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1 | INTRODUCTION

In this work, we investigate the following wave equation

u, — div (|Vu|p(x)_2 Vu) + pyu, (x, 1) |u,|m(x)_2 (x,0) + uyu, (x,t — 1) |u,|m(x)_2 (x,t—1),
= bu |u|1072 in Qx R*
u(x,n =0 in 0Q x [0, %), )
u(x,0) =uy(x), u, (x,0) =u; (x) in Q,
u,(x,t—7)= fy(x,t —17) inQx (0,7),

with delay term. Here, Q C R" is a bounded domain with sufficiently smooth boundary dQ . 7 > 0 is a time delay term, y, is a
positive constant, u, is a real number and b > 0 is a constant. The term A, ju = div (|Vu|"()‘)'2 Vu) is called p (-)-Laplacian.
The functions u, u;, f, are the initial dates that will be specified later.

p (), g(-) and m (-) are the variable exponents; these are given as measurable functions on Q such that:

I\

p<p(x)<pt<ph,
g <q(x)<q" <q",
m <m(x)<m" <m* (@)
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2 | Stanislav Antontsev ET AL

where
p~ = essinf p(x), p* = esssupp(x),
xeQ xeQ
q~ = essinf g(x), q* = esssupq(x),
xeQ xeQ
m~ = essinf m(x), m* = esssupm (x)
xeQ xeQ
and

. { S 1[N
pt =4 esssupea(N-m(x)
+oo if pt > n.

Many phenomena in engineering and physics lead up to problems that deal with evolution equations, which are modelled by
partial differential equations. Up to now, there are many results about partial differential equations with time delay effects. Our
main goal in this work is to study the equation with p (-)-Laplacian and the delay term g,u, (x,t — 7) which make the problem
more interesting than those studied in the literature. The equation (1) is a very general equation.

Time delay appears in many practical problems such as thermal, biological, economic, chemical, physical phenomena and it
can be a source of instabilityl!. Mathematically, these properties have practical and theoretical importance. On the other hand,
the delay term is a source that may destabilize the asymptotic stability of solutions for an evolutionary system. This result is well
justified in mathematical analysis and physics examples, such as non-instant transmission phenomena and biological models"~.

The problems with variable exponents arise in many branches of sciences such as nonlinear elasticity theory, electrorheolog-
ical fluids and image processing*23%, Many works about wave equation with constant delay or delay effects with time-varying
have been published.

Constant exponent:

(Delay).

InZ, Feng and Li studied the following equation

t

u, + A’u—div F (Vu) — o (t) / g(t—s)A%u(s)ds + u, |u,|’"‘1 u,
0

m—1
iy |u, (x t = )", (x, 1 = 1)
=0, 3)
where Q C R" (n > 1) is a bounded domain with smooth boundary 0Q. They proved the general rates of energy decay of the

initial value problem and the boundary value problem by using the energy perturbation method.
Messaoudi and Kafini'! considered the following equation

u, — div (|Vul™> Vu) + pyu, (x,1) + ppu, (x,t = 7) = b lul" > u. 4)

Under suitable conditions, they proved the blow-up of solutions of the equation () in a finite time.
Nicaise and Pignotti®!' discussed the following wave equation with time delay,

u, — Au+ pyu, + ppu, (t —7) =0, 5)

and they established stability results under the assumption 0 < p, < .
In2, Park treated the Kirchhoff models with time delay and perturbation of p-Laplacian type

Uy + A% — A — agAu, + au, (x,1— 1)+ f () = g (x), (6)

where A u = div (IVul”_2 Vu) is the usual p-Laplacian operator and a, > 0, a; € R, 7 > 0 is time delay. He established the
existence of global attractors and the finite dimensionality of the attractors by establishing some functionals.

(Without Delay).

In?%, Piskin studied the following quasilinear hyperbolic equation

Uy — div (1Vul" Vu) = Au, + |u, |, = Jul? ™ u, ©)
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where m > 0, p, ¢ > 1. He investigated the global existence, decay and blow up of solutions. He proved the decay estimates of
the energy function by using Nakao’s inequality and obtained the blow up of solutions and lifespan estimates in three different
ranges of the initial energy.

