pathogenesis.

3.1 Autophagy in Aβ metabolism

Autophagy  is  involved  in  Aβ  metabolism  probably  through  regulating  both  of  its



generation and clearance.  Aβ originates from the processing of its  precursor protein APP,

which  is  sequentially  cleaved by  β-secretase  (BACE1)  and γ-secretase  (Selkoe & Hardy,

2016). It has been demonstrated that a compound induced and ATG5-dependent autophagy

enhances the degradation of APP itself (Cavieres et al., 2015). In addition, APP and the four

subunits of γ-secretase complex were observed residing in autophagosomes, suggesting that at

least some Aβ peptides are produced through autophagic pathway (Di Meco, Curtis, Lauretti

& Pratico, 2020). Moreover, it has been revealed that autophagy is required not just for Aβ

production, but also Aβ secretion. As mentioned before, ATG7 acts as the E1-like enzyme for

the ubiquitin-like  conjugation  in  autophagosome formation.  Nilsson  et  al. established the

ATG7 KO mouse strain and implemented its cross with AD mouse model  (Nilsson et al.,

2013; Nilsson et al., 2015). It is shown that extracellular Aβ plaque formation was drastically

decreased in ATG7 KO, autophagy-deficient AD mice. On the other hand, intraneuronal Aβ

was markedly accumulated, indicating that Aβ secretion was compromised after autophagy is

impaired (Nilsson et al., 2013; Nilsson et al., 2015). 

Not just the production, autophagy is also found to modulate Aβ clearance. When AD

model mice were treated with rapamycin, a specific inhibitor of mTOR, thus autophagy was

enhanced, it is observed that both intracellular Aβ and extracellular amyloid deposition in

brains were markedly reduced, and the animals’ cognition was significantly improved as well

(Caccamo, Majumder, Richardson, Strong & Oddo, 2010; Majumder, Richardson, Strong &

Oddo, 2011). In addition to small molecules, consistent results were obtained in genetically

engineered animal models.  Recently,  Rocchi and the coauthors knock in a point  mutation

(F121A) in  gene coding Beclin-1 in  mice.  The mutation disrupts  the  interaction between

Beclin-1 and Bcl-2,  resulting in the stimulation of basal  autophagy.  The established mice

(Beclin-1  F121A)  were  crossed  with  AD model  mice,  and  the  results  demonstrated  that

amyloid plaques were significantly decreased and cognitive impairment was prevented in AD

model mice carrying the Beclin-1mutation  (Rocchi et al., 2017). In line with this study, in

Beclin-1 knock out (KO) AD mice, both intraneuronal Aβ and extracellular Aβ aggregation

were accumulated compared to the control mice (Pickford et al., 2008). Autophagy seems to

affect Aβ clearance at multiple steps. Cathepsin B is a critical lysosomal protease required for



the degradation of autophagic substrates. It has been shown that genetic ablation of Cathepsin

B worsened AD pathologies in AD model mice, including the elevated abundance of Aβ42

and  more  amyloid  deposition.  Conversely,  when  cathepsin  B  was  overexpressed  through

lentiviral transduction, amyloid plaques were reduced even in the aged AD mice  (Mueller-

Steiner et al., 2006).

In  addition  to  bulk  autophagy,  selective  autophagy  is  also  found  to  function  in  Aβ

metabolism. As discussed earlier, the type of selective autophagy that degrades aggregated

proteins is called aggrephagy (Kirkin & Rogov, 2019). p62/SQSTM1, NBR1 and OPTN have

been identified as the selective autophagy receptors specific for aggrephagy (Malampati et al.,

2020). Usually, the ubiquitinated Aβ is degraded by the ubiquitin-proteasome system (UPS)

(Hong,  Huang  &  Jiang,  2014).  However,  the  extent  of  ubiquitination  of  Aβ  has  been

demonstrated to be correlated with its stability. The longer of the Aβ ubiquitin chain, the more

instable of Aβ. The polyubiquitinated Aβ tends to aggregate to form insoluble Aβ fibrils or

plaques (Morimoto et al., 2015), which are resistant to UPS-mediated degradation (Verhoef,

Lindsten, Masucci & Dantuma, 2002). Alternatively, the Aβ fibrils are selectively recognized

by the autophagy receptors p62/SQSTM1 and NBR1 and undergo degradation by aggrephagy

(Morimoto et al., 2015).

