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Abstract

The gill tissue of bivalve mollusks hosts rich symbiotic microbial communities that may

contribute to the host wellbeing. Spondylus spinosus is a Lessepsian invasive oyster to

the  eastern  Mediterranean  Sea  that  has  become highly  abundant,  while  constantly

expending its range northwestward. Using 16S rRNA gene amplicon sequencing we

examined how temperature affects the gill microbiota of  S. spinosus, and the oysters

themselves,  in  a  series  of  experiments:  exposing  the  oysters  to  the  current  annual

seawater temperature range; to the colder temperature of the western Mediterranean

Sea; and to elevated temperature as predicted under global warming scenarios. The

bacterial genus Endozoicomonas dominated the communities of the S. spinosus, mainly

upon exposure to winter-like temperatures. Exposure to elevated seawater temperature

resulted  in  a  significant  change  in  the  bacterial  communities,  while  the  oysters

maintained  normal  functioning,  suggesting  that  the  oyster  may  survive  a  seawater

warming  scenario.  Exposure  to  colder  winter  temperature  typical  to  the  western

Mediterranean  Sea  resulted  in  health  deterioration  of  the  oysters,  emergence  of

opportunistic pathogens, and a decline in the relative abundance of  Endozoicomonas,

suggesting that  S. spinosus might not survive in the cold western Mediterranean Sea.

The findings indicate that gill bacteria are greatly affected by temperature, which could

consequently restrict the range expansion of this and other invasive oysters.

Keywords:  Endozoicomonas /  Lessepsian  migration  /  Mediterranean  Sea  /

microbiome / oyster microbiota / holobiont
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Introduction

Organisms in all  ecosystems around the world,  including marine ones,  are crucially

affected by temperature. Consequently, global warming is considered one of the major

environmental concerns, posing a threat to marine biodiversity, as well as contributing

to the invasion of marine species, particularly that of tropical species into subtropical

and  temperate  seas  (1).  Invasive  species  affect  native  habitats  and  indigenous

communities,  and  therefore  are  considered   the  second  most  serious  threat  to

biodiversity,  following  habitat  destruction  (2).  The  Mediterranean  Sea  is  enduring  a

“tropicalization” process in which seawater temperature is constantly rising (3), followed

by an increase in the introduction and spread of invasive tropical species. The main

vector of this tropicalization process has been the opening of the Suez Canal in 1869,

connecting  the  Mediterranean  and  the  Red  Sea  (4).  This   has led  to  a  continuing

massive  unidirectional  invasion  of  Red  Sea  organisms,  known  as  the  Lessepsian

migration  (4).  The principle  water  current  in  the  Eastern Mediterranean Sea moves

counterclockwise  (5),  which  causes  a  passive  dispersal  of  species  from   the

Mediterranean opening of the Suez Canal northwestwards.

A prominent Lessepsian invader is the bivalve oyster  Spondylus spinosus Schreibers,

1793, which was first documented in the Eastern Mediterranean in 1988 (6). It has since

expanded north-west  to  Lebanon,  Cyprus,  Turkey,  and Greece  (7–11).  S.  spinosus

forms dense bed-like aggregations along the Israeli Mediterranean coast at a depth of

2-40  m  and  has  the  potential  therefore  to  upset  the  equilibrium  of  the  invaded

ecosystem,  alter  its  topography,  and  replace  and  even  eradicate  native  species
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(6,11,12). Bivalves are considered ecosystem engineers, not only due to their complex

hard shell structure, which can supply a refuge and substrate for epibionts (13), but also

due  to  their  filter-feeding  ability,  affecting  water  turbidity,  which  in  turn  may  trigger

changes in the biota (14). S. spinosus is consequently considered as one of the worst

invasive species in the Mediterranean Sea (15).

The possession of suitable symbiotic microbiota is crucial for a species’ success, as

they may provide vital functions, such as supplying their host with nutrients, assisting in

food  digestion  (16,17),  and  protecting  their  host  against  pathogens  (18).  Oyster

microbiota may play a substantial role during larval settlement and metamorphosis, as

has already been demonstrated for other  bivalve species  (19–22).  Furthermore,  the

microbiota may assist the host organism during an invasion process (23). The relatively

rich microbiota in bivalve gill tissue (17,23) are considered to be stable autochthonous

communities integrated within the host tissues, unlike the microbiota in other organs,

such as the gonads and digestive system, in which the microbiota are generally variable

and allochthonous (23,24).  In addition, the gill tissue in bivalves can be enriched with

symbiotic  bacteria  (17,23),  harboring  specialized  cells  hosting  symbiotic  bacteria,

termed bacteriocytes (24).

