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Yocelyn Pérez1 and Claudio Vidal2
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Departamento de Matemática, Facultad de Ciencias,

Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, VIII-Región, Chile

Abstract. The aim of this work is to prove analytically the existence of symmetric periodic
solutions of the family of Hamiltonian systems with Hamiltonian function H(q1, q2, p1, p2) = 1

2
(q21 +

p21)+ 1
2
(q22 +p22)+a q41 +b q21q

2
2 +c q42 with three real parameters a, b and c. Moreover, we characterize

the stability of these periodic solutions as function of the parameters. Also, we find a first-order
analytical approach of these symmetric periodic solutions.
We emphasize that these families of periodic solutions are different from those that exist in the
literature.

1. Introduction

We consider the family of Hamiltonian systems in two degrees of freedom associated to the
Hamiltonian function

(1) H(q1, q2, p1, p2, ε) = H0(q1, q2, p1, p2) + εH1(q1, q2),

where

(2) H0(q1, q2, p1, p2) =
1

2
(q2

1 + p2
1) +

1

2
(q2

2 + p2
2),

is the sum of two harmonic oscillators in 1:1 resonance and

(3) H1(q1, q2) = a q4
1 + b q2

1q
2
2 + c q4

2,

is a quartic perturbation where a, b, c are real parameters. Thus, the Hamiltonian system to study
has the form

q̇1 = p1, ṗ2 =− q1 − ε(4aq3
1 + 2bq1q

2
2),

q̇1 = p2, ṗ2 =− q2 − ε(2bq2
1q2 + 4cq3

2).
(4)

According to the literature the Hamiltonian (1) has practical importance. In fact, it is related
with galactic dynamics which is one of the most significant Astrophysics branches, see details in [5]
and references therein. The dynamics of galaxies has been studied in several works under different
points of view such as regular and chaotic behaviours. For example, Caranicolas [2] says that (1)
may be considered to represent the potential field on the plane of symmetry of the central parts
of a nonrotating triaxial galaxy. On the other hand, it has as physical application the modelling
of the quasi-homogeneous core of a galaxy whose mass distribution presents two axes of symmetry
(see [1],[2],[4] and [13]) or the classical counterpart of a symmetric molecule.
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As it is known, for ε = 0 all the solutions of the integrable system (4) are 2π-periodic in t. If
we now consider ε as a small positive parameter, we are interested in finding the conditions on
the parameters a, b and c for which some solution of the perturbed system (4) can be continued
using the symmetries of the problem. It is very well known see for example [10] and [11] that it is
impossible to get periodic solutions as continuation (by Poincaré’s method) of one periodic solution
of the unperturbed problem, since the rank of the periodicity equation is far from maximal (fourth)
in cartesian coordinates, in order to apply the Implicit Function Theorem.

The existence of periodic solutions of this model was studied, for example, in [6] where they con-
sidered the case c = 0. Moreover, in [7] the case c 6= 0 was studied. In both works the authors find
at the most four families of periodic solutions for each positive energy level using according some
restrictions on the parameters. They use the Averaging Method of First Order and convenient gen-
eralized polar coordinates. We point out that the families of periodic solutions in Theorem 4.1 and
Theorem 4.2 (see Appendix) in [6] and [7], respectively, are parameterized by only one parameter,
namely, ε. Furthermore, according to the Averaging Theory used by them, these solutions have pe-
riod close to 2π. On the other hand, the authors do not give information about the type of stability.

In this work we find families of symmetric T -periodic solutions using symmetries of the problem
and the Continuation Poincaré Method where the period of the solutions found is T = 2π + O(ε)
and the reversibility symmetry is given by S1 : (q1, q2, p1, p2) → (q1,−q2,−p1, p2). The re-
sults obtained for the reversibility symmetry S1 are also valid for the reversibility symmetry
S2 = (q1, q2, p1, p2)→ (−q1, q2, p1,−p2) applying a rotation at angle π/2.

Our result for S1-symmetric periodic solutions is the following.

Theorem 1.1. For the Hamiltonian system (4) associated to the Hamiltonian function (1) the
following statements hold:

(a) If a = 0 and b 6= 0 then for ∆L and ε sufficiently small, there exists a family of S1-symmetric

periodic solutions ϕ(t, z(1),∆L, ε) parametrized by ∆L and ε with initial condition

z(1) = (
√

2
√

∆L+ h+O(ε2), 0, 0, 0 +O(ε2)),

of the form

q1(t, z(1),∆L, ε) =
√

2
√

∆L+ h cos t+O(ε2),

q2(t, z(1),∆L, ε) =0 +O(ε2),

p1(t, z(1),∆L, ε) =
√

2
√

∆L+ h sin t+O(ε2),

p2(t, z(1),∆L, ε) =0 +O(ε2),

(5)

and this family is linearly stable.
(b) If c = 0 and b 6= 0 then for ∆L and ε sufficiently small, there exists a family of S1-symmetric

periodic solutions ϕ(t, z(2),∆L, ε) parametrized by ∆L and ε with initial condition

z(2) = (0 +O(ε2), 0, 0,
√

2
√

∆L+ h+O(ε2)),
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of the form

q1(t, z(2),∆L, ε) =0 +O(ε2),

q2(t, z(2),∆L, ε) =
√

2
√

∆L+ h sin t+O(ε2),

p1(t, z(2),∆L, ε) =0 +O(ε2),

p2(t, z(2),∆L, ε) =
√

2
√

∆L+ h cos t+O(ε2),

(6)

and this family is linearly stable.
(c) If b2 = 36ac, b(b− 6c) > 0, and c 6= 0, then for ∆L and ε sufficiently small, there exists two

families of S1-symmetric periodic solutions ϕ(t, z(1),∆L, ε) parametrized by ∆L and ε with initial
condition

z
(1)
∓ =

(
2
√

3
√

c(h+∆L)
6c−b +O(ε2), 0, 0,∓ sgn(c)

√
2
√
b(b−6c)3(h+∆L)

(b−6c)2
+O(ε2)

)
,

are of the form

q1(t, z(1),∆L, ε) =2
√

3

√
c(h+ ∆L)

6c− b
cos t− ε 4b2√

3c

(
c(h+ ∆L)

6c− b

)3/2

sin2 t cos t+O(ε2),

q2(t, z(1),∆L, ε) =∓ sgn(c)
√

2

√
b(h+ ∆L)

b− 6c
sin t∓ ε 4

√
2b2 |c| (h+ ∆L)2√

b(b− 6c)3(h+ ∆L)
sin3 t+O(ε2),

(7)

p1(t, z(1),∆L, ε) =− 2
√

3

√
c(h+ ∆L)

6c− b
sin t− ε 2b2√

3c

(
c(h+ ∆L)

6c− b

)3/2

(3 cos 2t+ 1) sin t+O(ε2),

p2(t, z(1),∆L, ε) =∓
√

2sgn(c)

√
b(h+ ∆L)

b− 6c
cos t∓ ε 6

√
2b2 |c| (h+ ∆L)2√

b(b− 6c)3(h+ ∆L)
sin t sin 2t+O(ε2).

These families of periodic solutions are unstable.

The proof of this theorem can be found in Section 3.

It is important to call the attention that if we consider the Hamiltonian system with Hamiltonian
function as

(8) H(q1, q2, p1, p2, ε) =
1

2
(q2

1 + p2
1) +

1

2
(q2

2 + p2
2) + ε(a q4

1 + b q2
1q

2
2 + c q4

2) +H∗(q, p, ε),

where H∗(q, p, ε) = O(ε2), our theorems are also valid imposing that H∗ has the symmetry S1 or
S2. If now we consider the Hamiltonian system with Hamiltonian function written as

(9) H(q1, q2, p1, p2) =
1

2
(q2

1 + p2
1) +

1

2
(q2

2 + p2
2) + a q4

1 + b q2
1q

2
2 + c q4

2,

we can introduce the small parameter ε by a ε−2-symplectic change of variables given by qi =
εqi, pi = εpi such that the Hamiltonian (9) assumes the form

(10) H(q1, q2, p1, p2, ε) =
1

2
(q2

1 + p2
1) +

1

2
(q2

2 + p2
2) + ε2(a q4

1 + b q2
1q

2
2 + c q4

2),

and our results are also valid.
This paper is organised as follows. In Section 2 we describe the symplectic variables which will

be used to show in a better way the symmetries of the problem and we write the Hamiltonian
(1) at these coordinates. We give a characterization and approximation of the symmetric periodic
solutions and their initial conditions and we show how to study the stability of these solutions. We
prove Theorem 1.1 in Section 3. We show the existence of four S1-symmetric periodic solutions
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using variables (11) and (15) and the Poincaré Continuation Method. We study the stability of
each solution found and we characterize these solutions in cartesian coordinates. In Section 4 we
show results about periodic solution of the system (4) given by other authors and we compare
their results with ours. We give a better approximation of the periodic solution given in [7] using
Averaging Theory. In order to make the paper self-contained, we include the Appendix 5.1 where
we have the main results about Averaging Theory and in Appendix 5.2 we have an approximation
of the solutions via Averaging Theory.

2. Preliminary and statements of the main results

Before giving the demonstration of our main results we are going to describe the main ingredients
in order to apply conveniently the Poincaré continuation method.

2.1. Symplectic variables. To facilitate the procedure, we use a type of symplectic variables
(L,Q,
l, P ) as in [9], where the authors construct these variables such that the unperturbed Hamiltonian
in (2) in the new coordinates depends only on L. They make a particularization for the 1 : 1 : 1
resonance of the construction of local symplectic maps for resonant Hamiltonian systems with n
degrees of freedom (see [3]; [8]). For our work, we use these symplectic variables in two degrees of
freedom given by

(11)
q1 =

√
2L− P 2 −Q2 cos l, q2 = Q cos l − P sin l,

p1 =
√

2L− P 2 −Q2 sin l, p2 = P cos l +Q sin l,

where L > 0, 2L > Q2 + P 2 and 0 ≤ l < 2π. In variables (11) the Hamiltonian (1) assumes the
form

(12) H(L,Q, l, P ) = H0(L) + εH1(L,Q, l, P ),

where H0 read as

(13) H0(L) = L,

and

H(1)
1 (L,Q, l, P ) =H1(L,Q, l, P )

=a
(
2L− P 2 −Q2

)2
cos4 l + b

(
2L− P 2 −Q2

)
(Q cos l − P sin l)2 cos2 l+

c(Q cos l − P sin l)4.

