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1. Introduction and Main Results

Let Ω be a bounded domain (open, nonempty, and connected) in Rn(n ≥ 1) with a boundary Γ = ∂Ω of

class C2 which consists of two parts, S1 and S2, such that S1∩S2 = ∅. S1 can be an empty set or non-empty

and S2 6= ∅. Let S0 be a regular hypersurface of class C2 which separates Ω into two domains, Ω1 and Ω2.

In addition, S0 satisfies S1 ∩ S0 = S2 ∩ S0 = ∅. Obviously, S1 ⊂ Γ1 = ∂Ω1 and S2 ⊂ Γ2 = ∂Ω2 (see Figure

1).

Figure 1: transmission domain
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We conside stabilization for the problem of transmission of the wave equation with dynamical boundary

conditions 

u′′i − ai∆ui = 0 in Ωi × (0,∞), i = 1, 2,

ui(x, 0) = u0
i (x), u′i(x, 0) = u1

i (x) in Ωi, i = 1, 2,

u(x, t) = 0 on S1 × (0,∞),

mu′′2(x, t) + a2
∂u2(x, t)

∂ν
= F (t) on S2 × (0,∞),

u1 = u2, a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0 × (0,∞),

(1.1)

where ∆ denotes the Laplace operator in the space variables, the prime ′ denotes the derivate with respect

to the time variable. ν denotes the unit normal on Γ and S0 directing towards the exterior of Ω and Ω1, a1

and a2 are positive constants. F (t) is the boundary feedback control. Moreover

m ∈ L∞(S2); m(x) > 0, ∀x ∈ S2. (1.2)

Transmission problems describe the phenomenon of waves propagating from one substance to another,

therefore it is of practical significance. The problem of transmission for the wave equation had received

many mathematicians attention for many years (see [11], [12], [14], [18], [19], [20], [24] and the references

therein). In [18], Lions considered the problem of exact controllability with Dirichlet boundary conditions

of transmission for the wave equation in the domain as described in Figure 1 and established the results of

exact controllability (see [18, p.379, Th.5.1]) when a1 ≥ a2. Later, Liu and Williams in [12] considered the

following problem of stabilization with a domain as shown in Figure 1.

u′′i − ai∆ui + qui = 0 in Ωi × (0,∞), i = 1, 2,

ui(x, 0) = u0
i (x), u′i(x, 0) = u1

i (x) in Ωi, i = 1, 2,

u1 = 0 on S1 × (0,∞),
∂u2

∂ν
+ α(x)u2 + σ(x)u′2 = 0 on S2 × (0,∞),

u1 = u2, a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0 × (0,∞),

where the function q : Ω→ R, α, σ : S2 → R are nonnegative and satisfy q ∈ L∞(Ω), α, σ ∈ C1(S2). And

they obtained the exponential stabilization under a1 ≥ a2. Then in 2002, Liu [11] addressed the problem of

control of the transmission wave equation and showed that such a system can be controlled by introducing

both boundary control along the exterior boundary and distributed control near the transmission boundary.

In [24], Ramos and Souza prove the equivalence between the exponential stability previously proven by Liu

and Williams in [12] and the inequality observability on the boundary in the one-dimensional case.

We say that equation (1.1) is with dynamical boundary conditions when m(x) 6= 0. Dynamical boundary

conditions play an important role in various fields, such as physics, biomedicine, and noise suppression and

control of elastic structures (see [1], [7], [20], [15],[25] and the references therein). The dynamical terms on

the boundary may change the stability property of the system. For example:

u′′ −∆u = 0 in Ω× (0,∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ0 × (0,∞),

mu′′ +
∂u

∂ν
= −∂u

′

∂ν
on Γ1 × (0,∞).