3.2 Autophagy in tauopathies

Autophagy plays  a  critical  role  in  tau pathology as  well  other  than Aβ metabolism.

Initially,  in  vitro  data  showed that  once  autophagic  flux  was  blocked,  tau  clearance  was

compromised and insoluble tau aggregates were significantly accumulated  (Hamano et al.,

2008). In the brains of familial AD patients, it is found that hyperphosphorylated tau showed

colocalization  with  the  autophagosome  marker  LC3  and  the  autophagy  receptor

p62/SQSTM1,  while  the  overlapping  was  not  observed  in  control  subjects  without

neurodegenerative diseases (Piras, Collin, Gruninger, Graff & Ronnback, 2016). Consistently,

LC3 and p62/SQSTM1 immunoreactivity was observed associated with tau aggregates in a

tau model cell line (Guo et al., 2016). These studies indicate that tau tauopathies are likely to

be  altered  by  autophagy  as  well.  Indeed,  in  ATG7  conditional  KO  (cKO)  mice,  the

phosphorylation of tau was markedly up-regulated, which is possibly due to the accumulation



of GSK3β, one of the major tau kinases, in brains of ATG7 cKO mice (Inoue et al., 2012).

In  line  with  its  role  in  Aβ  metabolism,  autophagy  induction  is  shown  to  alleviate

tauopathies. The mouse model carrying tau mutant treated with mTOR inhibitor rapamycin

was demonstrated to significantly decrease phosphorylated tau levels. Conversely, TSC2 (a

mTOR negative regulator) KO mice, in which mTOR signaling was constitutively activated,

displayed elevated tau levels as well as tau phosphorylation  (Caccamo et al.,  2013). Most

recently, a study obtained several mTOR inhibitors that are more potent than rapamycin, and

the authors applies these compounds to neurons differentiated form human neural progenitor

cells (NPCs) with tau mutant. The results showed that these identified compounds drastically

reduced tau  phosphorylation  and insoluble  tau  (Silva  et  al.,  2020),  which  provides  more

evidence that stimulated autophagy ameliorates tauopathies. mTOR is not the only molecule

in autophagic pathway targeting tau related pathology. It has been observed that, in addition to

p62/SQSTM1, the autophagy receptor NDP52 recognizes phosphorylated tau as well in brains

of AD model mice (Kim et al., 2014). And when NDP52 was up-regulated by a compound

from tea extract, the clearance of phosphorylated tau by autophagy was demonstrated to be

enhanced  in  cultured  neurons  (Chesser,  Ganeshan,  Yang  &  Johnson,  2016).  Likewise,

elevated  expression  of  NDP52  by  its  upstream  transcription  factor  Nrf2  was  shown  to

promote the degradation of  phosphorylated tau  (Jo,  Gundemir,  Pritchard,  Jin,  Rahman &

Johnson,  2014;  Malampati  et  al.,  2020).  In  addition  to  mTOR and  autophagy  receptors,

TFEB, one of  the core regulators in  autophagy,  is  also viewed as  a critical  factor in tau

pathologies. More studies have demonstrated that up-regulation of TFEB in tau mouse models

markedly reduced soluble phosphorylated tau and insoluble tau aggregates, and the cognitive

functions of the mouse models were thus shown to be improved (Polito et al., 2014; Wang,

Wang,  Carrera,  Xu  & Lakshmana,  2016).  The  obtained  evidence  indicates  that  multiple

autophagy related proteins are potently involved in tauopathies.

3.3 Autophagy in synaptic function

Synaptic dysfunction is another characteristic feature of AD pathology in addition to Aβ

deposition and tau aggregation. Synapses are neuron specific structures serving as the basic

units  for  communications  from presynaptic  neurons  to  postsynaptic  neurons.  It  has  been



observed that the number of synapse is reduced, together with cognitive impairment, at the

early stage of  AD pathogenesis  (Chen,  Fu & Ip,  2019).  Recently,  accumulating evidence

proposes  that  functional  autophagy  is  required  for  synaptic  functions  including

neurotransmission and synaptic plasticity  (Lieberman & Sulzer, 2020). Synaptojanin-1 is a

presynaptic lipid phosphatase that is involved in the endocytosis of synaptic vesicles. It is

reported  that  late  endosomes  and  autophagosomes  are  accumulated  in  zebrafish  cone

photoreceptors  with  genetic  ablation  of  Synaptojanin-1  (George,  Hayden,  Stanton  &