(14)

It is important to call the attention that the variables (11) are not defined when q2
1 + p2

1 = 0 and so
in order to study all phase spaces is that we introduce other symplectic variables through a rotation
at an angle π/2 so, we define the coordinates (L,Q, l, P ) of the form

(15)
q1 = Q cos l − P sin l, q2 =

√
2L− P 2 −Q2 cos l,

p1 = P cos l +Q sin l, p2 =
√

2L− P 2 −Q2 sin l,

where L > 0, 2L > Q2 + P 2, 0 ≤ l < 2π. Note that they are not defined when q2
2 + p2

2 = 0 but
they are in q2

1 + p2
1 = 0 which was what we wanted. Now the Hamiltonian (1) in coordinates (15)
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assumes the form (12), but in this case the perturbing function H1 reads as

H(2)
1 (L,Q, l, P ) =H1(L,Q, l, P )

=a(Q cos l − P sin l)4 + b
(
2L− P 2 −Q2

)
(Q cos l − P sin l)2 cos2 l−

c
(
2L− P 2 −Q2

)2
cos4 l.

(16)

We will denote by ϕ(t, z, ε) = (q1(t, z, ε), q2(t, z, ε), p1(t, z, ε), p2(t, z, ε)) the solution of the Hamil-
tonian system (4) and initial condition z and when ε = 0 we use the notation ϕosc(t, z) = (q1(t, z),
q2(t, z), p1(t, z), p2(t, z)). On the other hand, we will denote by ψ(t, Z, ε) = (L(t, Z, ε), Q(t, Z, ε),
l(t, Z, ε), P (t, Z, ε)) the solution of the Hamiltonian system associated to the Hamiltonian (12) with
initial condition Z and when ε = 0, we will write ψosc(t, Z) = (L(t, Z), Q(t, Z), l(t, Z), P (t, Z)).

2.2. Characterization and approximation of the symmetric periodic solutions. Initially
we need to characterize the symmetric periodic solution as in cartesian coordinates as Lissajous
variables. Next, it becomes necessary to characterize “good” initial conditions that allow us to
generate periodic symmetric solutions of the complete Hamiltonian system. Then, we get a good
approximation of the solutions of the Hamiltonian system (4) in the symplectic coordinates (11) or
(15).

We start observing that the Hamiltonian function (1) is invariant under the reflections

(17) S1 : (q1, q2, p1, p2)→ (q1,−q2,−p1, p2) and S2 : (q1, q2, p1, p2)→ (−q1, q2, p1,−p2).

There are two important consequences about Hamiltonian systems invariants under reflections:

(i) If ϕ(t, q1, q2, p1, p2) = (q1(t), q2(t), p1(t), p2(t)) is a solution of an Hamiltonian system in-
variant under S1 and S2, then S1 ◦ϕ(−t, q1, q2, p1, p2) = (q1(−t),−q2(−t),−p1(−t), p2(−t))
and S2 ◦ ϕ(−t, q1, q2, p1, p2) = (−q1(−t), q2(−t), p1(−t),−p2(−t)) are also solutions.

(ii) Given the set of the fixed points of the symmetry S1, namely, L1 = {(q1, 0, 0, p2); q1, p2 ∈
R} (resp. for the symmetry S2, namely, L2 = {(0, q2, p1, 0); q2, p1 ∈ R}), if we con-
sider an initial condition (q1, q2, p1, p2) ∈ L1 such that ϕ(T/2, q1, q2, p1, p2) ∈ L1 (resp.
ϕ(T/2, q1, q2, p1, p2) ∈ L2), then the solution will be T -periodic and S1-symmetric (resp.
S2-symmetric).

One important property of the variables (11) and (15) is that they allow us to characterize the
symmetries more easily than the cartesian coordinates. In variables (11) as in (15) the Hamiltonian
(1) assumes the form (12) where H1(L,Q, l, P ) was described in (14) and (16), respectively. For
the following arguments we can assume that H1 is an arbitrary function.

In our approach we are going to study only the case of the symmetry S1 because the other case is
similar. The first step is to consider a 2π-periodic solution of the unperturbed Hamiltonian system
(i.e., associated to the Hamiltonian H0) in cartesian coordinates denoted by ϕos(t, z0), such that
its initial condition has the symmetry, that is,

(18) z0 = (q
(0)
1 , q

(0)
2 , p

(0)
1 , p

(0)
2 ) = (q1, 0, 0, p2) ∈ L1.

As during this approach we are working with the variables (11) and (15), we need to characterize
the symmetric initial conditions (i.e., the points on L1) in these variables.

Lemma 2.1. i) In symplectic variables (11), an orbit hits L1 at time t = T/2 if l(T/2) = 0(mod π),

and Q(T/2) = 0. This set will be denoted by L(1)
1 .

ii) In symplectic variables (15), an orbit hits L1 at time t = T/2 if l(T/2) = π
2 (mod π) and

Q(T/2) = 0. This set will be denoted by L(2)
1 .
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In variables (11) and (15) we will denote the periodic solution of the Hamiltonian system asso-

ciated to H0(L) by ψos(t, Z
(j)
0 ), with the convenient initial condition

(19) Z
(1)
0 = (L0, Q0, l0, P0) = (L0, 0, 0, P0) ∈ L(1)

1 ,

in the case j = 1, and in variables (15)

(20) Z
(2)
0 = (L0, Q0, l0, P0) = (L0, 0, π/2, P0) ∈ L(2)

1 ,

for j = 2. For instance L0 and P0 are arbitrary.

The second step is to perturb or modify the initial condition. In cartesian coordinates this means
that we perturbed the initial conditions only in the directions of q1 and p2, such that the perturb
initial condition remains at L1. For this purpose we will take a small perturbation of the initial

condition Z
(j)
0 in a convenient way such that it still lies in the set of symmetry L(j)

1 . We will do
this by considering

(21) Z(1) = (L0 + ∆L, 0, 0, P0 + ∆P )

when we work with variables (11) and

(22) Z(2) = (L0 + ∆L, 0, π/2, P0 + ∆P ),

when we consider the variables (15).

For any type of variables (11) or (15), we will take the initial condition Z(j) and we denote the
solution of the complete Hamiltonian system (12) as

(23) ψ(t, Z(j), ε) = (L(t, Z(j), ε), Q(t, Z(j), ε), l(t, Z(j), ε), P (t, Z(j), ε)),

with

L(t, Z(j), ε) =L(0)(t, Z(j)) + εL(1)(t, Z(j)) +O(ε2),

Q(t, Z(j), ε) =Q(0)(t, Z(j)) + εQ(1)(t, Z(j)) +O(ε2),

l(t, Z(j), ε) =l(0)(t, Z(j)) + εl(1)(t, Z(j)) +O(ε2),

P (t, Z(j), ε) =P (0)(t, Z(j)) + εP (1)(t, Z(j)) +O(ε2).

(24)

The third step is to get the approximation at first order in ε of the solution ψ(t, Z
(j)
0 , ε). In any

case,

(25) ψos(t, Z0) = (L(0)(t, Z
(j)
0 ), Q(0)(t, Z

(j)
0 ), l(0)(t, Z

(j)
0 ), P (0)(t, Z

(j)
0 )) = Z

(j)
0 + (0, 0,−t, 0).

Using variational equations we obtain that the expressions for L(1)(t, Z(j)), Q(1)(t, Z(j)), l(1)(t, Z(j))

and P (1)(t, Z(j)) are given by

L(1)(t, Z(j)) =

∫ t

0

∂H(j)
1

∂l
(ψos(τ, Z

(j)))dτ,

Q(1)(t, Z(j)) =

∫ t

0

∂H(j)
1

∂P
(ψos(τ, Z

(j)))dτ,

l(1)(t, Z(j)) =−
∫ t

0

∂H(j)
1

∂L
(ψos(τ, Z

(j)))dτ,

P (1)(t, Z(j)) =−
∫ t

0

∂H(j)
1

∂Q
(ψos(τ, Z

(j)))dτ.

(26)
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2.3. Study of the stability. The fourth step is the study of stability of the periodic solutions.
So, in order to calculate the characteristic multipliers associated one fixed S1-symmetric T -periodic
solution, we take the local cross

Σ = {(L,Q, l, P ) : l = 0,H = L0},

let us X = (X1, X2) = (Q,P ) be the coordinates in Σ and we consider Z = (L0, Q0+X1, l0, P0+X2),
where ψos(t, (L0, Q0 + X1, l0, P0 + X2)) is a solution of the Hamiltonian system associated to H0

with initial condition (L0, Q0 +X1, l0, P0 +X2) at the level H0 = L = L0. Let us define the Poincaré
map P : Σ→ Σ as follows

P(X, ε) =(Q(τ, Z, ε), P (τ, Z, ε))

where τ = 2π +O(ε) is the time of first return. So considering the approximation of the solutions
given in (24), we have that

P(X, ε) = (X1, P0 +X2) + ε

(∫ τ

0

∂H
∂P

(ψ(t, Z))dt,−
∫ τ

0

∂H
∂Q

(ψ(t, Z))dt

)
+O(ε2)

=

(
X1 + ε

∫ τ

0

∂H
∂P

(ψ(t, Z))dt+O(ε2), P0 +X2 − ε
∫ τ

0

∂H
∂Q

(ψ(t, Z))dt+O(ε2)

)
.

Expanding in Taylor series around ε = 0, we obtain that the Poincaré map is given by

(27)

P(X, ε) =

(
X1 + ε

∫ 2π

0

∂H
∂P

(ψos(t, Z))dt+O(ε2, ), P0 +X2 − ε
∫ 2π

0

∂H
∂Q

(ψos(t, Z))dt+O(ε2)

)
.