It is shown that the system is exponentially stable under suitable conditions on Ω when m = 0, while the

case when m > 0 the above system is not uniformly stable (see [7] and [15]). There has been extensive work
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for the wave equation with dynamical boundary conditions. Then, let us recall some works related to the

problem we address. In the one-dimensional case, Conrad and Mifdal in [6] consider following problem of

stabilization with F (t) = −αu+ f(u′x − αu′),

u′′ − a(x)∆u = 0 in Ω× (0,∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

Mu′′1(x, t) + a1
∂u1(x, t)

∂ν
= 0 on Γ1 × (0,∞),

mu′′2(x, t) + a2
∂u2(x, t)

∂ν
= F (t) on Γ2 × (0,∞),

(1.3)

where a(x) is a positive function, and they obtained the exponential stabilization under some conditions.

After that, In the N -dimensional(N ≥ 2) case, [4] discussed the asymptotic stabilization of the solutions

with F (t) = −a(x)u′. [26] consider the wave equation with variable coefficients and a dynamical Neumann

boundary control when u(x, t) = 0 on Γ1 and by applying a boundary feedback control obtain the exponential

decay for the solutions.

We note that in the previous work the problem of transmission for wave equation with dynamical

boundary conditions has not been considered yet. Therefore, the purpose of this paper is to study how the

dynamic boundary conditions on ∂Ω affect the stabilization of the system. In this article, the feedback law

is of the form

F (t) = −βu′2 − γa2
∂u′2
∂ν

, (1.4)

where the constants β and γ are positive numbers such that βγ < m. Let u be a regular solution of system

(1.1). We set

η = mu′2(x, t) + γa2
∂u2

∂ν
x ∈ S2. (1.5)

Then we associate to system (1.1) the energy functional E(t) as

E(t) =
1

2
(

∫
Ω1

a1|∇u1|2 + (u′1)2dx+

∫
Ω2

a2|∇u2|2 + (u′2)2dx+

∫
S2

1

m− βγ
η2dσ). (1.6)

We can readily verify that

Ė(t) = −β
∫
S2

(u′)2dσ − γ

m− βγ

∫
S2

(η′)2dσ. (1.7)

Hence the energy decreases with time.

The main result of this paper reads as follows.

Theorem 1.1. Let ν denote the unit normal on Γ and S0 directing towards the exterior of Ω and Ω1.

Assume there is a vector field h(x) = x− x0 such that

(i) h · ν ≤ 0 a.e. on S1 with respect to the (n-1)-dimensional surface measure;

(ii)(a1 − a2)h · ν ≥ 0 a.e. on S0 with respect to the (n-1)-dimensional surface measure.

Then there are positive constants C,ω such that

E(t) ≤ Ce−ωt, ∀t ≥ 0, (1.8)

for all solutions u of (1.1) with (u0, u1, η0) ∈ H1
S1

(Ω)× L2(Ω)× L2(S2).

The plan for the rest of this paper is as follows. In Section 2, we discuss the well-posedness of problem

(1.1) through semigroup theory. In Section 3, we prove Theorem 1.1.
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2. Well-posedness of the problem

In this part, we study the well-posedness of the problem (1.1). Set

u =

u1, x ∈ Ω1,

u2, x ∈ Ω2,
u0 =

u0
1, x ∈ Ω1,

u0
2, x ∈ Ω2,

u1 =

u1
1, x ∈ Ω1,

u1
2, x ∈ Ω2,

a(x) =

 a1, x ∈ Ω1,

a2, x ∈ Ω2.
(2.1)

In the sequel, u, u0, u1 always means (2.1); an integral of u on a domain Ω means the sum of two integrals

of u1 and u2 on the subdomains Ω1 and Ω2; an equation related to u holds on a domain Ω means that the

equation holds on the subdomains Ω1 and Ω2. Set

H1
S1

(Ω) = {u ∈ H1(Ω), u = 0 on S1},

then let us consider the Hilbert space

Υ = H1
S1

(Ω)× L2(Ω)× L2(S2),

equipped with the inner product

〈(u, v, η), (ũ, ṽ, η̃)〉Υ =

∫
Ω

a(x)∇u · ∇ũ+ vṽdx+

∫
S2

1

m− βγ
ηη̃dσ. (2.2)

We define a operator T on Υ by

T(u, v, η) = (v, a(x)∆u,− 1

γ
η + (

m

γ
− β)v). (2.3)

with domain

D(T) = {(u, v, η) ∈ H2(Ω1,Ω2)×H1
S1

(Ω)× L2(S2); ∆ui ∈ L2(Ωi), η = mv|S2
+ γa2

∂u2

∂ν
}, (2.5)

where
H2(Ω1,Ω2) = {u ∈ H1(Ω) : ui = u|Ωi ∈ H2(Ωi), i = 1, 2; u = 0 on S1

and a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0}.