Symbiotic microbiota functionality is likely to be a critical factor for the invasion success.

We  have  previously  shown  a  high  degree  of  conservation  in  S.  spinosus gill

microbiomes in the Eastern Mediterranean and the Red Sea, which is indicative of a co-

invasion by the host and its symbionts (25), although significant seasonal differences in

the bacterial communities were noted. One of the greatest impediments in the process
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of biological invasion is that of contending with temperature differences between the

source region and the invaded one (26). Bacterial growth is highly sensitive to changes

in temperature, whose optima may vary among the different species. Thus, because the

microbiome  may  be  more  sensitive  to  temperature  shifts  than  its  host,  this  may

determine the distributional range of the invasive holobiont.

Although the temperature in the indigenous region of  S. spinosus, the Red Sea, may

fluctuate annually between 21-28°C (27), along the Israeli Mediterranean coastline this

oyster encounters a broader range of 16-31°C (28). Since the microbiome is assumed

to contribute to invasion success, its response to shifts in temperature is necessary in

order  to  understand and contend with  potential  further  invasions and trajectories of

range expansion.  Here we experimentally tested how the temperature regime of the

invaded region may affect the microbiota of an invasive species. We also examined the

effect of two temperature scenarios on the holobiont, including the possibility of further

spread  of  the  oyster  into  the  colder  central-western  Mediterranean  Sea,  and  its

response under a predicted warmer temperature as a result of global warming (29). 

 

Materials and Methods 

Four experiments were conducted in order to examine the effect of temperature on the

S.  spinosus holobiont  (Table  1.A).  Two  experiments  were  designed  in  order  to

determine  the  effect  of  the  current  seasonal  temperature  regime  along  the  Israeli
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Mediterranean  coast  as  following:  (1)  a  ‘warming  experiment'  conducted  during

February-  March  2016  (winter)  and  (2)   a  ‘cooling  experiment'-  during  August-

September  2016  (summer)  (Table  1.A).  A  'global-warming  experiment'  (October-

November 2016),  incorporated a 2°C higher  temperature  than the ambient  summer

temperature,  as anticipated under a global  warming scenario  (29).  An 'extreme-cold

experiment’ (April  2016), was under seawater temperature of 11°C, prevailing during

winter in the shallow western Mediterranean Sea, 

Experiment design

Using SCUBA- diving, oysters were removed from the substrate with a hammer and

chisel at the Sdot-Yam site (32°29′26.0′N 34°53′09.4′E), on the Israeli Mediterranean

coast  (3–6  m  depth),  then  placed  in  buckets  filled  with  seawater  and  immediately

transferred to the marine laboratory at Mevo'ot Yam, Mikhmoret, where the controlled

temperature experiments were conducted (Fig. 1, Table 1.B). For each experiment five

oysters  were  randomly  retrieved,  immediately  sacrificed  for  microbial  analysis,  and

assigned as an inception group (time 0). Sampling procedure comprised dissecting the

oysters under sterile conditions, surgically removing the gills, placing the gill tissue in a

cooler box (on ice) and its immediate transfer to Tel Aviv University, where it was stored

at  -20°C until  further  processing  (see  ahead).  All  the  oysters,  except  the  inception

group, were divided into two aquaria: an experimental (300 l) and a control one (150 l).

Each  aquarium  was  supplied  with  a  flow-through  of  3  l/min,  while  maintaining

temperature,  pH  (8.3),  and  salinity  (3.8%)  corresponding  to  ambient  Mediterranean

conditions.  Temperature  was  monitored  four  times  a  day  (HOBO  Pendant®

6

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

11
12



Temperature/Light 8K Data Logger, ONSET). Ammonia, nitrite, nitrate, and phosphate

levels were monitored twice a week (API® test kit). The oysters were maintained under

ambient  temperature for  one week of  acclimation  in  order  to  eliminate the possible

effect of collection or introduction into the experimental system. Subsequently, four to

five oysters were randomly retrieved for assessment as an acclimation group in order to

determine  whether  captivity  had  influenced  the  bacterial  communities.  The  control

aquarium constantly maintained under ambient conditions, while the experimental group

was exposed to a modified temperature at a rate of  2°C per day until  reaching the

desired value (Table 1.A). The oysters were exposed to the target temperature for two

weeks, after which five to ten oysters were sacrificed as described above to determine

possible effect on the bacterial communities. Concomitantly, five oysters were sampled

from the control  aquarium. The final  phase was a adjustment of  temperature in the

experimental aquarium at a rate of 2°C per day until returning to the ambient seawater

temperature, followed by keeping the oysters at ambient temperature for a recovery

period of an additional two weeks, after which five to eight oysters were sacrificed for

assessment as a recovery group. Concurrently, five oysters from the control aquarium

were  sacrificed  for  assessment  as  a  control-recovery  group.  The  'extreme  cold'

experiment (see above), lacked a recovery phase, due to insufficient oyster supply. 