Wu and Xue2 considered the following quasi-linear wave equation

u,, — Au, — div (|Vu|m Vu) +a|u,|au, =bul""u, (8)
where a, b, a, m, p > 0. By using the multiplier methods, they gave the precise uniform estimation of the decay rate, when the
initial datas are in the potential well.

Variable exponent nonlinearity:

Recently, much attention has been given to the study of nonlinear mathematical models of hyperbolic, parabolic and elliptic
equations with variable exponents as nonlinearity. Actually, only few work regarding hyperbolic problems with nonlinearities
of variable-exponent type have appeared'Z.

(Delay)

Messaoudi and Kafini'® discussed the following equation

m(x)—2 m(x)—2 —
Uy — Au+ pyu, (x, 1) |u,| ) e, 1) + ppu, (x,t — 1) |u,| ) (x,t — 1) = bu |u|P™2. ©)]
They studied the decay estimates and global nonexistence of the equation (9).
(Without Delay).
Antontsevi'? looked to the following equation
O,u — div (a(x,1) | V| P Vu) — aAu, = b(x,0)u u|c>xD=2 (10)

in Q, a bounded domain of R", where a > 0 is a constant and a, b, p, ¢ are given by functions. For certain solutions with non-
positive initial energy, he proved the blow-up results. In'%, Antontsev studied the same equation and he proved the local
and the global existence of some weak solutions.

Messaoudi et. al.? studied the following equation

1" =l (1

They proved a global result and obtained the stability result by applying an integral inequality due to Komornik.
In', the authors considered the following equation

u, — Au+u, |u

u, — div (|Vul 2 V) + |u,|"" 4, = 0, (12)

where the exponents m (-) and r () are given by measurable functions on Q. They proved the decay results for the solution under
suitable assumptions. Also, the authors gave two numerical applications to illustrate the theoretical results.

In the presence of strong damping term —Au,, the equation (T2)) takes the following form
wy — div (Va2 V) = Au, + |u|" %, = 0, (13)
where Q is a bounded domain. In“?, Messaoudi studied the nonlinear wave equation with variable exponents. He established
several decay results depending of the range of the variable exponents m and r. In recent years, some other authors investigated
hyperbolic type equation with variable exponents (seelV23241252627131)

Our purpose is to study the blow up of solutions with negative initial energy and the decay results for the nonlinear wave
equation (I)) with time-dependent delay and variable exponents, in this paper. Our result extends the equation (), from constant-
exponent nonlinearities to variable-exponent nonlinearities.

This paper is organized as follows: In Sect. 2, the definition of variable exponent in Sobolev and Lebesgue spaces is introduced.
In Sect. 3, we prove the blow up of solutions. Finally, in Sect. 4, the decay results will be obtained.

2 | PRELIMINARIES

In this part, we begin by introducing some preliminary facts about Lebesgue L) (Q) and Sobolev W !*() (Q) spaces with
variable exponents (see [ DIOPU2IO29)
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4 | Stanislav Antontsev ET AL

Let p : Q — [1, o) be a measurable function. We define the variable-exponent in Lebesgue space with a variable exponent
p() by

L’O Q) ={u: Q > R; measurable in Q : /|u|”(') dx < o §,
Q
with a Luxemburg-type norm

p(x)
dx <1

NS

llull ., = inf ,1>o:/
Q

Equipped with this norm, L”®) (Q) is a Banach space. (see”)
Next, we define the variable-exponent Sobolev space W !*0) (Q) as follows:

WO Q) = {ue L") (Q) : Vuexistsand |Vu| € L") (Q)}.
Variable exponent Sobolev space with respect to the norm
Nelly iy = Nullser + 11Vl
is a Banach space. The space I/VOI"J ) () is defined as the closure of C{® () in WO (Q). Foru € VVOI”’ ) (€2), we can define

an equivalent norm

||”||1,p(.) = | Vull -

The dual of VVOI”’ ) (Q) is defined as VVO_I"’ 0 (Q), in the same way that the usual Sobolev spaces, where 1% + ,,/L(.) =1
We also suppose that p (+), g () and m () satisfy the log-Holder continuity condition:
A .
l[g(x)—q(y)| £ ————,forae. x,y € Q, with |x —y| <6, (14)
log|x — yl