Differentiating P with respect to X = (X1, X2), we arrive to

DXP(X, ε) =

1 + ε ∂
∂X1

(∫ 2π
0

∂H
∂P (ψos(t, Z))dt

)
ε ∂
∂X2

(∫ 2π
0

∂H
∂P (ψos(t, Z))dt

)
−ε ∂

∂X1

(∫ 2π
0

∂H
∂Q (ψos(t, Z))dt

)
1− ε ∂

dX2

(∫ 2π
0

∂H
∂Q (ψos(t, Z))dt

)+O(ε2),

or equivalently,

(28) DXP(X, ε) = I + 2πεA+O(ε2),

where

A = J

(
∂2H1

∂Xi∂Xj

)
X=0

,

and

(29) H1(X) =
1

2π

∫ 2π

0
H1(ψos(τ, (L0, Q0 +X1, l0, P0 +X2)))dτ,

is the averaged Hamiltonian associated to H1. Therefore, the characteristic multipliers of the fixed
periodic solution ψ(t, Z) are given by

(30) 1, 1, 1 + 2πελ1 +O(ε2), 1 + 2πελ2 +O(ε2),

where λ1 and λ2 are the eigenvalues of the matrix A.
7



3. Proof of Theorem 1.1

To prove our theorem, we consider the Hamiltonian system (4) with Hamiltonian function as in
(1) and we make a symplectic change of variables (11), so, the Hamiltonian function assumes the
form (12) with H1 as in (14) and the Hamiltonian system is given by

L̇ =ε
[
−2b(−2L+ P 2 +Q2)(P sin l −Q cos l)(P cos l +Q sin l) cos2 l+

4c(P sin l −Q cos l)3(P cos l +Q sin l)− 4a(−2L+ P 2 +Q2)2 sin l cos3 l+

b(−2L+ P 2 +Q2)(Q cos l − P sin l)2 sin 2l
]
,

Q̇ =ε
[
4aP (−2L+ P 2 +Q2) cos4 l + 2b(−2L+ P 2 +Q2)(Q cos l − P sin l) sin l cos2 l−

2bP (Q cos l − P sin l)2 cos2 l + 4c(P sin l −Q cos l)3
]

sin l,

l̇ =− 1 + ε
[
4a(−2L+ P 2 +Q2) cos4 l − 2b(Q cos l − P sin l)2 cos2 l

]
,

Ṗ =− 2ε
[
2aQ(−2L+ P 2 +Q2) cos3 l + b(−2L+ P 2 +Q2)(P sin l −Q cos l) cos2 l−

bQ(Q cos l − P sin l)2 cos l + 2c(Q cos l − P sin l)3
]

cos l.

(31)

In order to get an approximation of the initial conditions and a approximations of S1-symmetric
periodic solutions of the Hamiltonian system (31), we consider a perturbed initial condition in two
directions (two coordinates) of the form

Z(1) = (L0 + ∆L, 0, 0, P0 + ∆P ) ∈ L(1)
1 .

Using the expression of H1 in (14) we get

∂H(1)
1

∂L
=2b(Q cos l − P sin l)2 cos2 l − 4a(−2L+ P 2 +Q2) cos4 l,

∂H(1)
1

∂Q
=2
[
2aQ cos3 l

(
−2L+ P 2 +Q2

)
+ b cos2 l

(
−2L+ P 2 +Q2

)
(P sin l −Q cos l)−

bQ cos l(Q cos l − P sin l)2 + 2c(Q cos l − P sin l)3
]

cos l,

∂H(1)
1

∂l
=− 4a(−2L+ P 2 +Q2)2 sin l cos3 l + b sin 2l

(
−2L+ P 2 +Q2

)
(Q cos l − P sin l)2−

2b cos2 l
(
−2L+ P 2 +Q2

)
(P sin l −Q cos l)(P cos l +Q sin l)−

4c(Q cos l − P sin l)3(P cos l +Q sin l),

∂H(1)
1

∂P
=4aP (−2L+ P 2 +Q2) cos4 l + 2b(−2L+ P 2 +Q2)(Q cos l − P sin l) sin l cos2 l−

2bP (Q cos l − P sin l)2 cos2 l + 4c(P sin l −Q cos l)3 sin l,
8



and after some manipulations it follows that equations (26) assumes the form

L(1)(t, Z(1)) =− 1

2
(P0 + ∆P )2

[
−2b(L0 + ∆L) + (P0 + ∆P )2(b+ 2c)

]
sin4 t+

1

2

(
2(L0 + ∆L)− (P0 + ∆P )2

) [
a
(
4(L0 + ∆L)− 2(P0 + ∆P )2

)
−

b(P0 + ∆P )2
]

(1− cos4 t),

Q(1)(t, Z(1)) =
1

8
(P0 + ∆P ) [−2a(L0 + ∆L)(12t+ 8 sin 2t+ sin 4t)+

a(P0 + ∆P )2(12t+ 8 sin 2t+ sin 4t)− b(L0 + ∆L)(sin 4t− 4t)+

b(P0 + ∆P )2(sin 4t− 4t) + c(P0 + ∆P )2(12t− 8 sin 2t+ sin 4t)
]
,

l(1)(t, Z(1)) =
a

8
(12t+ 8 sin 2t+ sin 4t)

(
(P0 + ∆P )2 − 2(L0 + ∆L)

)
+

b

16
(P0 + ∆P )2(sin 4t− 4t),

P (1)(t, Z(1)) =
1

2
b(P0 + ∆P )

(
(P0 + ∆P )2 − 2(L0 + ∆L)

)
(1− cos4 t)− c(P0 + ∆P )3 sin4 t.

Considering (24), we obtain that the approximation of the solution with initial condition Z
(1)
0 in

the first order is given by

L(t, Z(1), ε) =L0 + ∆L+ εL(1)(t, Z(1)) +O(ε2),

Q(t, Z(1), ε) =εQ(1)(t, Z(1)) +O(ε2),

l(t, Z(1), ε) =− t+ εl(1)(t, Z(1)) +O(ε2),

P (t, Z(1), ε) =Pp + ∆P + εP (1)(t, Z(1)) +O(ε2),

(32)

Next, since we are we looking for S1-symmetric periodic solutions in coordinates (11), according
to Lemma 2.1, the following two periodicity equations (32) must satisfy

1

ε
Q(T/2,∆L,∆P, ε) =Q(1)(T/2, Z(1)) +O(ε) = 0,

l(T/2,∆L,∆P, ε) =− T/2 +
ε

8

{
a(6T + 8 sinT + sin 2T )

(
(P0 + ∆P )2 − 2(L0 + ∆L)

)
+

b

2
(P0 + ∆P )2(sin 2T − 2T )

}
+O(ε2) = 0.

(33)

Since, we want to avoid degeneration in the rank (this will be clear later), we introduce the “time”
as a dependent variable, the system (33) must be modified, so the periodicity system (the system
that characterizes the symmetric periodic solution but with period not necessarily of fixed period
2π) assumes the form

f1(τ,∆L,∆P, ε) =
1

8
(P0 + ∆P )

(
−a(12τ + 8 sin 2τ + sin 4τ)

(
2(L0 + ∆L)− (P0 + ∆P )2

)
−

b(sin 4τ − 4τ)
(
∆L− (P0 + ∆P )2 + L0

)
+

c(P0 + ∆P )2(12τ − 8 sin 2τ + sin 4τ)
)

+O(ε),

f2(τ,∆L,∆P, ε) =− τ +
ε

16

(
b(P0 + ∆P )2(sin 4τ − 4τ)−

2a(12τ + 8 sin 2τ + sin 4τ)
(
2(L0 + ∆L)− (P0 + ∆P )2

))
+O(ε2).

(34)
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At this point we are going to consider as independent variables the pair (τ,∆P ), that is, ∆L and
ε are the other variables, and P0 and L0 are parameters. In order to apply the Implicit Function
Theorem, we need to solve the system

f1(π, 0, 0, 0) =
1

2
πP0

(
−6aL0 + 3aP 2

0 + bL0 − bP 2
0 + 3cP 2

0

)
= 0,

f2(π, 0, 0, 0) =− 1

4
π
(
12aL0 − 6aP 2

0 + bP 2
0

)
= 0.

(35)

The solutions of this system are

(i) P
(1)
0 = 0, whenever a = 0,

(ii) P
(2)
0 = −

√
2L0

√
b

b− 6c
, whenever

b

b− 6c
> 0,

(iii) P
(3)
0 =

√
2L0

√
b

b− 6c
, whenever

b

b− 6c
> 0.

(36)

Moreover, differentiating the system (34) with respect to (t,∆P ) and evaluating in each P0 given
in (36) and τ = π,∆L = 0,∆P = 0, ε = 0, we have that

(37)
∂(f1, f2)

∂(τ,∆P )

∣∣∣∣
τ=π,∆L=0,∆P=0,ε=0,P=P

(1)
0

=

(
0 bL0π

2
−1 0

)
,

(38)
∂(f1, f2)

∂(τ,∆P )

∣∣∣∣
τ=π,∆L=0,∆P=0,ε=0,P=P

(2)
0

=

(
−4
√

2b2cL
3/2
0

3(b−6c)3

√
b(b−6c)3

c2
πbL0(b−6c)

6c

−1 0

)
,

(39)
∂(f1, f2)

∂(τ,∆P )

∣∣∣∣
τ=π,∆L=0,∆P=0,ε=0,P=P

(3)
0

=

(
4
√

2b2cL
3/2
0

3(b−6c)3

√
b(b−6c)3

c2
πbL0(b−6c)

6c

−1 0

)
,

and their respective determinants are π
2L0b for the matrix (37) and πbL0(b−6c)

6c for the matrix (38) and
(39). Therefore, we are in position to apply the Implicit Function Theorem to the functions (f1, f2)
. Thus, assuming the existence of the points P0 in (36) for each fixed L0 > 0, and that the previous
determinants are non null, we arrive that for each of these points there is a unique differentiable
function ∆P (∆L, ε) and τ(∆L, ε) for ∆L and ε sufficiently small, such that ∆P (0, 0) = 0 and
τ(0, 0) = π and the system (f1(τ(∆L, ε),∆L,∆P (∆L, ε), ε), f2(τ(∆L, ε),∆L,∆P (∆L, ε)ε)) = (0, 0)
is satisfied. Therefore, we have found three 2τ(∆L, ε)-periodic symmetric solutions with period close
to 2π.

In order to obtain the approximation of the three families of S1-symmetric periodic solutions in

the variables (11), it is enough to substitute the values of P
(1)
0 , P

(2)
0 and P

(3)
0 in (32).