Setting v = u′, η = mu′2 + γa2
∂u2

∂ν and Φ(t) = (u(t), v(t), η(t)), problem (1.1) can be formulated as an

abstract Cauchy problem: {
Φ′(t) = TΦ(t),

Φ(0) = Φ0 = (u0, u1, η0),
(2.4)

on the Hilbert space Υ for an initial condition Φ(0) = (u0, u1, η0).

We will show that T generates a C0 semigroup on Υ. Now we are able to state a well-posedness result

for the closed-loop system (2.4):

Theorem 2.1. For any initial datum Φ0 ∈ Υ, there exists a unique weak solution Φ ∈ C([0,∞),Υ)

of system (2.4). Moreover, if Φ0 ∈ D(T), then there exists a unique strong solution Φ ∈ C([0,∞), D(T)) ∩
C1([0,∞),Υ).

Proof. We prove that T is dissipative. Let Φ = (u, v, η) ∈ D(T). Using Green’s formula, one can obtain

〈TΦ,Φ〉Υ = −β
∫
S2

v2dσ − γ

m− βγ

∫
S2

(η′)2dσ ≤ 0. (2.6)
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Now, given (ā, b̄, c̄) ∈ Υ, we seek (u, v, η) ∈ D(T) solution of the equation (I −T)(u, v, η) = (ā, b̄, c̄), that

is, 

ui − vi = ā in Ωi, i = 1, 2,

vi − a(x)∆ui = b̄ in Ωi, i = 1, 2,

u = 0 on S1,

η +
1

γ
η − (

m

γ
− β)v = c̄ on S2,

u1 = u2, a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0.

(2.7)

Then eliminating v and using η = mv + γa2
∂u2

∂ν , we find that u satisfies the system

ui − a(x)∆ui = ā+ b̄ in Ωi, i = 1, 2,

u = 0 on S1,

(m+ β)u2 + (γ + 1)a2
∂u2

∂ν
= (m+ β)ā+ c̄ on S2,

u1 = u2, a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0.

(2.8)

Using Green’s formula, one can prove that the system (2.8) is equivalent to the following variational

equation: ∫
Ω

uψ + a(x)∇u · ∇ψdx+

∫
S2

m+ β

γ + 1
u2ψdσ

=

∫
Ω

ψ(ā+ b̄)dx+

∫
S2

m+ β

γ + 1
ψā+

1

γ + 1
ψc̄dσ,

(2.9)

for any ψ ∈ H1
S1

(Ω) = {ψ ∈ H1(Ω), ψ|S1 = 0}. Using Lax-Milgram Theorem, one can prove that (2.9)

admits a unique solution u ∈ H2(Ω1,Ω2). Then we can get range(I − T) = Υ. Thus, Lummer-Phillips

Theorem [22] leads us to claim that T generates a C0 semigroup of contractions S(t) on Υ. Finally, the

well-posedness result follow from semigroup theory [22].

3. Exponential Stabilization

In this section, we prove Theorem 1.1. The idea of the proof is simple. It suffices to show that there exist

positive constants T > 0 and 0 < ρ < 1 such that (see [9], [11] and [16])

E(t) ≤ ρE(0), ∀t ≥ T.

However, it is not easy to verify this inequality. For this, we construct two auxiliary functions to estimate

the energy and finally obtain the main result.

Here we define two functions

V1(t) =

∫
Ω

h(x) · ∇uu′dx,

V2(t) =
1

2

∫
Ω

(n− 1)uu′dx.