DNA extraction 

At Tel Aviv University bacterial genomic DNA from the gill tissue was extracted using

the PowerSoil DNA extraction kit (MoBio, CA, USA). All gill samples were homogenized
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using 24 tube vortex apparatus at maximum speed for 10 minutes, and then processed

according to the manufacturer's protocol, and DNA samples were then stored at –20°C.

16S rRNA gene amplicon sequencing and sequence analysis

Total DNA of each sample was PCR-amplified using universal prokaryotic primers CS1-

341F 5'- ACACTGACGACATGGTTCTACANNNNCCTACGGGAGGCAGCAG and CS2-

806R 5’- TACGGTAGCAGAGACTTGGTCTGGACTACHVGGGTWTCTAAT of the 16S

rRNA gene from 144 DNA samples. Twenty-nine PCR cycles (95C̊ 15 sec., 53C̊ sec.

15,  72̊C  15  sec.)  were  conducted  using  PCR  mastermix  KAPA2G  Fast™

(KAPABiosystems);  and  successful  amplification  was  verified  by  agarose  gel

electrophoresis. DNA samples were shipped at 4ºC to the Chicago Sequencing Center

of the University of Illinois for paired-end deep sequencing of the PCR products on an

Illumina MiSeq platform, for determination of bacterial community composition.

Demultiplexed raw sequences  were  quality  filtered  (removing bases  with  a  PHRED

quality  score<20),  length  filtered  (discarding  sequences  <380bp)  and  merged  using

PEAR  (30).  Data were then processed using the Quantitative Insights into Microbial

Ecology (QIIME) software package (31). VSEARCH (32) was used for dereplication and

Operational Taxonomic Units (OTUs) picking at  99% identity; to reduce spurious OTU

formation,nly sequences repeating more than five times (100% similarity) were allowed

to  form  new  OTUs.  Chimeric  OTUs  (identified  by  uchime_ref  using  the  gold.fa

database) were removed. OTUs were then assigned a taxonomy using the UCLUST

(33) algorithm and Silva v128 database. The UniFrac based distance matrix, obtained

from QIIME, was exported to PAST, a statistical data analysis package (34). Analysis of
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similarity (ANOSIM) (35) was calculated, and principal coordinates analysis (PCoA) was

performed  based  on  weighted  and  unweighted  UniFrac  distances.  Statistical

significance threshold was α=0.05 for all tests.

Results

A total of 2 254 548 high-quality amplicon reads with an average read length of 429

base pairs were obtained from 144 oysters in the experiments as follows: warming- 33,

cooling- 40,  global  warming-  49 and extreme cold-  22.  Each experiment  yielded an

average of 15,442 reads per sample (range: 20 to 33,008/ sample). A total of 1,840

OTUs were initially recovered, but eight chloroplast OTUs were removed, leaving a total

of 1,832 OTUs for the subsequent analyses.

Though 50 distinct bacterial phyla were represented in the gill tissues of  S. spinosus,

the  phylum  Proteobacteria  dominated,  representing  67±18%  (n=144)  of  the  total

microbiota. Within the Proteobacteria, bacterial communities were primarily composed

of  the  classes  γ-  proteobacteria  (68±22%)  and  α-  proteobacteria  (19±7%).

Endozoicomonas,  of  the  γ-  proteobacteria  class,  was  the  most  abundant  genus

(25±25%) of gill bacterial communities.

Warming experiment

Invasive species originating from the northern Red Sea need to contend with a higher

summer  water  temperature  in  the  Mediterranean  Sea  than  that  prevailing  in  their

indigenous one. Oysters were collected in February 2016 (seawater temperature 17°C),

9

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

17
18



and divided into experimental and control aquaria. The former was exposed to a gradual

increase in temperature up to 31°C, followed by a recovery period during which the

temperature was gradually reduced to the ambient temperature of 19°C (March 2016)

(Table  1.B).  The  control  groups  were  designed  similarly  to  those  of  the  previous

experiment  (see  above).  All  oysters  used  in  this  experiment  demonstrated  normal

behavior.