The next step is to compute the characteristic multiplier of each solution found, we will follow

the idea given in Section 2, so for P = P
(1)
0 in (36), we have that the matrix A is given by

A =

(
0 bL0

2
−3

2bL0 0

)
,

whose eigenvalues are ± i
2

√
3bL0. Thus, the characteristic multipliers for this solution are

1, 1, 1 + εi
√

3πbL0 +O(ε2), 1− εi
√

3πbL0 +O(ε2) +O(ε2).
10



For P
(2)
0 and P

(3)
0 given in (36), we have that the matrix A assumes the form

A =

(
0 b(b−6c)L0

6c
6bcL0
b−6c 0

)
,

whose eigenvalues are ±bL0. Thus, the characteristic multipliers for these solutions are

1, 1, 1 + ε2πbL0 +O(ε2), 1− ε2πbL0 +O(ε2).

Finally to obtain the characterization of S1-symmetric periodic solutions up to order ε in cartesian
coordinates we recall that

q1(t) =
√

2L(t)− P (t)2 −Q(t)2 cos l(t), q2(t) = Q(t) cos l(t)− P (t) sin l(t),

p1(t) =
√

2L(t)− P (t)2 −Q(t)2 sin l(t), p2(t) = P (t) cos l(t) +Q sin l(t),

and using (32) for each point P
(j)
0 , we arrive to the description of the periodic solution as in (5) for

j = 1 and as in (7) for j = 2, 3, respectively. Moreover, solution (5) es linearly stable and solutions
(7) are unstable. Therefore we have proved item (a) and (c) of the theorem.

In order to prove item (b) of our theorem, we consider the Hamiltonian system associated to
(12) with H1 like in (16) written by

L̇ =ε
(
−2b(−2L+ P 2 +Q2)(P sin l −Q cos l)(P cos l +Q sin l) cos2 l+

b sin 2l(−2L+ P 2 +Q2)(Q cos l − P sin l)2 − 4c sin l cos3 l(−2L+ P 2 +Q2)2+

4a(P sin l −Q cos l)3(P cos l +Q sin l)
)
,

Q̇ =ε
(
2b(−2L+ P 2 +Q2)(Q cos l − P sin l) sin l cos2 l − 2bP (Q cos l − P sin l)2 cos2 l+

4cP (−2L+ P 2 +Q2) cos4 l + 4a(P sin l −Q cos l)3 sin l
)
,

l̇ =− 1 + ε
(
4c(−2L+ P 2 +Q2) cos4 l − 2b(Q cos l − P sin l)2 cos2 l

)
,

Ṗ =− 2ε
(
2a(Q cos l − P sin l)3 + b(−2L+ P 2 +Q2)(P sin l −Q cos l) cos2 l−

bQ(Q cos l − P sin l)2 cos l + 2cQ(−2L+ P 2 +Q2) cos3 l
)

cos l,

(40)

Now, in order to get an approximation of the initial conditions and a approximations of periodic
S1-symmetric solutions of the perturbed Hamiltonian system (31), we consider a perturbed initial
condition in two directions (two coordinates) of the form

Z(2) =
(
L0 + ∆L, 0,

π

2
, P0 + ∆P

)
∈ L(2)

1 .

Using the expression of H1 in (16) we get

∂H(2)
1

∂L
=2b(Q cos l − P sin l)2 cos2 l − 4c

(
−2L+ P 2 +Q2

)
cos4 l,

∂H(2)
1

∂Q
=4a(Q cos l − P sin l)3 cos l − 2b

(
−2L+ P 2 +Q2

)
(Q cos l − P sin l) cos3 l−

2bQ(Q cos l − P sin l)2 cos2 l + 4cQ
(
−2L+ P 2 +Q2

)
cos4 l,
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∂H(2)
1

∂l
=− 2b

(
−2L+ P 2 +Q2

)
(P sin l −Q cos l)(P cos l +Q sin l) cos2 l

− 4a(Q cos l − P sin l)3(P cos l +Q sin l) + b
(
−2L+ P 2 +Q2

)
(Q cos l − P sin l)2 sin 2l−

4c
(
−2L+ P 2 +Q2

)2
sin l cos3 l,

∂H(2)
1

∂P
=4a(P sin l −Q cos l)3 sin l + 2b

(
−2L+ P 2 +Q2

)
(Q cos l − P sin l) sin l cos2 l−

2bP (Q cos l − P sin l)2 cos2 l + 4cP
(
−2L+ P 2 +Q2

)
cos4 l,

and after some manipulations it follows that equations (26) assume the form

L(1)(t, Z(2)) =
1

2
(P0 + ∆P )2

[
(2a+ b)(P0 + ∆P )2 − 2b(L0 + ∆L)

]
(1− cos4 t)−

1

2

(
2(L0 + ∆L)− (P0 + ∆P )2

) (
4c(L0 + ∆L)− (b+ 2c)(P0 + ∆P )2

)
,

Q(1)(t, Z(2)) =
1

8
(∆P + P0)

[
a(∆P + P0)2(12t+ 8 sin 2t+ sin 4t)− b(∆L+ L0)(sin 4t− 4t)+

b(∆P + P0)2(sin 4t− 4t)− 2c(∆L+ L0)(12t− 8 sin 2t+ sin 4t)+

c(∆P + P0)2(12t− 8 sin 2t+ sin 4t)
]
,

l(1)(t, Z(2)) =
1

16

[
b(∆P + P0)2(sin 4t− 4t) + 2c(12t− 8 sin 2t+ sin 4t)

(
(∆P + P0)2 − 2(∆L+ L0)

)]
,

P (1)(t, Z(2)) =− a(∆P + P0)3
(
cos4 t− 1

)
− 1

2
b(∆P + P0)

(
(∆P + P0)2 − 2(∆L+ L0)

)
sin4 t.

Considering (24), we obtain that the approximation of the solution with initial condition Z
(2)
0 in

the first order is given by

L(t, Z(2), ε) =L0 + ∆L+ εL(1)(t, Z(2)) +O(ε2),

Q(t, Z(2), ε) =εQ(1)(t, Z(2)) +O(ε2),

l(t, Z(2), ε) =− t+ εl(1)(t, Z(2)) +O(ε2),

P (t, Z(2), ε) =Pp + ∆P + εP (2)(t, Z(2)) +O(ε2).

(41)

In order to have a S1-symmetric periodic solution in coordinates (15), according to Lemma 2.1, the
following two periodicity equations must satisfy

1

ε
Q(T/2,∆L,∆P, ε) =Q(1)(T/2, Z(2)) +O(ε) = 0,

l(T/2,∆L,∆P, ε) =
π

2
− T

2
+

ε

16

[
b(∆P + P0)2(sin 2T − 2T )−

2c(6T − 8 sinT + sin 2T )
(
2∆L− (∆P + P0)2 + 2L0

)]
+O(ε2) = 0,

(42)

Since, we want to avoid degeneration in the rank (this will be clear later), we introduce the “time”
as a dependent variable, the system (42) must be modified, so the periodicity system (the system
that characterizes the symmetric periodic solution but with period not necessarily of fixed period
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2π) assumes the form

f1(τ,∆L,∆P, ε) =
1

8
(∆P + P0)

(
a(∆P + P0)2(12τ + 8 sin 2τ + sin 4τ)−

c(12τ − 8 sin 2τ + sin 4τ)
(
2∆L− (∆P + P0)2 + 2L0

)
−

b(sin 4τ − 4τ)
(
∆L− (∆P + P0)2 + L0

))
+O(ε),

f2(τ,∆L,∆P, ε) =
π

2
− τ +

ε

16

[
b(∆P + P0)2(sin 4τ − 4τ)−

2c(12τ − 8 sin 2τ + sin 4τ)
(
2∆L− (∆P + P0)2 + 2L0

)]
+O(ε2).

(43)

At this point we are going to consider as independent variables the pair (τ,∆P ), that is, ∆L and
ε are the other variables, and P0 and L0 are parameters. In order to apply the Implicit Function
Theorem, we need to solve the system

f1(π, 0, 0, 0) =
1

2
πP0

(
3aP 2

0 + bL0 − bP 2
0 − 6cL0 + 3cP 2

0

)
= 0,

f2(π, 0, 0, 0) =
1

16

(
−4πbP 2

0 − 24πc
(
2L0 − P 2

0

))
= 0.

(44)

The solutions of this system are

(i) P
(4)
0 = 0, whenever c = 0,

(ii) P
(5)
0 = −

√
2
√
L0

√
b

b− 6a
, whenever

b

b− 6a
> 0,

(iii) P
(6)
0 =

√
2
√
L0

√
b

b− 6a
, whenever

b

b− 6a
.

(45)

Moreover, differentiating the system (43) with respect to (τ,∆P ) and evaluating in each P0 given
in (45) and τ = π,∆L = 0,∆P = 0, ε = 0, we have that

(46) a
∂(f1, f2)

∂(τ,∆P )

∣∣∣∣
τ=π,∆L=0,∆P=0,ε=0,P=P

(4)
0

=

(
0 bL0π

2
−1 0

)
,

(47)
∂(f1, f2)

∂(τ,∆P )

∣∣∣∣
τ=π,∆L=0,∆P=0,ε=0,P=P

(5)
0

=

(
8
√

2abL0
6a−b

√
bL0
b−6a

b(b−6a)L0π
6a

−1 0

)

(48)
∂(f1, f2)

∂(τ,∆P )

∣∣∣∣
τ=π,∆L=0,∆P=0,ε=0,P=P

(6)
0

=

(
−8
√

2abL0
6a−b

√
bL0
b−6a

b(b−6a)L0π
6a

−1 0

)
,

and their respective determinants are π
2L0b for the matrix (46) and πbL0(b−6a)

6a for the matrix (47) and
(48). Therefore, we are in position to apply the Implicit Function Theorem to the functions (f1, f2)
. Thus, assuming the existence of the points P0 in (45) for each fixed L0 > 0, and that the previous
determinants are non null, we arrive that for each of these points there is a unique differentiable
function ∆P (∆L, ε) and τ(∆L, ε) for ∆L and ε sufficiently small, such that ∆P (0, 0) = 0 and
τ(0, 0) = π and the system (f1(τ(∆L, ε),∆L,∆P (∆L, ε), ε), f2(τ(∆L, ε),∆L,∆P (∆L, ε)ε)) = (0, 0)
is satisfied. Therefore, we have found three 2τ(∆L, ε)-periodic symmetric solutions with period close
to 2π.
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Finally to obtain the characterization of S1-symmetric periodic solutions up to order ε in cartesian
coordinates we recall that

q1(t) = Q(t) cos l(t)− P (t) sin l(t), q2(t) =
√

2L(t)− P (t)2 −Q(t)2 cos l(t),

p1(t) = P (t) cos l(t) +Q(t) sin l(t), p2(t) =
√

2L(t)− P (t)2 −Q(t)2 sin l(t),

and using (41) for each point P
(j)
0 , in (45) we arrive to the characterization of the periodic solution