Brockerhoff,  2016),  suggesting  that  Synaptojanin-1  is  indispensable  to  maintain  normal

autophagy at  synapses.  Likewise,  the  Synaptojanin-1 interacting protein,  Endophilin  (also

known as Bif-1) is demonstrated to associate with Beclin-1 to modulate autophagy initiation

through  regulating  the  VPS34  complex  activity  (Takahashi  et  al.,  2007).  Additionally,

autophagy has  been proven to be involved in  presynaptic  release  of  dopamine.  In  ATG7

conditional  KO dopaminergic  neurons,  elevated  dopamine  release  was  observed,  and  the

treatment of mTOR inhibitor rapamycin rescued the phenomenon  (Hernandez et al., 2012).

Subsequent studies revealed that the association of Rab26 and ATG16 (Binotti et al., 2015),

Bassoon and ATG5  (Nikoletopoulou & Tavernarakis, 2018), are also important players for

synaptic vesicle release. The investigation of autophagy in postsynaptic locus is relatively

limited.  It  seems  that  the  role  of  autophagy  here  is  just  degrading  the  neurotransmitter

receptors including GABAA receptors and AMPA receptor (Lieberman & Sulzer, 2020).

Autophagy  is  also  a  necessity  for  synaptic  plasticity.  Synaptic  plasticity  means  the

features of synapses that change on structure, number and function to strengthen or weaken

the contacts between each other. It is believed that synaptic plasticity is essential for cognitive

functions such as learning and memory. At cellular level, there are two forms of synaptic

plasticity  related  with  learning  and  memory,  long-term potentiation  (LTP)  and  long-term

depression  (LTD).  Initially,  it  is  reported  that  BDNF  (brain-derived  neurotrophic  factor)

deficiency  up-regulated  LC3II  and  accumulation  of  autophagosomes,  while  LTP  was

compromised.  Additionally,  impaired  LTP  due  to  ablation  of  BDNF  was  rescued  after

autophagy was suppressed (Nikoletopoulou, Sidiropoulou, Kallergi, Dalezios & Tavernarakis,

2017),  suggesting  that  autophagy  induction  impairs  LTP.  However,  a  recent  study



demonstrated that autophagy stimulation in mouse hippocampus was required for the new

memory formation and LTP was blocked after autophagy was pharmacologically inhibited

(Glatigny  et  al.,  2019).  It  seems  there  is  some  inconsistency  between  the  two  studies.

However, it should be noticed that the former study focuses on the function of BDNF on

synaptic plasticity, and it is widely accepted that BDNF is a multifunctional secretory protein.

Thus, unpredictable side effects might be caused due to the ablation of BDNF.

3.4 Autophagy in mitochondrial dysfunction

Mitochondria  are  viewed  as  the  organelles  created  for  energy  production.  Actually,

mitochondria participate in multiple metabolic pathways as well as apoptosis (Pickles, Vigie

& Youle, 2018). In the process of energy production, mitochondria are impaired by of reactive

oxygen  species  (ROS).  Consequently,  mitochondria  maintain  the  homeostasis  through

elimination  of  damaged  ones  and  synthesis  of  new  mitochondria.  In  AD  pathogenesis,

accumulated  Aβ  potently  generates  excessive  ROS  and  causes  abundant  damage  to

mitochondria  (Querfurth & LaFerla, 2010). Mitophagy is the dominant approach to ensure

mitochondrial  homeostasis  (Gatica,  Lahiri  & Klionsky,  2018).  In  mammals,  mitophagy is

commonly induced by the collapse of mitochondrial membrane potential (MMP) caused by

ROS overload,  and  the  process  is  mainly  mediated  by  the  PINK1-Parkin  pathway  (Chu,

2019). PINK1 is a serine/threonine protein kinase in cytoplasm, and it is translocated into

mitochondrial matrix in normal functional mitochondria. In damaged mitochondria, however,

the  compromised  MMP blocks  PINK1  import  and  keep  it  on  the  outer  mitochondrial

membrane  (OMM)  where  PINK1  is  activated  through  autophosphorylation  (Aerts,

Craessaerts, De Strooper & Morais, 2015; Kondapalli  et  al.,  2012; Narendra et al., 2010).