Principal  coordinates  analyses  (PCoA)  based  on  weighted  or  unweighted  UniFrac

distances (Fig. 2) both indicated a distinct separation of the summer-like group from the

six ambient groups. The recovery group yielded a similar bacterial composition to that of

the  ambient  groups.  Pair-wise  comparisons  of  all  oysters  collected  during  the

experiment  exhibited significant  differences between the summer-like group and the

ambient groups grouped together (ANOSIM P= 0.02, R= 0. 34, P= 0.02, R= 0.25, for

weighted and unweighted UniFrac, respectively. Supplementary Table S1). 

A relative abundance of 44±14% was noted for γ-proteobacteria in the inception group

(17°C),  which  decreased  to  33±20%  in  the  experimental  summer-like  group.

Nonetheless, the relative abundance of γ-proteobacteria increased along with a minor

ambient temperature rise of 3°C during the experiment (acclimation: 72±20%, control:

61±27%, recovery: 57±19%, control-recovery: 72±21%, Supplementary Fig. S3). These

findings suggest that the extended period of gradual warming had led at least in part, to

this increase.  The bacterial communities of the summer-like group were more diverse

than those of the ambient temperature groups (Fig. 3.A), with median Shannon diversity

values  of  4.21  vs.  ≤3.12.  Members  of  the  Cloacimonetes  phylum  were  uniquely
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detectable  in  the  summer-like  group,  reaching  a  relatively  high  median  relative

abundance  of  5±3%.  The  abundance  of  the  order  Xanthomonadales  (class  γ-

proteobacteria) increased in the summer-like group (3±2%) and remained similar during

the recovery process (relative abundance of 5±3%).Additionally, prevalent OTUs in the

summer-like  group  included  members  belonging  to  Desulfovibrio (5±3%;  phylum γ-

proteobacteria),  the family  Lentimicrobiaceae (phylum Bacteroidetes,  6±2%) and the

genus  Bacteroides (4±3%).  The genus  Ruegeria (class α-proteobacteria)  featured a

high  relative  abundance  in  the  summer-like  group  (4±3%),  nevertheless,  was  also

present in lower abundance in the recovery group. 

Endozoicomonas was the major determinant for the differences between the summer-

like group and the oysters that were held under winter ambient temperature (LEfSe -

Linear discriminant analysis effect size, Supplementary Figure S4) (36). Members of the

Endozoicomonas genus  were  previously  shown to  be  more  abundant  in  gills of  S.

spinosus during winter than during summer  (25). It was therefore expected that they

would decrease as temperature increased. Indeed, Endozoicomonas level was 36±15%

in  the  inception  group  (winter)  while  in  the  summer-like  group  it  was  19±24%.

Endozoicomonas returned to its initial level of 36±30% in the recovery group, whereas

in  the  control  group  that  remained  under  the  ambient  temperature  throughout  the

experiment, its  level was even higher (58±33%, Fig. 3.B). These findings indicate that

substantial changes take place in the bacterial community of S. spinosus in response to

increased temperatures. 
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Cooling experiment

The first experiment sought to assess the effect of a decrease in water temperature that

a  Red Sea gill  microbiome would  encounter  upon invading the  Mediterranean Sea.

Oysters  were  collected  during  August  2016  (ambient  seawater  30°C)  and  divided

between an experimental and a control aquarium (Fig. 1, Table 1.A). The oysters were

exposed to a gradual decrease in water temperature to a winter value of 17°C, followed

by a recovery period in which the temperature was gradually adjusted to reach the

ambient seawater temperature (29°C, September 2016, Table 1.B). The control groups

comprised a group of oysters sampled immediately after acclimation and two additional

groups  maintained  under  ambient  seawater  temperature  that  were  sampled

concurrently with the experimental group. All oysters in this experiment demonstrated

normal behavior, exhibiting immediate valve closing as a response to external stimuli;

their  soft  tissues  were  intact  and  displayed  normal  coloration;  and  their  muscles

contracted as a reaction to touch. 