Lemma 3.1. Let h be a vector field on Ω. Suppose that u(x, t) is a solution of the system (1.1). Then

V̇1(t) = B1 + I1,
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where we denote the boundary term

B1 =

∫
S1

1

2
(h · ν)((u′1)2 − a1|∇u1|2) + a1

∂u1

∂ν
h · ∇u1dσ

+

∫
S2

1

2
(h · ν)((u′2)2 − a2|∇u2|2) + a2

∂u2

∂ν
h · ∇u2dσ

+

∫
S0

a1
∂u1

∂ν
h · ∇u1 − a2

∂u2

∂ν
h · ∇u2 +

1

2
(h · ν)a2|∇u2|2 −

1

2
(h · ν)a1|∇u1|2dσ

=B1(S1) +B1(S2) +B1(S0).

And the internal term

I1 =

∫
Ω

−1

2
divh((u′)2 − a(x)|∇u|2)−

n∑
i,j=1

a(x)(∂iu)(∂ihj)(∂ju)dx.

Proof. Multipling (1.1)-1 by h · ∇u and integrating on Ω, we can get the above result after a straight-

forward calculation.

Lemma 3.2. Suppose that u(x, t) is a solution of the system (1.1). Then

V̇2(t) = B2 + I2,

where we denote the boundary term

B2 =
n− 1

2

∫
S2

a2
∂u2

∂ν
u2dσ.

And the internal term

I2 =
n− 1

2

∫
Ω

((u′)2 − a(x)|∇u|2)dx.

Proof. Using Green’s formula and system (1.1), we have

V̇2(t) =
n− 1

2

∫
Ω

(u′)2 + uu′′dx

=
n− 1

2

∫
Ω

(u′)2 + a(x)u∆udx

=
n− 1

2

∫
Ω

((u′)2 − a(x)|∇u|2)dx+
n− 1

2

∫
S2

a2
∂u2

∂ν
u2dσ

=I2 +B2.

Lemma 3.3. Suppose that the assumptions (i) and (ii) in Theorem 1.1 hold and h = x−x0. Let u solve

(1.1). Then there exist constants C1, C2, C3 > 0 such that

E(t) + V̇1(t) + V̇2(t) ≤ 1

2

∫
S2

1

m− βγ
η2dσ + C1

∫
S2

(
∂u

∂ν
)2 + (u′)2dσ, (3.1)

|V1(t)| ≤ C2E(t), |V2(t)| ≤ C3E(t). (3.2)

Proof. Obviously the estimate (3.2) is true. Now, we prove (3.1). First we estimate the boundary term

B1 given in Lemma 3.1. Since u1 = 0 on S1, then ∇u1 = ∂u1

∂ν ν. From condition (i) of Theorem 1.1, it follows
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that

B1(S1) =

∫
S1

1

2
(h · ν)((u′1)2 − a1|∇u1|2) + a1

∂u1

∂ν
h · ∇u1dσ

=
1

2

∫
S1

(h · ν)((u′1)2 − a1|∇u1|2 + 2a1|∇u1|2)dσ

≤0.

(3.3)

Set R = sup
x∈Ω
|h(x)|. Using the fact ∂u2

∂ν = ∇u2 · ν on S2, we obtain

B1(S2) =

∫
S2

1

2
(h · ν)((u′2)2 − a2|∇u2|2) + a2

∂u2

∂ν
h · ∇u2dσ

≤
∫
S2

1

2
(h · ν)((u′2)2 + a2|∇u2|2)dσ +

∫
S2

Ra2|∇u2|2dσ

≤R
2

∫
S2

(u′2)2dσ +
3R

2

∫
S2

a2|∇u2|2dσ.

(3.4)

Since u1 = u2 on S0, we have

∇(u2 − u1) =
∂(u2 − u1)

∂ν
ν, on S0,

then

|∇u2|2 =|∇u1|2 + 2(
∂u2

∂ν
− ∂u1

∂ν
)
∂u1

∂ν
+ (

∂u2

∂ν
− ∂u1

∂ν
)2

=|∇u1|2 + (
∂u2

∂ν
)2 − (

∂u1

∂ν
)2.