A>0and0< 6 < 1.
Lemma 1. ' (Poincare inequality) Assume that g (-) satisfies and let Q be a bounded domain of R”. Then,

llullyer < ¢ [Vullx forallu € Wy (@),
where ¢ = ¢ (g7, ¢%, Q) > 0.
Lemma 2. 4Ifp()eC (5) and g : Q — [1, o) is a measurable function such that
. ) — ) pt <n,
essin fco (p* (x) — g (x)) > 0 with p, (x) = €55 8Up e (n—p(x)) (15)

+00 if p* > n,

is satisfied, then the embedding VVOI”’(') (Q) = L) (Q) is continuous and compact.
Lemma 3. "If p* < co and p : Q — [1, o0) is a measurable function, then C° (Q) is dense in L) (Q).
Lemma 4. U (Holder’s inequality) Let p, g, s > 1 be measurable functions defined on © and

! L+L,fora.e.y€£2.

s PG 4w
that is satisfied. If f € LP®)(Q) and g € LIV (Q), then fg € L°V (Q) and

lfgllsey < 21 My gy -
Lemma 5. Y (Unit ball property) Let p > 1 be a measurable function on Q. Then,

I/ 1l,, < 1ifand onlyif 0, (f) <1,

where
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45@(f)=‘/WfIXN“”dX-
Q

os Lemma 6. WIf p > 1 is a measurable function on Q. Then,

min { lull? , full”, < (u) < max { lull”. . llull”,
ey WLy f = 0py W) = p() > Wy
o6 forany u € L’V (Q) and for a.e. x € Q.

» 3 | BLOW UP

os In this part, we deal with the blow up of the solution for the problem (1) with negative initial energy, when b > 0. Now, we
so introduce, similarly to!, the new variable:

Z(xsp’t) = ut(xst_Tp)a bS] Q’ pE (Os 1)5 t>0
100 which implies that

7z, (x,p, 1) +2,(x,p,1) =0, x €Q, p€(0,1), 7> 0.
101 Using the above transformation, the problem (I)) can be written as an equivalent form:
Uy, — div (V™72 Vu) + pu, (x,1) |u, (x, 1)
+ipz (x, 1,02 (x, 1,072
= bu [u|?™@72 in Q x (0, ),

m(x)—2

17z p ) +2,(xp)=0 inQx(0,1)x(0, ) (16)
z(x,p,0) = fy (x,—p7) inQx(0,1)
u(x,1)=0 on 0Q X [0, c0)

u(x,0) =uy(x), u, (x,0) = u; (x) in Q.

102 Similar to the work of'® we can write the following definition:

103 Definition 1. Fix T > 0. We call (1, z) a strong solution of (I6) if

u € W ([0,T); L*(Q) n W' ([0,T); Hy ()
nL* ([0,T); H*(Q) n H, (),
u, € L") (Qx(0,T)),
z € Wh ([0,11%x[0,T); L* () n L™ ([0,1]; L™ (@) n [0,T)) (17)

104 and (u, 2) satisfies the initial data and (I6) in the following sense:

/u"(-,z) Uarx—/divariu(|Vu(-,t)|"(')‘2 Vu(-,1) vdx

Q Q
+/41/|u,(-,t)|m(')_2u,(-,t)vdx+y2/|z(-,1,t)|m(')_22(-,l,t)va'x
Q Q
=b/wu0W”umowx (18)
Q
105 and

7:/z,(-,p,t)wdx+/zp(-,p,t)wdx=O, (19)
Q Q
16 fora.e.t € [0,T) and for (v, w) € HO1 Q)N L?(Q).
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107 The functional energy associated to problem (16) is defined as

R ATTE gy
E(@) = > ||u,|| +Q/p(X) |Vul” dx

1

o, By 4(x)
+/ E) |z (x,p, 1) dxdp—b/ |ul dx (20)
m(x) q(x)
0 Q Q
108 for ¢t > 0, where £ is a continuous function that satisfies
Ty (m(x) = 1) < E(x) <7 (ym(x) = |wo]) . x € Q. 1)