Principal coordinates analysis (PCoA) based on UniFrac distances demonstrated only a

weak separation of the experimental winter-like group from the control samples. The

inception (summer) group differed from the experimental winter-like group (ANOSIM P=

0.04,  R=  0.68,  see  Supplementary  Figure  S5,  Supplementary  Table  S2),  again

indicating temperature significantly affect bacterial communities.
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The γ- proteobacteria was the most dominant class in the gill microbiomes. Its relative

abundance  in  oysters  sampled  immediately  after  collection  (inception  group)  was

22±6%, and it increased under the lower temperatures (winter-like, 17°C: 38±16%). An

increase in relative abundance of γ- proteobacteria was noted after a 2°C decrease in

ambient seawater temperature following inception, in the  control animals (31±6%), as

well as in the  recovery (34±21%) and  control-recovery ones (42±8%) (Supplementary

Figure S6). The abundance of cyanobacteria increased in oysters held in the aquaria

compared to  those examined immediately  after  being  retrieved from the  sea;  while

Ruegeria  did  not  change  much  throughout  the  experiment  (Fig.  4).  The  genus

Endozoicomonas of the γ- proteobacteria contributed 13±12% of the microbiota, and

was present in all samples but one from the recovery group.  

Global-warming experiment

Given  the  substantial  effect  on  the  gill  microbiome  composition  as  a  result  of

temperature change, the current study addressed the issue of microbiome modification

during  global  warming.  Oysters  were  collected  during  October  2016  (seawater

temperature 29°C), and exposed to the unprecedented high water temperature values

of 32oC and 33°C. The oysters were then allowed a recovery period during which the

temperature was gradually adjusted to the ambient seawater temperature of 20°C. The

control groups were as in the previous experiments (see above).
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Principal coordinates analysis (PCoA) based on unweighted UniFrac (Fig. 5) indicated a

distinct separation between the two experimental temperatures and the ambient groups.

Pair-wise  comparisons  of  all  oysters  collected  throughout  the  experiment  revealed

significant differences between the 32°C/ 33°C groups and all other groups (ANOSIM

P≤ 0.034, R=0.66), with the exception of the control groups (first-control and second-

control), respectively (ANOSIM P≤ 0.36, R=0.57. Supplementary Table S3).

The  relative  abundance  of  bacterial  OTUs  (Fig.  6)  indicated  that  each  group  was

dominated  by  different  bacterial  taxa.  For  instance,  some  of  the  oysters  from  the

acclimation group were enriched with OTUs associated to the family  Marinilabiaceae

(phylum Bacteroidetes);  the  genus  Arcobacter (class  -proteobacteria)  reached high

levels in most of the oysters from the two extreme temperature groups; and the genus

Halomonas (class  γ-proteobacteria)  was  more  abundant  in  the  recovery  group.

Although Endozoicomonas tend to decrease under exposure to warmer temperatures,

its relative abundance was nearly unaffected by the extreme temperature of 32-33°C.

The exposure  of  oysters  to  extreme temperatures,  matching  those of  the  predicted

global warming for the present century, significantly altered the bacterial communities.

However, in contrast to our expectations, the extreme warm temperature did not affect

the relative abundance of  Endozoicomonas,  nor the physical condition of the oyster

host. 

Extreme-cold experiment
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During the extreme cold experiment oysters were exposed to Western Mediterranean

winter  seawater  temperature typical  to  the coastal  sites of  Spain and northern Italy

(37,38), in order to determine the possible effects of this temperature on  S. spinosus

microbiota, if  indeed its invaded range will  include that region. This experiment took

place during winter,  when ambient  seawater  temperature  was 20°C.  Oysters  in  the

experimental aquarium were gradually exposed to 11°C. The control groups were as in

the  previous experiments  (see above).  All  five  oysters from the  experimental  group

(11°C) revealed stress symptoms, manifested in keeping their valves closed most of the

time.  Two of them hardly  responded to  any external  stimulus.  The other  17 control

oysters remained normal throughout the experiment.

The relative abundance of bacterial OTUs (Fig. 7) revealed several unique patterns: two

out of five oysters in the inception group (1 and 2) and one from the acclimation group

(4) featured a similar pattern, in which the genus Klebsiella (family Enterobacteriaceae,

class  γ-proteobacteria)  was  highly  abundant.  Along  with  this  genus  were  the

Enterobacteriaceae: Esherichia-Shigella and Morganella, and the Firmicutes: Veillonella

and  Streptococcus. These three oysters also exhibited a relatively low abundance of

Endozoicomonas. Endozoicomonas was highly abundant in the other three oysters in

the inception group that exhibited a low abundance of Enterobacteriaceae. 

