References

1. Hope C, Schaefer K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nature Climate Change.2016/01/01 2016;6(1):56-59.
2. Yu C-H, Huang C-H, Tan C-S. A Review of CO2Capture by Absorption and Adsorption. Aerosol and Air Quality Research. 2012;12(5):745-769.
3. Kahn B. We Just Breached the 410 PPM Threshold for CO2. Scientific American . Online: Springer Nature; 2017.
4. Pacala S, Socolow R. Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies.Science. 2004;305(5686):968-972.
5. Modak A, Jana S. Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials. 2019/03/01/ 2019;276:107-132.
6. Simmons JM, Wu H, Zhou W, Yildirim T. Carbon capture in metal-organic frameworks-a comparative study. Energy Environ. Sci. Jun 2011;4(6):2177-2185.
7. To JWF, He JJ, Mei JG, et al. Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor. Journal of the American Chemical Society. Jan 2016;138(3):1001-1009.
8. Thiruvenkatachari R, Su S, An H, Yu XX. Post combustion CO2 capture by carbon fibre monolithic adsorbents.Progress in Energy and Combustion Science. Oct 2009;35(5):438-455.
9. McDonald TM, Mason JA, Kong XQ, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks.Nature. Mar 2015;519(7543):303-308.
10. Machida H, Ando R, Esaki T, et al. Low temperature swing process for CO2 absorption-desorption using phase separation CO2 capture solvent. International Journal of Greenhouse Gas Control. 2018/08/01/ 2018;75:1-7.
11. Heldebrant DJ, Koech PK, Glezakou V-A, Rousseau R, Malhotra D, Cantu DC. Water-Lean Solvents for Post-Combustion CO2Capture: Fundamentals, Uncertainties, Opportunities, and Outlook.Chemical Reviews. 2017/07/26 2017;117(14):9594-9624.
12. Tobiesen FA, Haugen G, Kim I, Kvamsdal H. Simulation and Energy Evaluation of Two Novel Solvents Developed in the EU Project HiPerCap. Energy Procedia. 2017/07/01/ 2017;114:1621-1629.
13. Rochelle GT. Amine Scrubbing for CO2Capture. Science. Sep 2009;325(5948):1652-1654.
14. Sun J, Li Q, Chen G, Duan J, Liu G, Jin W. MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Separation and Purification Technology. 2019/06/15/ 2019;217:229-239.
15. Xie K, Fu Q, Qiao GG, Webley PA. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science.2019/02/15/ 2019;572:38-60.
16. Merkel TC, Lin HQ, Wei XT, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes.Journal of Membrane Science. Sep 2010;359(1-2):126-139.
17. Anantharaman R, Berstad D, Roussanaly S. Techno-economic Performance of a Hybrid Membrane – Liquefaction Process for Post-combustion CO2 Capture. Energy Procedia.2014/01/01/ 2014;61:1244-1247.
18. Wilcox J, Haghpanah R, Rupp EC, He JJ, Lee K. Advancing Adsorption and Membrane Separation Processes for the Gigaton Carbon Capture Challenge. In: Prausnitz JM, Doherty MF, Segalman RA, eds.Annual Review of Chemical and Biomolecular Engineering, Vol 5.Vol 52014:479-+.
19. Haghpanah R, Majumder A, Nilam R, et al. Multiobjective Optimization of a Four-Step Adsorption Process for Postcombustion CO2 Capture Via Finite Volume Simulation.Industrial & Engineering Chemistry Research. 2013/03/20 2013;52(11):4249-4265.
20. Yang J, Yu X, Yan J, Tu S-T, Dahlquist E. Effects of SO2 on CO2 capture using a hollow fiber membrane contactor. Applied Energy. 2013/12/01/ 2013;112:755-764.
21. Krzemień A, Więckol-Ryk A, Smoliński A, Koteras A, Więcław-Solny L. Assessing the risk of corrosion in amine-based CO2 capture process. Journal of Loss Prevention in the Process Industries. 2016/09/01/ 2016;43:189-197.
22. Joss L, Gazzani M, Mazzotti M. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture. Chemical Engineering Science.2017/02/02/ 2017;158:381-394.
23. Bui M, Adjiman CS, Bardow A, et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci.2018;11(5):1062-1176.
24. Zanco SE, Joss L, Hefti M, Gazzani M, Mazzotti M. Addressing the Criticalities for the Deployment of Adsorption-based CO2 Capture Processes. Energy Procedia.2017/07/01/ 2017;114:2497-2505.