100 The following lemma gives that, under the condition y; > |,u2 |, E () is nonincreasing.

110 Lemma 7. Let (i, z) be a solution of . Then there exists some C, > 0 such that

E () < —co/ <|u,|'"<") +z(x, 1,r)|’"<’<>) dx <0. (22)

Q

11 Proof. Multiplying the first eq. in by u,, integrating over Q, then multiplying the second eq. of l) by %f (x) 2|72 2
112 and integrating over Q X (0, 1), we obtain

1
m(x) q(x)
t
4 l/uzdx+/—1 |Vu|”(x)dx+//§(x)|z(x’p’ ) dxdp—b/ lul dx
de|2 ) ! p(x) m (x) q(x)
Q 0 Q Q

= —u / Ju | dx / / E(0) 2 (x, 9, )" 22, (x, p, 1) dpdx

— 1y / u,z(x,1,0)]z(x,1,0"0 2 dx. (23)
Q

113 The last two terms of the right-hand side of @]) can be estimated as follows,

- / / £ 120, 0" 22, (x, p, 1) dpdx
T
0

1
_l//i<5(")'Z(x”’”)'M(X)>dpdx
T dp m(x)

/ |Z(X, 0, t)lm(X) _ |z(x, l’t)|m(x)) dx
m(x)

[k [ o

I
v\l»—

112 We use Young’s inequality, g = % and g’ = m (x) for the last term, and then we obtain
m(x)—1
12 e, L0t < 0 O 2L gy,
m (x) m (x)
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As aresult, we get

— iy / u,z|z(x,1,6)|" % dx

Therefore,

m(x)

m (x)
Q

E(x) |12 m(x)
_/ [Ml a <Tm(x) " m)] g O] dx
o

_/( £ qu|<m(x>—1>>|Z(x’1,t)|m<x>dx.

Tm (x) m(x)

Consequently, for all x € ﬁ, the relation gives,

Since that m (x), and hence, & (x) is bounded, we infer that f; (x) and f, (x) are also bounded. Thus, if we define

(@) ml ) -0,

tm(x) m(x)

fl(x)=/41_<

£ |m|m@ -1

Tm (x) m(x)

fa(x)= 0.

Co(x) =min { f; (x), f,(x)} > 0 forany x € Q
and take C;, (x) = infg C; (x), so €, (x) = C; > 0. Therefore,

E'(1) <

-C, /|ut(t)|m(x)dx+/|z(x,1,t)|m(x)dx <0.
Q Q

To establish the blow up, we suppose that E (0) < 0 in addition to ().

Doing

therefore,

0<H(O)§H(t)§b/
Q

where

H@=-E@®,

H' (t)=-E'"(1)>0,

q(x)
4 i< Low,
q(x) P~

0(u) =0, () = / |u] 7 dx.
Q

m(x -1 m
! |u, (0] ()dx+/m|z(x,l,t)| ®dx]|.

(24)

(25)

Lemma 8. ' Assume that the conditions of Lemma 2 hold. Then, exists a constant C > 1, depending only of Q, such that

Then, we have the following inequalities:

)

o’ wy<C <||Vu||£;) + o(u)) :

s P q
lally. < € (VallZy, + al?”)

(26)

27
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ii)

(x) |z (x, p, 1)|"™
X

m (x)

1
o/ (wy<C |H(t)|+||ur||§+o(u)+//§
0 Q

iii)

1
£ 1z (x,p 0"

lully < {15 O+ )+l + |
0

m(x)

for any u € I/VOI"’ ) (Q)and p~ < s < gq~.Let (4, z) be a solution of , then
iv)

0w 2 C lull”,
v)

/ |u|™™ dx < C (6" /7 (u)+0"™/" ().
Q

The blow up of the problem (I6) is given by the following theorem:

(28)

29)

(30)

(€19}

Theorem 1. Letu, € VVOI"’ ) (Q), u; € L?(Q). The conditions (2)) and are provided and we suppose that

E(0) <O0.

Then, the solution (T6) blows up in finite time.