Activated  PINK1  phosphorylates  and  activates  Parkin,  and  simultaneously  PINK1

phosphorylates ubiquitin on OMM as well to generate phospho-ubiquitin (Kane et al., 2014;

Koyano et al., 2014). As an E3 ligase, Parkin recognizes the phosphor-ubiquitin on OMM,

thus more Parkin is recruited (Trempe et al., 2013). Typically, ubiquitinated mitochondria are

recognized by autophagy receptors p62/SQSTM1 and OPTN, and then undergo autophagic

degradation  (Chu,  2019;  Geisler  et  al.,  2010).  Alternatively,  Parkin is  demonstrated to  be

dispensable and phosphorylated ubiquitin by PINK1 itself is potent enough for autophagy



receptor NDP52 and OPTN recognition (Lazarou et al., 2015). In addition to PINK1-Parkin-

mediated  mitophagy,  multiple  other  forms  of  mitophagy have  been  reported  (Chu,  2019;

Gatica, Lahiri & Klionsky, 2018; Pickles, Vigie & Youle, 2018), indicating the complexity of

mitochondrial homeostasis maintenance.

Mitochondrial  dysfunction  is  a  common  character  of  AD.  Postmortem  studies  have

demonstrated that  hippocampal  mitophagy was markedly reduced in  AD patients.  Similar

phenotype was observed in AD mouse models and neurons derived from induced pluripotent

stem cell  (iPSC)  of  AD affected individuals  (Lou,  Palikaras,  Lautrup,  Scheibye-Knudsen,

Tavernarakis  &  Fang,  2020),  suggesting  that  mitophagy  induction  might  ameliorate  AD

pathogenesis. Indeed, a recent study applied pharmacological agonists of mitophagy to treat

AD model cells and organisms. The results demonstrated that enhanced mitophagy alleviated

both Aβ and tau pathologies, and improved the cognitive functions of AD  C. elegans and

mouse  models  (Fang  et  al.,  2019).  Although  the  relations  between  mitophagy  and  AD

pathogenesis still need further investigation, mitophagy mediated clearance of dysfunctional

mitochondria displays therapeutic potential for AD interventions.

4. Current therapeutics for AD

AD is an extremely complex disease, and there are still no effective medications to slow

or prevent AD progression. At present, only four drugs (rivastigmine, galantamine, donepezil

and memantine) have been approved by U.S. FDA for AD treatment, in which three of them

(rivastigmine, galantamine and donepezil) are cholinesterase inhibitors and memantine targets

NMDA receptor  (Long & Holtzman, 2019). The efficacy of these drugs is very limited and

varies with different individuals (Knight, Khondoker, Magill, Stewart & Landau, 2018).

Up to date, over one hundred double-blind clinical trials have failed, in which more than

twenty compounds were demonstrated to be of no effect after completion of phase 3 trials

(Cummings, Lee, Ritter, Sabbagh & Zhong, 2020; Long & Holtzman, 2019). Currently, there

are 121 agents are undergoing clinical trials, most of which are targeting Aβ metabolism, tau,

inflammation, neurotransmitter receptors, synaptic plasticity and so on. Notably, among these

interventions,  more  agents  are  designed  from other  perspectives  except  amyloid  and  tau

pathologies, compared to the situation of 2019  (Cummings, Lee, Ritter, Sabbagh & Zhong,



2019). For instance, the National Medical Product Administration (NMPA) of China approved

GV-971 in 2019 for the treatment of AD at mild-to-moderate stage (Wang et al., 2019). GV-

971 is an oligomannate extracted from brown algae, and it is believed to be a multitargeted

compound crucial for the balance of gut microbiota. The authors demonstrated that GV-971

administration significantly prevented AD progression through modulating dysbiosis of the

gut microbiome induced excessive inflammation in brain  (Wang et al.,  2019). As GV-971

exhibits high safety in clinical trials and its mechanisms of action are distinctive, cautious

optimism might be the right attitude for its commercial application. Besides, another drug in

clinical trial, rifaxamin, is also targeting harmful gut bacteria activated neuroinflammation

(Cummings, Lee, Ritter, Sabbagh & Zhong, 2020). Additionally, some other agents attempt to

suppress  AD  pathogenesis  indirectly  via  regulating  signaling  pathways  involved  in

metabolism, epigenetic changes, vascular system, neurogenesis as well as protein homeostasis

(Cummings, Lee, Ritter, Sabbagh & Zhong, 2020; Hara, McKeehan & Fillit, 2019). The novel

perspectives represent potential approaches for future AD treatment.