25. Liu L, Sanders ES, Kulkarni SS, Hasse DJ, Koros WJ. Sub-ambient temperature flue gas carbon dioxide capture via Matrimid (R) hollow fiber membranes. Journal of Membrane Science. Sep 2014;465:49-55.
26. Hasse D, Ma JF, Kulkarni S, et al. CO2Capture by Cold Membrane Operation. In: Dixon T, Herzog H, Twinning S, eds. 12th International Conference on Greenhouse Gas Control Technologies, Ghgt-12. Vol 63. Amsterdam: Elsevier Science Bv; 2014:186-193.
27. Hasse D, Kulkarni S, Sanders E, Corson E, Tranier JP. CO2 capture by sub-ambient membrane operation. In: Dixon T, Yamaji K, eds. Ghgt-11. Vol 37. Amsterdam: Elsevier Science Bv; 2013:993-1003.
28. Song C, Liu Q, Ji N, et al. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy. 2017/04/01/ 2017;124:29-39.
29. Lee S, Kim J-K. Process-integrated design of a sub-ambient membrane process for CO2 removal from natural gas power plants. Applied Energy. 2020/02/15/ 2020;260:114255.
30. Luyben WL. Estimating refrigeration costs at cryogenic temperatures. Computers & Chemical Engineering. 2017/08/04/ 2017;103:144-150.
31. DeWitt SJA, Rubiera Landa HO, Kawajiri Y, Realff M, Lively RP. Development of Phase-Change-Based Thermally Modulated Fiber Sorbents. Industrial & Engineering Chemistry Research.2018/12/13 2018.
32. DeWitt SJA, Sinha A, Kalyanaraman J, Zhang F, Realff MJ, Lively RP. Critical Comparison of Structured Contactors for Adsorption-Based Gas Separations. Annual Review of Chemical and Biomolecular Engineering. 2018;9(1):129-152.
33. Lively RP, Bessho N, Bhandari DA, Kawajiri Y, Koros WJ. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification. Int. J. Hydrog. Energy. Oct 2012;37(20):15227-15240.
34. James RZ, Alexander; Keairns, Dale; Turner, Marc; Woods, Mark; Kuehn, Norma. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity : NETL;2019.
35. Boyce MP. 7 - Axial-Flow Compressors. In: Boyce MP, ed.Gas Turbine Engineering Handbook (Fourth Edition) . Oxford: Butterworth-Heinemann; 2012:303-355.
36. Park J, Rubiera Landa H, Kawajiri Y, Realff M, Lively R, Sholl D. How Well Do Approximate Models of Adsorption-Based CO2 Capture Processes Predict Results of Detailed Process Models? Industrial & Engineering Chemistry Research.04/15 2020;59:7097-7108.
37. Dubbeldam D, Torres-Knoop A, Walton KS. On the inner workings of Monte Carlo codes. Molecular Simulation. 2013/12/01 2013;39(14-15):1253-1292.
38. Düren T, Bae Y-S, Snurr RQ. Using molecular simulation to characterise metal–organic frameworks for adsorption applications.Chemical Society Reviews. 2009;38(5):1237-1247.
39. Altintas C, Avci G, Daglar H, et al. Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening. ACS Applied Materials & Interfaces. 2018/05/23 2018;10(20):17257-17268.
40. Park J, Howe JD, Sholl DS. How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks? Chemistry of Materials. 2017/12/26 2017;29(24):10487-10495.
41. Park J, Lively RP, Sholl DS. Establishing upper bounds on CO2 swing capacity in sub-ambient pressure swing adsorption via molecular simulation of metal–organic frameworks.Journal of Materials Chemistry A. 2017;5(24):12258-12265.
42. Tang D, Wu Y, Verploegh RJ, Sholl DS. Efficiently Exploring Adsorption Space to Identify Privileged Adsorbents for Chemical Separations of a Diverse Set of Molecules. ChemSusChem.2018;11(9):1567-1575.
43. Agrawal M, Sava Gallis DF, Greathouse JA, Sholl DS. How Useful Are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior? The Journal of Physical Chemistry C.2018/11/15 2018;122(45):26061-26069.
44. Park J, Agrawal M, Sava Gallis DF, Harvey JA, Greathouse JA, Sholl DS. Impact of intrinsic framework flexibility for selective adsorption of sarin in non-aqueous solvents using metal–organic frameworks. Physical Chemistry Chemical Physics.2020;22(11):6441-6448.