Strikingly, the two stressed oysters from the experimental group did not possess any

Endozoicomonas, whereas this genus was present in all other oysters throughout the

experiment.  All  the  oysters  under  the  extreme temperature  featured  certain  distinct

bacteria at relatively high abundance compared to the other groups, and the relative
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abundance of these taxa in the two stressed oysters was even higher. These included

the  genera  Arcobacter and  Vibrio (class  γ-proteobacteria),  the  family  Colwelliaceae

(class γ-proteobacteria),  and the genus  Pseudoalteromonas (class γ-proteobacteria).

These findings indicate that the oysters were stressed by the cold water temperature,

leading some putatively beneficial members of the microbiome to be reduced to below

detection level, while genera associated with opportunistic pathogens of invertebrates,

such as Vibrio, increased.

Discussion

Bacterial dynamics are significantly affected by temperature 

In this study we used the Lesspesian migrant S. spinosus oysters as a model organism

in order to examine how exposure to a broad range of temperatures can affect the

dynamics and composition of bacterial community, and consequently the geographical

expansion-range of an invasive host species. First, we studied how normal seasonal

temperature  fluctuations  of  the  invaded  habitat  influence  the  bacterial  community

dynamics.  As expected,  the temperature-shifted bacterial  communities demonstrated

substantial  changes  in  composition  in  both  the  cooling  and  warming  experiments.

However,  in  the  warming  experiment,  the  summer-like  group  was  more  diverse  in

bacterial  species  than  the  ambient  temperature  group,  comprising  several  unique

bacterial  taxa  and a  unique abundance pattern  of  several  other  taxa.  An  intriguing

example of this is the genus Ruegeria, which prospered in the summer-like group and

then remained relatively abundant in the recovery (ambient winter temperature) group.
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Interestingly, Ruegeria was also relatively abundant throughout the cooling experiment

which took place during summer. This finding may imply that  Ruegeria is a summer-

associated genus and, therefore, oysters in the cooling experiment already possessed a

reservoir of this genus, which was maintained throughout that period. In the warming

experiment  Ruegeria increased  in  oysters  following  exposure  to  summer-like

temperature and was then maintained at a high level. These findings offer direct support

for  a  previous  study  carried  out  under  natural  conditions,  which  suggested  that

seasonality influences the bacterial community composition of S. spinosus oysters in

the Mediterranean Sea (25).

The  dominant  oyster-associated  bacterial  genus Endozoicomonas  is  significantly

affected by temperature changes

It has been previously suggested that oyster-associated Endozoicomonas species tend

to  thrive  in  their  natural  habitat  during  winter  (25,39).  Accordingly,  in  the  warming

experiment  the  expected  pattern  was  observed  in  which  the  relative  abundance  of

Endozoicomonas decreased upon exposure to the peak summer temperature of 31°C,

and increased when exposed to cold winter temperatures of 17°C. Notably, 41 days

after  onset  of  the  cooling  experiment,  the  ambient  water  temperature  had  already

dropped from 31°C to 29°C. In contrast to our expectations,  oysters that were kept

under  ambient  temperature  throughout  this  entire  period  (control  recovery  group)

revealed a greater  increase in  the relative abundance of  Endozoicomonas than the

winter-like group (17°C, Fig. 4). This suggests that the length of exposure to a given

temperature may affect the bacterial dynamics and stability. Consequently, we could
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potentially  have  observed  a  greater  increase  in  the  relative  abundance  of

Endozoicomonas in winter-like group had it been exposed to 17°C for a comparable

period  of  time  to  that  of  the  control  group.  Nevertheless,  optimal  temperature  for

Endozoicomonas might not be either winter or summer temperature, but somewhere in

between.  It  was  previously  suggested  that  the  optimal  growth  temperature  of

Endozoicomonas montiporae  in the laboratory is 25°C  (40), and for  Endozoicomonas

elysicola an optimal  range of 25-30°C  (41).  In  agreement with these studies, in the

warming  experiment,  the  relative  abundance  of  Endozoicomonas  was  observed  to

return to its initial level after the recovery group had been returned to ambient conditions

(18°C, Fig. 3.B). 