5. Autophagy-stimulating strategies for AD therapeutics

Due  to  the  massive  failure  of  compounds  targeting  amyloid  and  tau,  researcher  are

considering other therapeutic strategies for AD  (Long & Holtzman, 2019). A consensus is

being reached in favor of autophagy related interventions. Accumulating evidence indicates

that enhanced degradation of misfolded proteins and impaired organelles through inducing

autophagy might be an ideal answer to AD therapy. Since autophagy is a conserved, highly

dynamic and sophisticatedly-regulated cellular event, so theoretically it can be stimulated at

multiple  levels,  which  provides  various  pharmacological  targets  to  develop  agonists  or

antagonists accordingly.

Although  immunotherapy  and  other  therapies  are  also  intriguing  options  for  AD

intervention, small molecules are still highly preferable, as they can easily cross the blood-

brain barrier (BBB). Hundreds of compounds against AD have been tested clinically in recent

years (Cummings, Lee, Ritter, Sabbagh & Zhong, 2019; Cummings, Lee, Ritter, Sabbagh &

Zhong,  2020).  Here,  we  select  a  list  of  autophagy-stimulating  agents  that  have  been

investigated in AD animal models and/or proven to be safe in various phases of clinical trials,



even if  some of which are not  originally designed for AD treatment (Table 1).  Next,  we

discuss the revealed mechanisms of these compounds in autophagy and the performance in

animal models and clinical trials.

5.1 Compounds targeting bulk autophagy

Most of the selected agents induce autophagy through inhibiting mTOR and/or activating

AMPK (Table 1). Rapamycin and its derivatives are macrolide compounds and they are well-

characterized mTOR inhibitors. The administration of rapamycin in AD model mice has been

demonstrated to alleviate Aβ aggregation, tauopathies and improve cognitive functions (Lin et

al., 2013; Ozcelik et al., 2013; Spilman et al., 2010). The clinical data of rapamycin on AD

patients are not available, but it has been shown that low-dose rapamycin improves some

aging related markers, suggesting its potential function in slow aging  (Singh et al., 2016).

Curcumin is a natural product from Curcuma longa plants, which potently suppresses PI3K-

Akt-mTOR signaling pathway. In AD model mice, the treatment of curcumin has significantly

reduced amyloid aggregation and inhibited memory decline  (Wang, Zhang, Teng, Zhang &

Li,  2014).  Clinical  results  indicate  that  curcumin  functions  in  suppressing  inflammation

(Salehi et al., 2019). Considering the damage of neuroinflammation in AD scenario, curcumin

is indeed an attractive agent targeting AD treatment.

The  anti-psychiatric  drug  lithium  is  demonstrated  to  promote  autophagy  through

activating  AMPK  (Bao  et  al.,  2019).  Animal  studies  indicate  that  lithium  markedly

ameliorates tauopathies in 3xTg AD model mice  (Caccamo, Oddo, Tran & LaFerla, 2007).

Patient data also showed that lithium administration considerably improved cognition of AD

patients and individuals with MCI (mild cognitive impairment)  (Matsunaga, Kishi, Annas,

Basun, Hampel & Iwata, 2015). Resveratrol is also reported to stimulate autophagy in an

AMPK-dependent  manner,  and  the  induced  autophagy  was  indicated  to  attenuate  AD

pathology in animal model  (Vingtdeux et al., 2010). However, resveratrol is a multitargeted

compound, and it is also found to enhance autophagy via sirtuin1-mediated signaling pathway

(Uddin, Mamun, Labu, Hidalgo-Lanussa, Barreto & Ashraf, 2019). As resveratrol is a grape-

derived polyphenol, it is very safe in clinical trial. And it shows some protective effect in AD

patients, but inconsistent results were also observed (Kou & Chen, 2017; Turner et al., 2015). 