Therefore,

B1(S0) =

∫
S0

a1
∂u1

∂ν
h · ∇u1 − a2

∂u2

∂ν
h · ∇u2 +

1

2
(h · ν)a2|∇u2|2 −

1

2
(h · ν)a1|∇u1|2dσ

=

∫
S0

a1
∂u1

∂ν
h · ∇u1 − a2

∂u2

∂ν
[h · ∇u1 + (

∂u2

∂ν
− ∂u1

∂ν
)h · ν]

+
1

2
[a2(|∇u1|2 + (

∂u2

∂ν
)2 − (

∂u1

∂ν
)2)− a1|∇u1|2]h · νdσ

=

∫
S0

a1
∂u1

∂ν
h · ∇u1 − a1

∂u1

∂ν
[h · ∇u1 + (

a1

a2

∂u1

∂ν
− ∂u1

∂ν
)h · ν]

+
1

2
[a2(|∇u1|2 +

a2
1

a2
2

(
∂u1

∂ν
)2 − (

∂u1

∂ν
)2)− a1|∇u1|2]h · νdσ

=

∫
S0

1

2
(a2 − a1)|∇u1|2(h · ν)− (a2 − a1)2

2a2
(
∂u1

∂ν
)2(h · ν)dσ.

This shows that B1(S0) ≤ 0 because of condition (ii) from Theorem 1.1.

Then, we estimate the internal term I1. Since h = x− x0, we have

I1 =

∫
Ω

−1

2
divh((u′)2 − a(x)|∇u|2)−

n∑
i,j=1

a(x)(∂iu)(∂ihj)(∂ju)dx

=

∫
Ω

−1

2
divh((u′)2 − a(x)|∇u|2)− a(x)|∇u|2dx.

(3.5)

Finally, we estimate the boundary term B2. Applying Young’s inequality, trace theorem and Poincaré
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inequality, we have

B2(S) =
n− 1

2

∫
S2

a2
∂u2

∂ν
u2dσ

≤a2(n− 1)

2
(

∫
S2

ε(u2)2dσ +

∫
S2

Cε(
∂u2

∂ν
)2dσ)

≤a2(n− 1)

2
(Cε

∫
Ω

|∇u|2dx+ Cε

∫
S2

(
∂u2

∂ν
)2dσ),

(3.6)

where C, ε and Cε are positive constants. Combining the above inequalities (3.3)-(3.6), if ε is small enough,

we get

E(t) + V̇1(t) + V̇2(t)

≤1

2

∫
Ω

a(x)|∇u|2 + (u′)2dx+
1

2

∫
S2

1

m− βγ
η2dσ +

∫
Ω

−1

2
divh((u′)2 − a(x)|∇u|2)

− a(x)|∇u|2dx+
R

2

∫
S2

(u′2)2dσ +
3R

2

∫
S2

a2|∇u2|2dσ +
n− 1

2

∫
Ω

(u′)2 − a(x)|∇u|2dx

+
a2(n− 1)

2
(Cε

∫
Ω

|∇u|2dx+ Cε

∫
S2

(
∂u2

∂ν
)2dσ)

≤1

2

∫
S2

1

m− βγ
η2dσ + +

R

2

∫
S2

(u′2)2dσ +
3R

2

∫
S2

a2|∇u2|2dσ +
Cεa2(n− 1)

2

∫
S2

(
∂u2

∂ν
)2dσ

≤
∫
S2

1

2(m− βγ)
η2dσ + C1

∫
S2

(
∂u2

∂ν
)2 + (u′)2dσ,

where C1 = max{R2 ,
3R+Cεa2(n−1)

2 }.
Lemma 3.4. Suppose that the assumptions (i) and (ii) in Theorem 1.1 hold. Let u solve problem (1.1).

Then there exists a time T0 > 0 and a positive constant CT such that

E(0) ≤ CT
{∫ T

0

∫
S2

((u′2)2 + (
∂u2

∂ν
)2 + η2)dσdt

}
, (3.7)

for all T > T0.

Proof. Integrating the inequality (3.1) on the interval (0, T ) yields

∫ T

0

E(t)dt+ V1(T )− V1(0) + V2(T )− V2(0)

≤1

2

∫ T

0

∫
S2

1

m− βγ
η2dσdt+ C1

∫ T

0

∫
S2

(
∂u

∂ν
)2 + (u′)2dσdt.