45. Myers AL, Prausnitz JM. Thermodynamics of mixed-gas adsorption. AIChE Journal. 1965;11(1):121-127.
46. Rubiera Landa HO, Flockerzi D, Seidel-Morgenstern A. A method for efficiently solving the IAST equations with an application to adsorber dynamics. AIChE Journal. 2013;59(4):1263-1277.
47. Dickey AN, Yazaydın AÖ, Willis RR, Snurr RQ. Screening CO2/N2 selectivity in metal-organic frameworks using Monte Carlo simulations and ideal adsorbed solution theory. The Canadian Journal of Chemical Engineering.2012;90(4):825-832.
48. Walton KS, Sholl DS. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE Journal.2015;61(9):2757-2762.
49. Rubiera Landa HO, Lively RP, Kawajiri Y, Realff MJ. Theoretical Investigation of Vacuum pressure-swing adsorptoin processes applying thermally modulated fiber composite adsorbents.
50. Müller J. SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems. INFORMS Journal on Computing.2017;29(4):581-596.
51. MATLAB [computer program]. Version 9.6.0. (R2019a). Natick, MA: The MathWorks Inc.; 2019.
52. Rubiera Landa HO, Kawajiri Y, Realff MJ. Efficient Evaluation of Vacuum Pressure-Swing Cycle Performance using Surrogate-based, Multi-objective Optimization Algorithm. Paper presented at: Computer Aided Chemical Engineering: 30th European Symposium on Computer Aided Process Engineering (Part C)2020.
53. Castle WF. Fifty-Years’ Development of Cryogenic Liquefaction Processes. In: Timmerhaus KD, Reed RP, eds. Cryogenic Engineering . New York, NY: Springer New York; 2007:146-160.
54. Agrawal R. Synthesis of Distillation Column Configurations for a Multicomponent Separation. Industrial & Engineering Chemistry Research. 1996/01/01 1996;35(4):1059-1071.
55. Castle WF. Air separation and liquefaction: recent developments and prospects for the beginning of the new millennium.International Journal of Refrigeration. 2002/01/01/ 2002;25(1):158-172.
56. Li Y, Wang X, Ding Y. An optimal design methodology for large-scale gas liquefaction. Applied Energy. 2012/11/01/ 2012;99:484-490.
57. Latimer RE. Distillation of Air. Chemical Engineering Progress. 1967;63(2):35-59.
58. Wetenhall B, Aghajani H, Chalmers H, et al. Impact of CO2 impurity on CO2 compression, liquefaction and transportation. Energy Procedia. 2014/01/01/ 2014;63:2764-2778.
59. Yoo B-Y, Lee S-G, Rhee K-p, Na H-S, Park J-M. New CCS system integration with CO2 carrier and liquefaction process. Energy Procedia. 2011/01/01/ 2011;4:2308-2314.
60. Sujan AR, Koh D-Y, Zhu G, et al. High-Temperature Activation of Zeolite-Loaded Fiber Sorbents. Industrial & Engineering Chemistry Research. 2018/08/29 2018;57(34):11757-11766.
61. Fan Y, Kalyanaraman J, Labreche Y, et al. CO2 Sorption Performance of Composite Polymer/Aminosilica Hollow Fiber Sorbents: An Experimental and Modeling Study. Industrial & Engineering Chemistry Research. 2015/02/18 2015;54(6):1783-1795.
62. Zhao T, Jeremias F, Boldog I, Nguyen B, Henninger SK, Janiak C. High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalton Transactions. 2015;44(38):16791-16801.
63. Ye S, Jiang X, Ruan L-W, et al. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials. 2013/09/15/ 2013;179:191-197.
64. Chen G, Koros WJ, Jones CW. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas.Acs Applied Materials & Interfaces. Apr 2016;8(15):9700-9709.
65. Liu Q, Ning L, Zheng S, Tao M, Shi Y, He Y. Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants. Scientific Reports. 2013/10/10 2013;3(1):2916.
66. Xu M, Chen S, Seo D-K, Deng S. Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture. Chemical Engineering Journal.2019/09/01/ 2019;371:693-705.
67. Akhtar F, Ogunwumi S, Bergström L. Thin zeolite laminates for rapid and energy-efficient carbon capture. Scientific Reports. 2017/09/08 2017;7(1):10988.
68. Haghpanah R, Nilam R, Rajendran A, Farooq S, Karimi IA. Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE Journal.2013;59(12):4735-4748.