Some other agents are reported to elevate autophagy through both AMPK activation and

mTOR inhibition. Glucosamine is an essential component in cartilage, and it is usually used

as  a  supplement  to  improve  the  pain  caused  by  loss  of  cartilage  (osteoarthritis).  Recent

literature  indicates  that  glucosamine  is  an  autophagy agonist  via  suppressing  mTOR and

activating AMPK both in vitro and in vivo (Carames et al., 2013; Chen, Chen, Liang, Tai, Lu

& Chen, 2018). There is no report about the effect of glucosamine administration on AD

animal models yet. However, glucosamine has been shown to enhance longevity in worms

and old mice (Weimer et al., 2014). As age is a major risk factor for AD, glucosamine may

have  protective  effects  against  AD  through  facilitating  healthy  aging.  Metformin  is  a

biguanide compound that is widely used for the patients with type 2 diabetes. It activates

AMPK and/or  inhibits  mTORC1  to  induce  autophagy  (Kalender  et  al.,  2010;  Onken  &

Driscoll, 2010). Metformin potently reduces AD-like pathologies and improves cognition in

AD mouse models (Table 1). Moreover, metformin displays promising results on improving

some  cognitive  functions  in  clinical  trials  (Koenig  et  al.,  2017).  Oleuropein  is  a  bitter

compound extracted from green olive and it stimulates autophagy by inhibiting mTOR and/or

activating  AMPK  as  well  (Rigacci  et  al.,  2015).  Oleuropein  has  been  demonstrated  to

markedly  reduce  Aβ  plaques  and  ameliorate  synaptic  plasticity  in  a  well-established  AD

mouse model TgCRND8  (Grossi et al., 2013; Luccarini et al., 2015). Clinical studies have

demonstrated  that  oleuropein  has  some beneficial  effects  on  several  human chronic  non-

communicable diseases including cardiovascular diseases and diabetes  (Nediani, Ruzzolini,

Romani  &  Calorini,  2019).  As  these  chronic  disorders  are  closely  correlated  with  the

occurrence  of  AD,  it  is  worth  further  investigating  the  efficacy  of  oleuropein  on  AD

prevention.

It is not necessary that the autophagy inducers targeting mTOR and/or AMPK. The FDA

approved  agent  for  AD  treatment,  memantine,  is  shown  to  enhance  autophagy  either

depending on mTOR or  not  (Song,  Li,  Lin  & Cao,  2015).  Similarly,  the  FDA approved

antiepileptic  drug  carbamazepine  can  also  induce  autophagy  in  mTOR-dependent  or  -

independent way. Carbamazepine shows intriguing therapeutic potential for AD because of its

beneficial property of amyloid aggregates reduction and cognition improvement in 3xTg AD



model mice (Li et al., 2013; Zhang et al., 2017). Nilotinib is a tyrosine kinase inhibitor that is

usually  applied  for  the  treatment  of  chronic  myeloid  leukaemia  (CML).  A recent  study

showed  that  nilotinib  stimulates  autophagy  through  c-ABL-mediated  mTOR  inhibition

(Hussain  et  al.,  2019). Although nilotinib  is  likely  to  target  multiple  factors  involved in

autophagic process (VPS34 complex, for instance) (Yu et al., 2020), its efficacy on autophagy

induction is consistent.  Besides,  in vivo studies and clinical trial  results demonstrated that

nilotinib decreases amyloid deposition (Table 1), making nilotinib an appealing candidate for

AD therapeutics. Spermidine is a natural polyamine existing in all eukaryotic cells and it is

required  for  cell  proliferation,  differentiation  and  apoptosis  (Pegg,  2016).  Recent  studies

revealed  that  spermidine  elevates  autophagy  in  vitro through  up-regulating  the

acetyltransferase EP300,  which is  a Beclin-1 and LC3 binding protein  (Sacitharan,  Lwin,

Gharios & Edwards, 2018). Spermidine has not been applied to AD animal models, however,

it  displays  consistent  effect  against  aging  in  multiple  model  organisms,  including  yeast,

C. elegans,  Drosophila and mice  (Eisenberg et al., 2016; Eisenberg et al., 2009; Yue et al.,

2017).  It  is  presumable  that  spermidine  has  the  potential  to  treat  AD,  the  age-related

neurodegenerative disorder. Trehalose is a natural disaccharide. In contrast to other autophagy

inducers mostly targeting mTOR, AMPK or VPS34 complex, trehalose activates autophagy

via the transcription factor TFEB. Studies demonstrated that the administration of trehalose

promotes TFEB dephosphorylation, resulting in TFEB nuclear translocation. This leads to the

upregulation of multiple TFEB downstream effectors required for autophagy, in an mTOR

independent  manner  (Rusmini  et  al.,  2019).  Amyloid  and  tau  pathologies  in  AD  mouse

models treated by trehalose are significantly improved (Table 1), indicating that trehalose is a

small molecule worthy of consideration as an intervention for AD.