(6) for j = 4. For j = 5, 6 we obtain the same solution than for j = 2, 3 for the relationship that
exists between (11) and (15). Remembering the domain of both coordinates and that we can obtain
(15) be applying a rotation at an angle of π/2 to (15). Therefore we just need to study the stability
of the new found solution. In order to compute the characteristic multiplier of this solution, we

will follow the same idea of Section 2.3, so for P = P
(4)
0 in (45), we have that the matrix A is given

by

A =

(
0 bL0

2
−3

2bL0 0

)
,

whose eigenvalues are ± i
2

√
3bL0. Thus, the characteristic multipliers for the solution are given by

1, 1, 1 + εi
√

3πbL0 +O(ε2), 1− εi
√

3πbL0 +O(ε2) +O(ε2).

so the Theorem 1.1 is proved. �

Remark 1. We point out that the families of periodic solutions in Theorem 1.1 are parameterized
by two parameters, namely, ∆L and ε. Also, note that the family of periodic solution given in items
(a) and (b) are stable (linearly) and the two families given in item (c) are unstable.

4. Concluding remarks

The existence of periodic solutions of this model was studied in [6] in the case c = 0 and in [7]
for c 6= 0. In these articles the authors use the Averaging Method of First Order and convenient
generalized polar coordinates (q1, q2, p1, p2)→ (r, θ, ρ, α) given by

(49) q1 = r cos θ, p1 = r sin θ, q2 = ρ cos(α+ θ), p2 = ρ sin(α+ θ).

Their main results about periodic orbits is summarized as follows. The first one is for c = 0 and
the main result is as follows an can be found in [6].

Theorem 4.1. For ε sufficiently small in every level H = h > 0 the perturbed Hamiltonian system
has four periodic solutions bifurcating from the periodic orbits of the unperturbed Hamiltonian sys-
tem, as follows:
(a) It has at least four periodic orbits if b(b − a) > 0, (b − a)(b − 2a) > 0, b(b − 3a) > 0 and

(b − 6a)(b − 3a) > 0. These come from r∗ =
√

hb
b−a , ρ∗ =

√
b(b−2a)
b−a and α∗ = 0; r∗ =

√
hb
b−a ,

ρ∗ =
√

b(b−2a)
b−a and α∗ = π; r∗ =

√
hb
b−a , ρ∗ =

√
b(b−6a)
b−3a and α∗ = π

2 ; r∗ =
√

hb
b−a , ρ∗ =

√
b(b−6a)
b−3a

and α∗ = −π
2 ;

(b) It has two periodic orbits if either b(b − a) > 0 and (b − a)(b − 2a) > 0, or hb(b − 3a) > 0

and h(b− 6a)(b− 3a) > 0. These come from r∗ =
√

hb
b−a , ρ∗ =

√
b(b−2a)
b−a and α∗ = 0; r∗ =

√
hb
b−a ,

ρ∗ =
√

b(b−2a)
b−a and α∗ = π or r∗ =

√
hb
b−a , ρ∗ =

√
b(b−6a)
b−3a and α∗ = π

2 ; r∗ =
√

hb
b−a , ρ∗ =

√
b(b−6a)
b−3a

and α∗ = −π
2 ;

For c 6= 0 the main result is as follows an can be found in [7].
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Theorem 4.2. For ε sufficiently small in every level H = h > 0 the perturbed Hamiltonian sys-
tem has four periodic solutions bifurcating from the periodic orbits of the unperturbed Hamiltonian
system, as follows:

(a) The first one comes from the periodic orbit r∗ = 0 and ρ∗ =
√

2h with ε = 0 if |6cb − 2| ≤ 1
and (b− 6c)(b− 2c) 6= 0.

(b) The second one comes from the periodic orbit r∗ =
√

2h and ρ∗ = 0 with ε = 0 if |6ab − 2| ≤ 1
and (6a− b)(2a− b) 6= 0.

(c) The third one comes from the periodic orbit r∗ =
√

(6c−b)h
3a−b+3c and ρ∗ =

√
(6a−b)h
3a−b+3c with ε = 0

if (6c−b)
3a−b+3c > 0, (6a−b)

3a−b+3c > 0 and b(6a− b)(2c− b)(3a− b+ 3c) 6= 0.

(d) The fourth one comes from the periodic orbit r∗ =
√

(2c−b)h
a−b+c and ρ∗ =

√
(2a−b)h
a−b+c with ε = 0

if (2c−b)
a−b+c > 0, (2a−b)

a−b+c > 0 and b(2a− b)(b− 2c)(a− b+ c) 6= 0.

We emphasize that the families of periodic solutions in Theorems 4.1 and 4.2 are parametrized
by only one parameter, namely, ε. Furthermore, according to the Average Theory used by them,
these solutions have period close to 2π.

In order to compare the periodic solutions given in [6] and [7] and that are stated in Theorems
4.1 and 4.2, respectively, with the periodic S1-symmetric found solutions by us and stated in
Theorem 1.1, is that we proceed to approximate in first order all solutions in a common coordinate
system, namely, cartesian coordinates. It is also important to mention that we must first look at
the conditions on the parameters for the existence of the solutions found, in each of the theorems
mentioned.

According to the regions of existence of the periodic solutions on the parameters a, b, c we have
the following: For the existence of the periodic solution given in item (a) of Theorem 4.2, they
need that c 6= 0. Also, for ε = 0 this is a periodic orbit of the harmonic oscillator contained in
the plane (q1, p1). Taking into account the above conditions, this solution cannot coincide with the
periodic S1-symmetric solution given in item (b) of Theorem 1.1 . Analogously to the above, for
the existence of the periodic solution given in item (b) of Theorem 4.2, they need that a 6= 0. Also,
for ε = 0 this is a periodic orbit of the harmonic oscillator contained in the plane (q2, p2). Taking
into account the above conditions, this solution cannot coincide with the periodic S1-symmetric
solution given in item (a) of Theorem 1.1. For the third solution given in Theorem 4.2, they have
that the region of existence of the solution intersects with that given in item (c) of Theorem 1.1,
therefore we proceed to compare the analytical approaches of the solutions up to first order.

The periodic solution of Theorems 4.1 and 4.2 according to Averaging Theory are of the form

q1(t) = r∗ cos t+O(ε), q2(t) = ρ∗ sin(t+ α∗) +O(ε),

p1(t) = r∗ sin t+O(ε), p2(t) = ρ∗ cos(t+ α∗) +O(ε).
(50)

Since we want to compare the solutions obtained in [7], it is necessary to obtain an approximation
in epsilon order with greater precision. For this purpose, we will use the results of Appendix 5.2
that consist essentially in obtaining an approximation in order ε of the initial condition and the
periodic solution obtain by Averaging Theory. For which we will consider that the system (4) in
coordinates (49) assumes the form

ṙ =− 2rε sin θ cos θ
(
2ar2 cos2 θ + bg2 cos2(α+ θ)

)
,

ρ̇ =− 2ρε sin(α+ θ) cos(α+ θ)
(
br2 cos2 θ + 2cρ2 cos2(α+ θ)

)
,

θ̇ =− 1− 2ε cos2 θ
(
2ar2 cos2 θ + bρ2 cos2(α+ θ)

)
,

(51)
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α̇ =2ε
(
2ar2 cos4 θ + b cos2 θ

(
ρ2 − r2

)
cos2(α+ θ)− 2cρ2 cos4(α+ θ)

)
,

which verifies that

(52) H =
1

2

(
ρ2 + r2

)
+ ε
(
ar4 cos4 θ + bρ2r2 cos2 θ cos2(α+ θ) + cρ4 cos4(α+ θ)

)
,

is a first integral. Now, considering θ as the new dependent variable and setting the energy level
h > 0, solving the equation H(r, ρ, θ, α) = h for ρ we obtain a new system in variables (r, α) and
2π-periodic in θ,

r′ =εF
(1)
0 (θ, r, α) + ε2F

(2)
1 (θ, r, α) +O(ε3),

α′ =εF
(2)
0 (θ, r, α) + ε2F

(2)
1 (θ, r, α) +O(ε3),

(53)

where

F
(1)
0 (θ, r, α) =2r sin θ cos θ

(
2ar2 cos2 θ + b

(
2h− r2

)
cos2(α+ θ)

)
,

F
(2)
0 (θ, r, α) =− 4

(
ar2 cos4 θ + b

(
h− r2

)
cos2 θ cos2(α+ θ) + c

(
r2 − 2h

)
cos4(α+ θ)

)
,

F
(1)
1 (θ, r, α) =− r sin θ cos3 θ

(
r2(b− 2a)− 2ar2 cos 2θ + b

(
r2 − 2h

)
cos(2(α+ θ))− 2bh

)2
,

F
(2)
1 (θ, r, α) =4

(
4ar2 cos4 θ − 2b

(
r2 − 2h

)
cos2 θ cos2(α+ θ)

) (
ar2 cos4 θ+

b
(
h− r2

)
cos2 θ cos2(α+ θ) + c

(
r2 − 2h

)
cos4(α+ θ)

)
.

(54)

Note that they apply Averaging Theory to system (53) and according to the notation used in (63)

we have that F0 = (F
(1)
0 , F

(2)
0 ) and F1 = (F

(1)
1 , F

(2)
1 ). Thus, the average system (64) assumes the

form

r′ =
ε

4
br sin 2α

(
r2 − 2h

)
,

α′ =
ε

2

(
−3r2(a+ c) + b cos 2α

(
r2 − h

)
+ 2b

(
r2 − h

)
+ 6ch

)
.