(3.8)

Then we use inequality (3.2) to obtain∫ T

0

E(t)dt ≤C4

{∫ T

0

∫
S2

((u′2)2 + (
∂u2

∂ν
)2 + η2)dσdt

}
+ C0(E(T ) + E(0)), (3.9)

where C4 = max{ 1
2(m−βγ) , C1} and C0 = 4max{C2, C3}.

We notice that

−Ė(t) =β

∫
S2

(u′2)2dσ +
γ

m− βγ

∫
S2

(η′)2dσ

=β

∫
S2

(u′2)2dσ +
γ

m− βγ

∫
S2

(− 1

γ
η +

m− βγ
γ

u′2)2dσ

≤C5

∫
S2

((u′2)2 + η2)dσ,
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where C5 = max{ 2
(m−βγ)γ ,

2(m−βγ)
γ + β}. Then, we get

E(0) + C0(E(T ) + E(0))

=

∫ 2C0+1

0

E(t)dt+

∫ 2C0+1

0

(E(0)− E(t))dt+ C0(E(T )− E(0))

=

∫ 2C0+1

0

E(t)dt−
∫ 2C0+1

0

(

∫ t

0

Ė(τ)dτ)dt

≤
∫ 2C0+1

0

E(t)dt+ C5

∫ 2C0+1

0

∫
S2

((u′)2 + η2)dσdt.

(3.10)

Now set T0 = 2C0 + 1, substituting (3.9) in (3.10) complete the proof.

Proof of Theorem 1.1. Applying Cauchy inequality, we can make an estimate of Ė(t),

−Ė(t) =−
∫

Ω

a(x)∇u · ∇u′ + u′u′′dx−
∫
S2

1

m− βγ
ηη′dσ

=

∫
Ω

a(x)∆uu′ − u′u′′dx−
∫
S2

a2
∂u2

∂ν
u′2dσ −

∫
S2

1

m− βγ
ηη′dσ

=−
∫
S2

a2
∂u2

∂ν
u′2 −

∫
S2

1

m− βγ
ηη′dσ

=−
∫
S2

a2
∂u2

∂ν
u′2 −

∫
S2

1

m− βγ
η(− 1

γ
η +

m− βγ
γ

u′)dσ

=

∫
S2

−a2
∂u2

∂ν
u′2 +

1

2γm
η2dσ +

∫
S2

(− 1

2γm
+

1

(m− βγ)γ
)η2dσ −

∫
S2

1

γ
ηu′dσ

≥
∫
S2

γ

2m
(a2

∂u2

∂ν
)2 +

m

2γ
(u′)2dσ +

∫
S2

(− 1

2γm
+

1

(m− βγ)γ
)η2dσ −

∫
S2

1

K1γ
η2dσ

−
∫
S2

K1

4γ
(u′)2dσ

=

∫
S2

γ

2m
(a2

∂u2

∂ν
)2dσ +

∫
S2

(− 1

2γm
+

1

(m− βγ)γ
− 1

K1γ
)η2dσ +

∫
S2

(
m

2γ
− K1

4γ
)(u′)2dσ

=

∫
S2

γ

2m
(a2

∂u2

∂ν
)2dσ +

∫
S2

β(m+ βγ)

2m2(m− βγ)
η2dσ +

∫
S2

βm

2(m+ βγ)
(u′)2dσ

≥C6

∫
S2

((u′2)2 + (
∂u2

∂ν
)2 + η2)dσ.

(3.11)

by choosing K1 = 2m2

m+βγ and C6 = max{ γ
2m ,

β(m+βγ)
2m2(m−βγ) ,

βm
2(m+βγ)}.

By Lemma 3.4 and the above inequality (3.11), we have

E(0) ≤ CT
{∫ T

0

∫
S2

((u′2)2 + (
∂u2

∂ν
)2 + η2)dσdt

}
≤ −CT

C6

∫ T

0

Ė(t)dt = −CT
C6

(E(T )− E(0)),

for all T > T0, which yields

E(T ) ≤ CT − C6

CT
E(0).

Thus the exponential decay of the energy functional E(t) is obtained. �
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