5.2 Compounds targeting mitophagy

In addition to bulk autophagy, researchers have shed more light on selective autophagy

to identify potential  drug  targets  for  neurodegenerative diseases  in  recent  years.  A lot  of

efforts  have  been  put  on  screening  appealing  compounds  enhancing  aggrephagy  and

mitophagy. Small molecules targeting aggrephagy have recently been reviewed by Malampati

et  al.  (Malampati  et  al.,  2020).  Here,  we discuss  the anti-aging compound, nicotinamide,



which has been proven to stimulate mitophagy. Nicotinamide is an active form of vitamin B3.

It serves as the precursor of oxidized nicotinamide adenine dinucleotide (NAD+) which is a

critical coenzyme in catalyzing a broad range of intracellular  metabolic events.  Extensive

studies have demonstrated that nicotinamide and its derivatives, nicotinamide riboside (NR)

and nicotinamide mononucleotide (NMN), induce mitophagy and are protective against aging

(de Picciotto et al., 2016; Mills et al., 2016; Yoshino, Baur & Imai, 2018). Recent evidence

indicates that  nicotinamide replenishment remarkably ameliorates amyloidosis,  tauopathies

and cognition  impairment  in  AD mouse  models  (Table  1).  Even though the  clinical  trial

results  of  nicotinamide  on  AD patients  are  not  inspiring,  nicotinamide  exhibits  excellent

safety even if some subjects were treated with high dose (Di Meco, Curtis, Lauretti & Pratico,

2020).  These  mitophagy enhancers,  including  nicotinamide,  NR and NMN,  are  safe  and

natural  molecules  that  have  already  been  commercially  produced.  Therefore,  it  is  worth

deeper exploration of their effects on AD therapeutics.

6. Concluding remarks and future perspectives

AD  and  other  neurodegenerative  disorders  are  proteinopathies  characterized  with

formation of abnormal and insoluble protein aggregates. Tremendous efforts have been made

to develop interventions targeting amyloidosis and tauopathies. However, effective disease-

modifying  medications  are  still  vacant.  Numerous  amyloid-  and  tau-directed  compounds

failed at clinical trials.  Most recently, US FDA rejected the application of aducanumab, a

monoclonal antibody targeting Aβ, as a new agent for AD therapy.

In recent years, more and more evidence has demonstrated that dysfunctional autophagy

is not just correlated with AD pathologies, but it is likely to be a causative factor for AD

development.  Accordingly,  stimulating autophagy to enhance the elimination of misfolded

proteins  is  proposed  to  be  a  potential  option  for  AD  therapeutics.  Indeed,  a  variety  of

autophagy  enhancers  have  been  identified  to  slow  down  AD  progression  and  improve

cognition at least in AD animal models. The beneficial effects of autophagy stimulators on

AD patients are either not observed or very limited heretofore. However, clinical trials have

identified some candidates  that  are  highly safe  and/or  approved already by  FDA to treat



diseases other than AD. Hence, it is possible to perform clinical trials with larger sample size,

and  the  efficacy  of  candidate  interventions  should  be  examined  in  distinct  subgroups  of

enrolled subjects with regard to different stages of AD and MCI (mild cognitive impairment).

In addition, considering the complexity of AD, single agent may not be effective to alleviate

AD symptoms. It is recommended to combine more than one autophagy activators in future

clinical trials. Furthermore, as the pathologic changes have been accumulating in the brain

years  or  even  decades  before  the  clinical  diagnosis  of  AD,  administration  of  potential

interventions (not just autophagy-stimulating compounds but also Aβ-, tau-, APOE-directed

agents and so on) at preclinical stage should be employed to evaluate the efficacy.

Autophagy is particularly conserved in eukaryotic organisms. Despite the huge advances

in elucidating autophagic process, more efforts are required to understand the mechanisms of

the sophisticatedly regulated, highly dynamic cellular event. Recent studies showed that some

forms  of  autophagy selectively  degrades  specific  substrates  through autophagy  receptors,

termed  as  selective  autophagy.  Unraveling  the  molecular  basis  of  cargo  selection  and

recognition  is  helpful  to  precisely  activate  the  autophagy  pathway.  AD  is  a  complex

multifactorial disease and researchers have encountered a lot of frustrating drawbacks in AD

therapeutics.  Autophagy  directed  strategy  provides  a  new  and  promising  alternative  to

developing anti-AD medications.
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