(55)

Applying the Averaging Theorem 5.1, the authors in [7] obtain four families of periodic solutions
given in Theorem 4.2. Following the notation given in the Appendix, we have that the functions
g(θ, r, α) = (g(1)(θ, r, α), g(2)(θ, r, α)) are such that

g(1)(θ, r, α) =
1

4
r
[
−b
(
r2 − 2h

) (
(9ar2 + 4b(h− r2)) cos θ + ar2 cos 3θ + 5bh cos(2α+ θ)+

bh cos(2α+ 3θ)− 5br2 cos(2α+ θ)− br2 cos(2α+ 3θ)− ch cos(2α+ θ)−
2ch cos(4α+ θ)− 2ch cos(4α+ 3θ) + 8cr2 cos(2α+ θ) + cr2 cos(4α+ θ)+

cr2 cos(4α+ 3θ)
)

sin 2θ sin(2α+ 2θ)− 4
(
r2(b− 2a)− 2ar2 cos 2θ+

b(r2 − 2h) cos(2α+ 2θ)− 2bh
)2

cos3 θ − 2 sin θ cos θ
(
6ar2 cos2(θ)+

b
(
2h− 3r2

)
cos2(α+ θ)

) ((
−5ar2 − 4bh+ 2br2

)
sin θ − ar2 sin 3θ+

b
(
r2 − 2h

)
cos θ sin(2α+ 2θ)

)]
sin θ,
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g(2)(θ, r, α) = 4
(
4ar2 cos4 θ − 2b(r2 − 2h) cos2 θ cos2(α+ θ)

) (
ar2 cos4 θ+

b
(
h− r2

)
cos2 θ cos2(α+ θ) + c

(
r2 − 2h

)
cos4(α+ θ)

)
−

2 sin θ sin(α+ θ) cos(α+ θ)
(
b
(
h− r2

)
cos2 θ + 2c

(
r2 − 2h

)
cos2(α+ θ)

) (
cos θ

(
9ar2+

4b
(
h− r2

))
+ ar2 cos 3θ + 5bh cos(2α+ θ) + bh cos(2α+ 3θ)− 5br2 cos(2α+ θ)−

br2 cos(2α+ 3θ)− 16ch cos(2α+ θ)− 2ch cos(4α+ θ)− 2ch cos(4α+ 3θ)+

8cr2 cos(2α+ θ) + cr2 cos(4α+ θ) + cr2 cos(4α+ 3θ)
)

+ 2r2 sin θ
(
a cos4 θ−

b cos2 θ cos2(α+ θ) + c cos4(α+ θ)
) (

sin θ
(
−5ar2 − 4bh+ 2br2

)
− ar2 sin 3θ+

b(r2 − 2h) cos θ sin(2(α+ θ))
)
.

For f0(r, α) = (f
(1)
0 (r, α), f

(2)
0 (r, α)) and f1(r, α) = (f

(1)
1 (r, α), f

(2)
1 (rα)) we have that

f
(1)
0 (r, α) =

1

4
br
(
r2 − 2h

)
sin 2α,

f
(2)
0 (r, α) =

1

2

[
−3r2(a+ c) + b

(
r2 − h

)
+ 2b

(
r2 − h

)
cos 2α+ 6ch

]
,

f
(1)
1 (r, α) =

1

64
br
[
68ahr2 − 12ar4 −

(
2h− r2

) (
b
(
14h− 19r2

)
cos 2α+ 32c

(
r2 − 2h

))
+

4b
(
12h2 − 8hr2 + r4

)
+ 24ch2 + 4c

(
r2 − 2h

)2
cos 4α− 24chr2 + 6cr4

]
sin 2α,

f
(2)
1 (r, α) =

1

32

[
2
(
57a2r4 − 4b

(
−18ahr2 + 11ar4 + 8ch2 + 4chr2 − 4cr4

)
− 72achr2 + 6acr4+

2b2
(
16h2 − 19hr2 + 5r4

)
+ bc

(
2h2 − 3hr2 + r4

)
cos 6α− 136c2h2 + 136c2hr2−

34c2r4
)

+
(
b
(
76ahr2 − 49ar4 − 48ch2 + 34chr2 − 5cr4

)
+ 32acr4+

4b2
(
12h2 − 14hr2 + 3r4

))
cos 2α+

(
2acr4 + b2

(
−6h2 + 16hr2 − 9r4

)
+

16bc
(
2h2 − 3hr2 + r4

))
cos 4α

]
,

and for w0(θ, r, α) = (w
(1)
0 (θ, r, α), w

(2)
0 (θ, r, α)) and w1(θ, r, α) = (w

(1)
1 (θ, r, α), w

(2)
1 (θ, r, α)) whose

expressions can be found in Appendix 5.3.
Considering the general solution of the system (53) as in (76) and the general solution of (55)

as in (77), with initial condition as in (79), where

p = (r∗, α∗) =

( √
(6c− b)h√

3a− b+ 3c
,
π

2

)
,

and η1 is given in (80), therefore,

η =

( √
(6c− b)h√

3a− b+ 3c
,
π

2

)
+ ε

(
h2

32(3a− b+ 3c)5/2
√
h(6c− b)

(
36a2c(11b− 26c)+

a
(
−19b3 + 54b2c+ 420bc2 − 3240c3

)
+ b2

(
5b2 − 57bc+ 202c2

))
, 0
)

+O(ε2).

Finally, according to the equation (81), we have that the 2π-periodic solution

x(θ, η, ε) = (r(θ, η, ε), α(θ, η, ε)
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where

r(θ, η, ε) =

√
h(6c− b)√

3a− b+ 3c
+ ε

h2

32(3a− b+ 3c)5/2
√
h(6c− b)

(
12a2

(
−4b2 + 27bc+ 102c2

)
+

2(b− 6c)(−3a+ b− 3c)
(
4 cos 2θ

(
b2 − 4a(b+ 3c)

)
− cos 4θ

(
−8ab+ 12ac+ b2

))
+

3a
(
5b3 − 26b2c− 124bc2 − 360c3

)
− b2

(
b2 + 3bc− 94c2

))
,

α(θ, η, ε) =
π

2
+ ε

1

3a− b+ 3c
(h(b(a− c) cos 2θ + a(b− 12c) + bc)) sin 2θ +O(ε2).

(56)

Since our objective is to compare the solutions, we will restrict the parameters a, b, c to b2 = 36ac,
c < 0 and b > 0, so (56) reads as

r(θ, η, ε) =2
√

3

√
ch

6c− b
+ ε

b2h3/2

(b− 6c)3

√
c

3(6c− b)
[
b2 − 2(b− 6c)2 cos 2θ + (b− 6c)2 cos 4θ−

6bc− 48c2
]

+O(ε2),

α(θ, η, ε) =
π

2
+

bh

3(b− 6c)
((b+ 6c) cos 2θ + b− 6c) sin 2θ +O(ε2).

(57)

As we already have the approximation of the 2π-periodic solution in time θ of system (53), we
will proceed to recover the solution T -periodic in time t of the system (4), for this, we use the fact
that we considered an energy level h > 0 and solve the equation

H(r(θ, η, ε), ρ(θ, η, ε), α(θ, η, ε), θ) = h,

with H as in (52) for ρ(θ, η, ε) we have that

(58) ρ(θ, η, ε) =
√

2

√
bh

b− 6c
− 2ε
√

2c

(
bh

b− 6c

)3/2

cos 4θ +O(ε2).

After that, we go back to time t using the equation θ̇ of system (51), replacing r = r(θ, η, ε),
α = α(θ, η, ε), and ρ = ρ(θ, η, ε) and expanding in Taylor series up to first order we get

F (θ, ε) = θ̇(r(θ, η, ε), α(θ, η, ε), ρ(θ, η, ε))

= −1 + ε
h

b− 6c

(
48ac cos4 θ − b2 sin2 2θ

)
+O(ε2).

(59)

Integrating in the previous equality with respect to θ and using the Inverse Function Theorem we
get that

(60) θ(t, η, ε) = −t+ ε
1

3(b− 6c)
4b2h sin t cos3 t+O(ε2).

Finally, replacing θ = θ(t, η, ε) in r(θ, η, ε), ρ(θ, η, ε), α(θ, η, ε), using the change of variables (49)
and expanding in Taylor series around ε = 0 we arrive to
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q1(t, z, ε) =2
√

3

√
ch

6c− b
cos t− ε 2b2h√

3(b− 6c)3

√
ch

6c− b
[
(b− 6c)2 cos 2t− b2+

9bc+ 6c2
]

cos t+O(ε2),

q2(t, z, ε) =
√

2

√
bh

b− 6c
sin t− 2ε

[
√

2c

(
bh

b− 6c

)3/2

sin t cos2 2t

]
+O(ε2),

p1(t, z, ε) =− 2
√

3

√
ch

6c− b
sin t+ ε

2b2h√
3(b− 6c)3

√
ch

6c− b
[
3(b− 6c)2 cos 2t+ b2−

15bc+ 78c2
]

sin t+O(ε2),

p2(t, z, ε) =
√

2

√
bh

b− 6c
cos t− ε bch

b− 6c

√
bh

2b− 12c
(−2 cos t+ 5 cos 3t+ cos 5t) +O(ε2),

(61)

where the initial condition is

z =

(
2
√

3

√
ch

6c− b
, 0, 0,

√
2

√
bh

b− 6c
)

)
+ ε

(
− 2
√

3b2

(b− 6c)2

(
ch

6c− b

)3/2

(b− 14c), 0, 0,

− 4bch

b− 6c

√
bh

2b− 12c

)
+O(ε2).

(62)

Now, we will proceed to compare the initial conditions of the periodic solutions obtained in our
Theorem 1.1, item (c) with those obtained in Theorem 4.2, item (c). The first thing to recall is
that the initial condition of our theorem in cartesian coordinates is given by

z(1) =

(
2
√

3
√

c(h+∆L)
6c−b +O(ε2), 0, 0,

√
2c
√

b(b−6c)3((h+∆L)
c2(b−6c)

+O(ε2)

)
=

(
2
√

3
√

ch
6c−b +

√
3∆L

√
ch

6c−b

h +O(∆L, ε2), 0, 0,
√

2
√
bh√

b−6c
+ b∆L√

2
√
b−6c

√
bh

+O(∆L, ε2)

)
.

Then, since we have assumed that z(1) ∈ L1 it follows that the second and third components are
identically null, however, the initial condition in (62) does not necessarily happen. On the other

hand, our initial condition z(1) depends on the parameters (ε,∆L) as opposed to (62) that depends
only on ε.