The ability of the oyster host and Endozoicomonas symbionts to survive global warming

The average annual water temperature elevation rate between the years 1982–2012

was 0.035±0.007°C in the Mediterranean Sea and 0.05°C in the Levantine basin alone

(42).  Currently,  annual  water  temperature  along  the  Israeli  Mediterranean  coast

fluctuates  between  16°C in  winter  and  31°C in  summer  (25).  According  to  several

scenarios, Mediterranean Sea temperatures are predicted to rise by the end of the 21 st

century  by  0.5–2.6°C,  with  maximum warming expected to  occur  in  the  Ionian  and

Levantine  sub-basins  (42).  It  is  often  argued  that  ocean  warming  will  result  in  an

accelerated rate of marine invasions (43–45), which in turn will lead to the replacement

and eradication of native species  (46). Therefore, understanding the effects of global

warming on invasive  species  and predicting  how they will  respond to  a continuous

warming  trend  is  highly  important.  The  current  study  examined  how  exposure  of
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invasive oysters to an elevation of 2°C in maximal seawater temperature would affect

the oyster host and its associated microbiota. The results indicate that such a shift in

seawater  temperature significantly  alters  the  bacterial  communities  in  the  oyster  gill

tissue.  For  instance,  the  genus  Arcobacter was  relatively  prevalent  in  the  two

experimental  extreme  warm  temperature  groups.  This  genus  is  a  common  genus

inhabiting several bivalve species  (47), includes several known pathogens of humans

and animals (48,49), and was also reported in high abundance in diseased corals (50).

An additional example is the genus  Halomonas, which was abundant in the recovery

group. Halomonas has been previously described in various marine organisms such as

sea urchins  (51), and in the gill tissue of ascidians  (52), and was suggested to be a

pathogen of larvae of the Chilean scallop Argopecten purpuratus (53). Previous studies

indicated that elevated seawater temperature may produce a change in the bacterial

communities of marine hosts  (54), and may lead to the emergence of pathogens or

activation of their virulence genes  (55–57).  Thus, a similar induction of opportunistic

pathogens in S. spinosus driven by temperature elevation might be expected. However,

all oysters in the global warming experiments did not demonstrate any signs of physical

deterioration and maintained a normal functionality. Moreover, Endozoicomonas relative

abundance  was  not  markedly  affected  by  temperature  elevation.  This  genus  is  the

dominant genus in the gills of these oysters and a core member of many other marine

invertebrate  including  sponges  (58,59),  corals  (40,60,61) and  other  mollusks

(23,41,62,63). Previous studies  have demonstrated  that  maintaining  stable  bacterial

communities may assist the host in preventing disease, as has been suggested for the

corals  Montipora  aequituberculata (64) and  Porites  astreoides (65).  Therefore,  we
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consider that  S. spinosus  oysters will  survive further global warming, perhaps at the

expense of more heat-sensitive oyster species.

Oysters and  Endozoicomonas bacteria are seriously impacted by cold temperature of

the Western Mediterranean Sea 

As a response to climate change organisms are predicted to shift their geographical

ranges  toward  colder  environments  (66).   The  north-western  region  of  the

Mediterranean Sea is its coldest part, with temperatures that may reach 11°C in winter

(37,38). As water temperatures increase, it is expected that it will become increasingly

suseptible to species range expansion. Most of the invasive thermophilic species in the

Mediterranean Sea are of Red Sea origin (67%), being introduced first into the eastern

basin and later expanding their ranges into the western basin (67). We were therefore

intrigued by the question of  whether  S. spinosus would be able to endure the cold

temperatures of the western basin and consequently expand its range further westward.

In  the  extreme cold  experiment,  several  oysters  displayed a  decline  in  the  relative

abundance of  Endozoicomonas, with a concomitant increase in relative abundance of

several other taxa. In the experimental group, this was characterized by an increase in

Arcobacter,  Vibrio and  Pseudoalteromonas,  while  in  the  inception  group  Klebsiella,

Escherichia-Shigella,  Morganella,  Veillonella and Streptococcus. The latter genera are

known to inhabit various marine organisms  (68,69), and some of their members are

suspected pathogens  (70–72). It  is therefore suggested that a decline in the relative

abundance of Endozoicomonas may provide an opportunity for pathogens to colonize

the oyster. This hypothesis is supported by prior studies in corals that have indicated
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that a reduction in the relative abundance of  Endozoicomonas is characterized by the

opportunistic colonization of pathogens (73,74). Alternatively, these bacterial community

shifts could represent an overall physiological deterioration in the oyster's health due to

exposer  to  colder  temperature.  Indeed,  in  contrast  to  their  exposure  to  the warmer

temperature, a noticable health deterioration was noted when oysters were exposed to

11°C. All five oysters exposed to such cold temperature (experimental group) closed

their valves for most of the time, unlike normal ones that kept their valves mostly open.

