Supplement File for Details on XGBoost and Linear Mixed Effects Model

XGBoost
1) The aim here is to fit a XGBoost model in an optimal way such that the prediction accuracy remains high but at the same time the model is not overfitted. The metric Root Mean Square Error (RMSE) was used to evaluate model performance.

2) For testing model performance, a five-fold cross-validation (CV) was used to strike a compromise between our modest sample size and prediction accuracy. To calculate the test error, the whole sample was randomly divided in five equal folds. Next, the model was tested with one single fold of observations whereas the remaining four folds were used in training the model. This process was repeated five times so that each fold in the original sample is used once as training data. 


3) XGBoost operates through some key number of parameters which controls the number of trees the algorithm grows, how long should the trees be, when to prune the trees and how to optimize the choice between prediction accuracy and overfitting. Therefore, to achieve this aim, parameters are tuned or selected for best possible performance.  This process of tuning is known as hyperparameter optimization.

4) To choose the optimal hyperparameters which will yield the XGBoost model with lowest average cross validated RMSE and therefore lowest RMSE on the whole dataset, we undertook the following steps:

4.1)  First a list of key hyperparameters was created in such a way that the resulting model remains conservative. The list is given below

param = list(max_depth = sample(6:8, 1),
              nthread = 1, verbose = F,
              eta = sample(c(0.01,0.05,0.1),1),
[bookmark: _Hlk47531242]              min_child_weight=sample(c(1,2),1),
              gamma = sample(c(25,50),1), 
              subsample = 0.5,
              colsample_bytree = sample(seq(0.2,0.8,0.1),1),
              colsample_bylevel= sample(seq(0.2,0.8,0.1),1), 
              colsample_bynode= sample(seq(0.2,0.8,0.1),1))

We described some of the key hyperparameters and our rationale behind choosing their values.

4.1.1) “eta” is a scale parameter that controls the contribution of each tree. We chose smaller values of “eta” to prevent overfitting by forcing the boosting process to be more conservative.   
4.1.2) “subsample” controls the proportion of data instances to be collected in order to grow a tree. We have kept “subsample = 0.5” to prevent overfitting. Similarly, the large the value of “min_child_weight ”, the robust the model is. 
4.1.3) “gamma” is the regularization or penalty term used to make the model more conservative which works by regularizing across all the trees. We have chosen a very high value of “gamma” to increase the complexity cost of adding more leaves. 
See the R page documentation of XGBoost for more finer details (https://www.rdocumentation.org/packages/xgboost/versions/0.4-4/topics/xgb.train)
4.2)  The total combination of all the parameters in “param” list creates a grid of 20580 possibilities. Training and testing each of these 20580 choices is utterly costly. Therefore, to optimize the model fitting we randomly choose the values of parameters form “param” list. 

4.3)  Next keeping those particular parameter values fixed, we trained the model and tested it with five fold cross validation. Each of the iterations, yielded an average RMSE. Now if the average cross validated RMSE of iteration (i+1) is less than that the one in iteration (i), the seed number is extracted and used to fit a XGBoost model on the whole dataset to obtain a whole data RMSE.

4.4) If the whole data RMSE of iteration (i+1) is less than the one in iteration (i), the seed number along with the parameter list is stored. 

4.5)  Now this process is repeated for 10000 times and as a result we obtained 10000 RMSEs for the whole dataset.  Finally, we choose the set of hyperparameter values for which the RMSE on the whole dataset is lowest. 

5. The final XGBoost model with the lowest RMSE among the 10000 iterations, is given below:
set.seed(91954.47)
param = list(max_depth = sample(6:8, 1), nthread = 1, eta = sample(c(0.01,0.05,0.1),1),
              min_child_weight=sample(c(1,2),1), gamma = sample(c(25,50),1), 
              subsample = 0.5, colsample_bytree = sample(seq(0.2,0.8,0.1),1),
              colsample_bylevel= sample(seq(0.2,0.8,0.1),1),  colsample_bynode= sample(seq(0.2,0.8,0.1),1)
)
xgboost_dlco =  xgboost(data, label, nrounds = 500, params = param, verbose = F)
The resulting hyperparameters are 
list(max_depth =7, nthread = 1, eta =0.1, min_child_weight=2 , gamma = 25,  subsample = 0.5, colsample_bytree =0.4, colsample_bylevel=0.2, colsample_bynode= 0.8)
The final XGBoost model is robust to overfitting and conservative.

Linear Mixed Effect Model
1) The linear model works by using both fixed and random effects of the predictors. A random intercept was added to take into account the correlated structure for repeated measures for each patient. Parameter estimation was done based on Restricted Maximum Likelihood (REML) as implemented in R package “lme4 v1.1-23”. 