On the other hand, the approximation of the family of periodic solutions obtained in (7) by us
differs in order ε from those characterized in (61).

In addition we characterize the stability which was not performed by the authors in [7].

5. Appendix

5.1. Averaging theory of first order. We shall present the basic results from averaging theory
that we need to prove the results of this paper.

The next theorem provides a first order approximation for the periodic solutions of a periodic
differential system. Consider the differential equation

(63) ẋ = εF0(t, x) + ε2F1(t, x, ε), x(0) = x0
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with x ∈ D, where D is an open subset of Rn, t ≥ 0. Moreover, we assume that both F0(t, x) and
F1(t, x, ε) are T−periodic in t. We also consider in D the averaged differential equation

(64) ẏ = εf0(y), y(0) = x0,

where

f0(y) =
1

T

∫ T

0
F0(t, y)dt.

Under certain conditions, equilibrium solutions of the averaged equation turn out to correspond
with T−periodic solutions of equation (63).

Theorem 5.1. Consider the two initial value problems (63) and (64). Suppose:

(i) F0, its Jacobian ∂F0/∂x, its Hessian ∂2F0/∂x
2, F1 and its Jacobian ∂F1/∂x are defined,

continuous and bounded by a constant independent of ε in [0,∞)×D and ε ∈ (0, ε0].
(ii) F0 and F1 are T−periodic in t (T independent of ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged equation (64) and

(65) det

(
∂f0

∂y

)∣∣∣∣
y=p

6= 0,

then there exists a T−periodic solution ϕ(t, ε) of equation (63) such that ϕ(0, ε) → p as
ε→ 0.

(b) The stability or instability of the limit cycle ϕ(t, ε) is given by the stability or instability of
the equilibrium point p of the averaged system (64). In fact the singular point p has the
stability behavior of the Poincaré map associated to the limit cycle ϕ(t, ε).

5.2. Approximation of the solutions via averaging. We consider the system,

(66) ẋ = εF0(t, x) + ε2F1(t, x) +O(ε3)

and let us use change of coordinates,

(67) x = y + εw(t, y, ε) = y + εw0(t, y) + ε2w1(t, y) +O(ε3),

where w is a T−periodic function. Substituting (67) in F0 and expanding in a Taylor series around
ε = 0,

(68)

F0(t, x) = F0(t, y + εw0(t, y))

= F0(t, y) + εDxF0(t, y)w0(t, y) + ε2

2 [2DxF0(t, y)w1(t, y)

+w0(t, y)THessF0(t, y)w0(t, y)
]

+O(ε3).

Analogously,

(69)
F1(t, x) = F1(t, y + εw0(t, y) + ε2w1(t, y) +O(ε3))

= F1(t, y) + ε∂F1
∂x (t, y)w0(t, y) +O(ε2).

Next, differentiating (67) with respect to t, we get

ẋ =

(
I + ε

∂w0

∂y
(t, y) + ε2

∂w1

∂y
(t, y)

)
ẏ + ε

∂w0

∂t
(t, y) + ε2

∂w1

∂t
(t, y) +O(ε3).

Using (68) and (69) we obtain
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(70)

ẏ =
(
I + ε∂w0

∂y (t, y) + ε2 ∂w1
∂y (t, y))

)−1 (
εF0(t, y) + ε2F1(t, y)

−ε∂w0
∂t (t, y)− ε2 ∂w1

∂t (t, y) +O(ε3)
)

=
(
I − ε∂w0

∂y (t, y) +O(ε2)
) [
ε
(
F0(t, y)− ∂w0

∂t (t, y)
)

+ε2
(
DxF0(t, y)w0(t, y) + F1(t, y)− ∂w1

∂t (t, y)
)

+O(ε3)
]

= ε
(
F0(t, y)− ∂w0

∂t (t, y)
)

+ ε2
(
DxF0(t, y)w0(t, y)− ∂w1

∂t (t, y)

+F1(t, y)− ∂w0
∂y (t, y)

(
F0(t, y)− ∂w0

∂t (t, y)
))

+O(ε3)

= εf0(y) + ε2f1(t, y) +O(ε3),

where,

(71)

f0(y) = F0(t, y)− ∂w0
∂t (t, y),

f1(t, y) = DxF0(t, y)w0(t, y) + F1(t, y)− ∂w1
∂t (t, y)− ∂w0

∂y (t, y)f0(y).

Remark 2. From the first equation in (71), we have

∂w0

∂t
(t, y) = F0(t, y)− f0(y),

thus

(72) w0(t, y) =

∫ t

0
F0(s, y)ds− f0(y)t =

∫ t

0
F0(s, y)ds− t

T

∫ T

0
F0(s, y)ds.

Remark 3. From the second equation in (71), we have,

(73) f1(t, y) = DxF0(t, y)w0(t, y) + F1(t, y)− ∂w1

∂t
(t, y)− ∂w0

∂y
(t, y)f0(y).

We define the following auxiliary function

(74) g(t, y) = DxF0(t, y)w0(t, y) + F1(t, y)− ∂w0

∂y
(t, y)f0(y).

If we assume that f1(t, y) = f1(y) is a function that depends only on y, we have that

f1(y) =
1

T

∫ T

0
g(t, y)dt

and so
∂w1

∂t
(t, y) = g(t, y)− f1(y).

Therefore,

(75) w1(t, y) =

∫ t

0
g(s, y)ds− f1(y)t.

Let

(76) x(t, ξ, ε) = x0(t) + εx1(t) +O(ε2),

be the general solution of (63) with initial condition ξ, and let

(77) y(t, η, ε) = y0(t) + εy1(t) + ε2y2(t) +O(ε3),
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be the general solution of (70) with initial condition η. We have that,

η = y(0, η, ε) = y0(0) + εy1(0) + ε2y2(0) +O(ε3),

and by (70) and using a Taylor series around ε = 0,

ẏ0(t) + εẏ1(t) + ε2ẏ2(t) +O(ε3) = ẏ = εf0(y) + ε2f1(y) +O(ε3)

= εf0(y0(t) + εy1(t) +O(ε2))
+ε2f1(y0(t) + εy1(t) +O(ε2)) +O(ε3)

= εf0(y0) + ε2 (Dyf0(y0)y1 + f1(y0)) +O(ε2).

Thus,

ẏ0(t) = 0,
ẏ1(t) = f0(y0),
ẏ2(t) = Dyf0(y0)y1 + f1(y0),

and it follows that
y0(t) = z,
y1(t) = f0(z)t,

y2(t) = t2

2 Dyf0(z)f0(z) + f1(z)t.

So, the general solution (77) is written as

(78) y(t, η, ε) = η + εf0(η)t+ ε2
(
t2

2
Dyf0(η)f0(η) + f1(η)t

)
+O(ε3)

Now, we assume that y(t, η, ε) is a particular T−periodic solution of the system (70) where the
initial condition

(79) η = η(ε) = p+ εη1 + ε2η2 +O(ε3),

where p satisfies f0(p) = 0 and Dyf0(p) is nondegenerate.
Now, we consider the T−periodic solution y(t, η(ε), ε) obtained by Theorem 5.1 of the system (70).
Our next aim is to describe the approximation of this family of initial conditions, that is, we are
going to characterize η1.

Because of the periodicity of the solution y(t, η(ε), ε) and using (78), we must have

0 = y(T, η(ε), ε)− η(ε)

= εTf0(η(ε)) + ε2
[
T 2

2 Dyf0(η(ε))f0(η(ε)) + f1(η(ε))T
]

+O(ε3).

Or equivalently, developing in a Taylor series around ε = 0, we get

0 = f0(η(ε)) + ε
[
T
2Dyf0(η(ε))f0(η(ε)) + f1(η(ε))

]
+O(ε2)

= f0(p+ εη1 + ε2η2 +O(ε3))+
+ε
[
T
2Dyf0(p+ εη1 + ε2η2 +O(ε3))f0(p+ εη1 + ε2η2 +O(ε3))

+f1(p+ εη1 + ε2η2 +O(ε3))
]

+O(ε2)

= f0(p) + ε
[
Dyf0(p)η1 + T

2Dyf0(p)f0(p) + f1(p)
]

+O(ε2),

from where,

(80) η1 = −[Dyf0(p)]−1f1(p).

Coming back to the associated T−periodic solution x(t, η(ε), ε) of system (63), we arrive to
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(81)

x(t, η(ε), ε) = y(t, η(ε), ε) + εw0(t, y(t, η(ε), ε)) +O(ε2)

= η(ε) + εf0(η(ε))t+ ε2
(
t2

2 Dyf0(η(ε))f0(η(ε)) + f1(η(ε))t
)

+εw0

(
t, η(ε) + εf0(η(ε))t+ ε2

(
t2

2 Dyf0(η(ε))f0(η(ε))

+f1(η(ε))t) +O(ε3)
)

+O(ε2)

= p+ εη1 +O(ε2) + εf0(η(ε))t

+ε2
(
t2

2 Dyf0(η(ε))f0(η(ε)) + f1(η(ε))t
)

+O(ε3)

+εw0

(
t, p+ εη1 +O(ε2) + εf0(η(ε))t

+ε2
(
t2

2 Dyf0(η(ε))f0(η(ε)) + f1(η(ε))t
)

+O(ε3)
)

= p+ ε
[
−[Dyf0(p)]−1f1(p) + w0(t, p)

]
+O(ε2).