Two of these experimental group oysters were also lethargic and no longer responded

to any physical stimuli. The remaining 17 oysters of the extreme cold experiment were

considered  healthy  throughout  the  experiment.  The  physical  deterioration  was

accompanied by the emergence of distinct bacterial taxa, which could be considered as

opportunistic pathogens including Arcobacter (50), Vibrio (56), Colwelliaceae (75), and

Pseudoalteromonas (76).  Strikingly, the two severely affected oysters hosted an even

higher  relative  abundance  of  these  genera,  while  not  retaining  any  detectable

Endozoicomonas.  Nevertheless,  the  other  three  moderately  affected  oysters  of  the

extreme  temperature  group  had high  relative  abundance  of  Endozoicomonas.  This

suggests that the oyster host is more susceptible to the cold temperature than is its

Endozoicomonas symbiont, and that deterioration due to exposure to cold temperature

starts first with the host and only later affects its symbiotic bacteria. The reduction or

complete  absence  of  Endozoicomonas in  affected  animals  has  been  described

previously, for example in corals (73,74). These findings imply that oysters would not be

able  to  survive  a  longer  exposure  to  colder  temperatures,  and  therefore  might  not
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survive in the Western Mediterranean Sea, as long as winter water temperature there

drops to such a level. 

In  summary,  the  current  findings indicate  that  global  warming will  allow the  marine

invasive  oyster  to  retain  its  current  dominance in  the  Eastern  Mediterranean,  while

colonizing coastal areas further north-west of its current geographic range. However, as

long as the winter water temperatures remain as low as 11°C, north-west regions of the

Mediterranean are expected to remain uncolonized by  S. spinosus,  and possibly by

other Red-Sea invasive oysters. The results indicate that the microbial symbionts can

be  dramatically  affected  by  temperature  shifts  which  in  turn  could  determine  the

invasion  range  expansion  of  invasive  species,  either  by  promoting  bacterial

pathogenesis or by impacting beneficial mutualists. This study provides an experimental

framework to examine an invasive holobiont,  including the dynamics of its microbial

symbionts.  Such  studies  will  allow  informed  predictions  regarding  future  invasion

trajectories in the marine environment. Performing similar studies on invasive species,

can also help improve the management of  biodiversity in the Mediterranean Sea in

particular, and other invaded seas in general.
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Figure Legends

Table  1.A.  Experiments  inducing  different  temperature  regimes  from  the  ambient  on  the
invasive oyster  Spondylus spinosus.  B. Sampling groups in the experiments inducing different
temperature regimes from the ambient on the invasive oyster Spondylus spinosus.

Figure  1. Schematic  representation  of  the  design  of  the  experiments  inducing  different
temperature regimes from the ambient on the invasive oyster  Spondylus spinosus. Numbers
indicate samples taken at the different time-points.

Figure 2. Principal  coordinates analysis  (PCoA) of (a)  weighted and (b) unweighted unifrac
matrix presenting microbial communities of Spondylus spinosus in the warming experiment.
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Figure 3. Warming experiment:  A. Relative abundance of bacterial taxa in gills of  Spondylus
spinosus. Each color represents a distinct genus-level OTU. Only taxa that constituted >5% of
an individual sample and were present in at least two samples are presented, and the rest are
indicated as ‘others’. B. Relative abundance of Endozoicomonas in the different groups.

Figure 4. Relative abundance of bacterial taxa in gills of Spondylus spinosus along the cooling
experiment. Each color represents a distinct genus-level OTU. Only taxa that constituted >5% of
an individual sample and were present in at least two samples are presented, and the rest are
indicated as ‘others’

Figure  5. Principal  coordinates  analysis  (PCoA)  of  unweighted  unifrac  matrix  presenting
microbial communities of Spondylus spinosus in the global warming experiment.

Figure 6. Relative abundance of bacterial taxa in gills of Spondylus spinosus along the global
warming  experiment.  Each  color  represents  a  distinct  genus-level  OTU.  Only  taxa  that
constituted  >5%  of  an  individual  sample  and  were  present  in  at  least  two  samples  are
presented, and the rest are indicated as ‘others’

Figure 7. Relative abundance of bacterial taxa in gills of Spondylus spinosus along the extreme
cold experiment. Each color represents a distinct genus-level OTU. Only taxa that constituted
>5% of an individual sample and were present in at least two samples are presented, and the
rest are indicated as ‘others’.

31

773
774
775
776

777
778
779
780

781
782

783
784
785
786

787
788
789
790

61
62