5.3. Description of the functions w0 and w1.

w
(1)
0 (θ, r, α) =− 1

4
r
[(
−5ar2 − 4bh+ 2br2

)
sin θ − ar2 sin 3θ + b

(
r2 − 2h

)
sin(2α+ 2θ) cos θ

]
sin θ,

w
(2)
0 (θ, r, α) =− 1

4

[(
9ar2 + 4b

(
h− r2

))
cos θ + ar2 cos 3θ + 5bh cos(2α+ θ) + bh cos(2α+ 3θ)−

5br2 cos(2α+ θ)− br2 cos(2α+ 3θ)− 16ch cos(2α+ θ)− 2ch cos(4α+ θ)−
2ch cos(4α+ 3θ) + 8cr2 cos(2α+ θ) + cr2 cos(4α+ θ) + cr2 cos(4α+ 3θ)

]
sin θ,

w
(1)
1 (θ, r, α) =− 1

1536
r
[
2052a2r4 sin θ − 800abr4 sin θ + 576bcr4 sin θ + 1956a2r4 sin 3θ+

384b2r4 sin 3θ − 328abr4 sin 3θ − 192bcr4 sin 3θ + 756a2r4 sin 5θ − 272abr4 sin 5θ+

84a2r4 sin 7θ − 280b2r4 sin(2α+ θ) + 408abr4 sin(2α+ θ) + 24bcr4 sin(2α+ θ)+

36bcr4 sin(6α+ 3θ)− 339b2r4 sin(4α+ θ) + 448bcr4 sin(4α+ θ)+

36bcr4 sin(6α+ θ) + 248b2r4 sin(2α+ 3θ)− 648abr4 sin(2α+ 3θ)+

24bcr4 sin(2α+ 3θ)− 51b2r4 sin(4α+ 3θ) + 64bcr4 sin(4α+ 3θ)+

200b2r4 sin(2α+ 5θ)− 624abr4 sin(2α+ 5θ) + 129b2r4 sin(4α+ 5θ)−
128bcr4 sin(4α+ 5θ)− 12bcr4 sin(6α+ 5θ)− 96abr4 sin(2α+ 7θ)+

33b2r4 sin(4α+ 7θ)− 12bcr4 sin(6α+ 7θ)− 864b2hr2 sin θ + 3264abhr2 sin θ−
2304bchr2 sin θ − 1248b2hr2 sin 3θ + 2208abhr2 sin 3θ + 768bchr2 sin 3θ+

480abhr2 sin 5θ + 512b2r2h sin 2α+ θ)− 440abhr2 sin(2α+ θ)− 96bchr2 sin(2α+ θ)−
144bchr2 sin(6α+ 3θ) + 1060b2hr2 sin(4α+ θ)− 1792bchr2 sin(4α+ θ)−
144bchr2 sin(6α+ θ)− 1024b2hr2 sin(2α+ 3θ) + 1672abhr2 sin(2α+ 3θ)−
96bchr2 sin(2α+ 3θ) + 100b2hr2 sin(4α+ 3θ)− 256bchr2 sin(4α+ 3θ)−
640b2hr2 sin(2α+ 5θ) + 1096abhr2 sin(2α+ 5θ)− 428b2hr2 sin(4α+ 5θ)+

512bchr2 sin(4α+ 5θ) + 48bchr2 sin(6α+ 5θ) + 168abhr2 sin(2α+ 7θ)−
108b2hr2 sin(4α+ 7θ) + 48bchr2 sin(6α+ 7θ)− 24br2

(
a
(
32h− 25r2

)
−

c
(
r2 − 2h

)2
+ b

(
3r4 − 16hr2 + 20h2

))
sin(2α− θ) + 1728b2h2 sin θ+
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2304bch2 sin θ + 960b2h2 sin 3θ − 768bch2 sin 3θ + 96b2h2 sin(2α+ θ)+

96bch2 sin(2α+ θ) + 144bch2 sin(6α+ 3θ)− 764b2h2 sin(4α+ θ)+

1792bch2 sin(4α+ θ) + 144bch2 sin(6α+ θ) + 1056b2h2 sin(2α+ 3θ)+

96bch2 sin(2α+ 3θ) + 4b2h2 sin(4α+ 3θ) + 256bch2 sin(4α+ 3θ)+

480b2h2 sin(2α+ 5θ) + 340b2h2 sin(4α+ 5θ)− 512bch2 sin(4α+ 5θ)−
48bch2 sin(6α+ 5θ) + 84b2h2 sin(4α+ 7θ)− 48bch2 sin(6α+ 7θ) + 24b

(
3ar4−

4ahr2 + c
(
r2 − 2h

)2)
sin(2α− 3θ)

]
sin θ,

and

w
(2)
1 (θ, r, α) =

1

384

[
3522a2r4 cos θ + 744b2r4 cos θ + 792c2r4 cos θ − 2768abr4 cos θ+

1944acr4 cos θ − 1248bcr4 cos θ + 1026a2r4 cos 3θ + 168b2r4 cos 3θ + 24c2r4 cos 3θ−
704abr4 cos 3θ + 216acr4 cos 3θ − 96bcr4 cos 3θ + 210a2r4 cos 5θ − 80abr4 cos 5θ+

18a2r4 cos 7θ + 880b2r4 cos(2α+ θ)− 288c2r4 cos(2α+ θ)− 2235abr4 cos(2α+ θ)+

1280acr4 cos(2α+ θ)− 702bcr4 cos(2α+ θ)− 32c2r4 cos(6α+ 3θ)−
9bcr4 cos(6α+ 3θ) + 151b2r4 cos(4α+ θ)− 384c2r4 cos(4α+ θ)+

182acr4 cos(4α+ θ) + 96bcr4 cos(4α+ θ)− 128c2r4 cos(6α+ θ) + 39bcr4 cos(6α+ θ)−
12c2r4 cos(8α+ θ) + 400b2r4 cos(2α+ 3θ) + 192c2r4 cos(2α+ 3θ)−
1083abr4 cos(2α+ 3θ)4 + 1088acr4 cos(2α+ 3θ)− 606bcr4 cos(2α+ 3θ)+

223b2r4 cos(4α+ 3θ) + 384c2r4 cos(4α+ 3θ) + 278acr4 cos(4α+ 3θ)−
624bcr4 cos(4α+ 3θ)− 12c2r4 cos(8α+ 3θ) + 88b2r4 cos(2α+ 5θ)−
321abr4 cos(2α+ 5θ) + 128acr4 cos(2α+ 5θ) + 103b2r4 cos(4α+ 5θ)+

254acr4 cos(4α+ 5θ)− 240bcr4 cos(4α+ 5θ) + 160c2r4 cos(6α+ 5θ)−
123bcr4 cos(6α+ 5θ) + 12c2r4 cos(8α+ 5θ)4− 33abr4 cos(2α+ 7θ)+

15b2r4 cos(4α+ 7θ) + 30acr4 cos(4α+ 7θ)− 27bcr4 cos(6α+ 7θ)+

12c2r4 cos(8α+ 7θ)− 2136b2hr2 cos θ − 3168c2hr2 cos θ + 3552abhr2 cos θ−
2592achr2 cos θ + 3936bchr2 cos θ − 408b2hr2 cos 3θ − 96c2hr2 cos 3θ+

768abhr2 cos 3θ − 288achr2 cos 3θ + 288bchr2 cos 3θ + 96abhr2 cos 5θ−
2560b2hr2 cos(2α+ θ) + 1152c2hr2 cos(2α+ θ) + 3244abhr2 cos(2α+ θ)−
4032achr2 cos(2α+ θ) + 3264bchr2 cos(2α+ θ) + 128c2hr2 cos(6α+ 3θ)+

64bchr2 cos(6α+ 3θ)− 508b2hr2 cos(4α+ θ) + 1536c2hr2 cos(4α+ θ)−
336achr2 cos(4α+ θ) + 64bchr2 cos(4α+ θ) + 512c2hr2 cos(6α+ θ)−
80bchr2 cos(6α+ θ) + 48c2hr2 cos(8α+ θ)− 1024b2hr2 cos(2α+ 3θ)−
768c2hr2 cos(2α+ 3θ) + 1324abhr2 cos(2α+ 3θ)− 1728achr2 cos(2α+ 3θ)+

1872bchr2 cos(2α+ 3θ)− 556b2hr2 cos(4α+ 3θ)− 1536c2hr2 cos(4α+ 3θ)−
24



720achr2 cos(4α+ 3θ) + 2080bchr2 cos(4α+ 3θ) + 48c2hr2 cos(8α+ 3θ−
208b2hr2 cos(2α+ 5θ) + 340abhr2 cos(2α+ 5θ)− 192achr2 cos(2α+ 5θ)−
244b2hr2 cos(4α+ 5θ)− 432achr2 cos(4α+ 5θ) + 736bchr2 cos(4α+ 5θ)−
640c2hr2 cos(6α+ 5θ) + 388bchr2 cos(6α+ 5θ)− 48c2hr2 cos(8α+ 5θ)+

36abhr2 cos(2α+ 7θ)− 36b2hr2 cos(4α+ 7θ)− 48achr2 cos(4α+ 7θ) + 84bchr2 cos(6α+ 7θ)−
48c2hr2 cos(8α+ 7θ) + 6

(
4
(
r4 − 6hr2 + 4h2

)
b2 +

(
ar2

(
44h− 53r2

)
− 10c

(
r4 − 3hr2 + 2h2

))
b+

16c
(

2a
(
r2 − h

)
r2 + c

(
r2 − 2h

)2))
cos(2α− θ) + 1344b2h2 cos θ + 3168c2h2 cos θ − 2880bch2 cos θ+

192b2h2 cos 3θ + 96c2h2 cos 3θ − 192bch2 cos(3θ) + 1728b2h2 cos(2α+ θ)− 1152c2h2 cos(2α+ θ)−
3720bch2 cos(2α+ θ)− 128c2h2 cos(3(2α+ θ))− 92bch2 cos(3(2α+ θ)) + 370b2h2 cos(4α+ θ)−
1536c2h2 cos(4α+ θ)− 512bch2 cos(4α+ θ)− 512c2h2 cos(6α+ θ) + 4bch2 cos(6α+ θ)−
48c2h2 cos(8α+ θ) + 576b2h2 cos(2α+ 3θ) + 768c2h2 cos(2α+ 3θ)− 1320bch2 cos(2α+ 3θ)+

322b2h2 cos(4α+ 3θ) + 1536c2h2 cos(4α+ 3θ)− 1664bch2 cos(4α+ 3θ)− 48c2h2 cos(8α+ 3θ)+

96b2h2 cos(2α+ 5θ) + 130b2h2 cos(4α+ 5θ)− 512bch2 cos(4α+ 5θ) + 640c2h2 cos(6α+ 5θ)−
284bch2 cos(6α+ 5θ) + 48c2h2 cos(8α+ 5θ) + 18b2h2 cos(4α+ 7θ)− 60bch2 cos(6α+ 7θ)+

48c2h2 cos(8α+ 7θ)− 6b
(
5ar4 − 4ahr2 + 2c

(
r4 − 3hr2 + 2h2

))
cos(2α− 3θ)

]
sin θ.
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