Proof. We define

L()=H"" (t)+e/uu, (x,0)dx
Q

where the small € will be chosen later and

-9 S
0 <a <min 1 s cl m .
2= g (mt-1)

A direct differentiation of (32)), using the first equation in (I6), gives

L®=0-a)H @) H' (t)+e/u,2dx—e/ | V[P
Q

Q

m(x)-2
+6b/|u|q(x)dx—6,ul/uut(x,t)|ut(x,t)| dx
Q

Q

—en, / uz(x, 1,0 |z(x, L,O|" dx.
Q

(32)

(33)
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From the definition of H (¢) and for 0 < a < 1, we obtain
L@ >Cy(1—a)H™“() /|”r (’)|M(X) dx+/|z(x,1,t)|m(X)d
Q Q

o
€ <(1 —a)g H@®)+ % ||u,||2>

1

E() |z (x, p, 0"

e(l—a)q™ Tqul”(")dx+£(l—a)q /
0

+e/ut2dx—e/|Vu|p(X)+eab/|u|q(x)dx
Q Q

Q

m(x)-2
—sﬂl/uu,(x,t)|u,(x,t)| dx
Q

m(x)—! 2

—eyz/uz(x 1,t)|z(x,1,0)]
Q
Thus,

L'(1) > Cy(1 —a) H () /|ut(t)|m(x)dx+/|z(x Lo"™

+e(l —a)q_H(t)+sw

+e <(1 >/|Vu|”(x)dx

m(x)
+e(l—a)q” / £ |Zn(1x(;€l;’ 2l dxdp + gabo (v)

[

0 Q

m(x)—2
—£M1/uu, 0 |u, (x, 0| dx

Q

—£M2/uz(x,1,t)|z(x 1,1)]

Q

m(x)— 2

From Young’s inequality, we get

m(x)—1 1 m(x
/Iu,l Jul dx < —/6’"(*) jul™" d
o

Q Q

+ .

mt =1 __mx) m(x)

+ /5 mo T |u | dx
m+

Q

m(x)— 1 i
/|Z(X,1,t)|()lluldxs_/ém(x)l I()
m+
Q

Q

+ _mx) m(x
=l /5 ot |z (x, 1,1 d
m+
Q
As in'% the estimates and remain if 6 is time-dependent. Thus, taking 6 such that

and

m(x)

(34)

(35)

(36)
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)
6 mo-1 = kH™Y (1),
10 Where k > 1 is specified later, we obtain

/ 57w || dx = kH™ (1) / |ut,|" dx,
Q

Q

__mx) m(x m(x
/5 o |z (x, 1,0 dx = kH™ (1) |z (x, 1,0 dx

e}

a1 and

/5m(x) |u|’"(") dx = /kl—m(x)Ha(m(x)—l) (t) |u|m(x) dx
Q Q

< /kl_m_H“(’"+_1) (t)/lulm(x)dx.
Q

Q
12 From (30) and (3T), we have

Ha(m*-])(t)/ |u|m(x) dx
Q

<cC [(0 (u))m’/cf+a(m+_1) +(o (u))m+/q’+a(m*—l)] .

1z From (33)), we conclude that

s=m +aqg (m"—1)<q ands=m"+aq” (m"—1) <q".

1as  Therefore, Lemma 8 satisfies
D @) [ dx < ¢ (10l +ow).
Q

1s  Combining (35)-(@&I)), we get

L'®) 2 0-a)H™" @ [Co —€ (m:n: 1 > ck] / |, (l‘)|m(x) dx
Q

+(1—a)H™ (1) [co—s<””:n:1>ck]/|z(x,1,t)|’"” dx
Q

l—a o —
+g<( ne —m,ff> [ v ax

Q
+e(l—a)q H @) +e% R
+e (ab - m) o(u)
1
m(x)
re(l - a)q_/ () |z(x,p, 1) dxdp.
m(x)
0 Q

1as  Let us choose a small enough such that

l—a)qg +2
(a)61+>

0,
2

17 and k so large that

(37

(38)

(39)

(40)

(41)

(42)
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1— - _
dzaa =p" € gandab——E 0.
p+ m—kl—m m—kl—m
Once that k and a are fixed, we choose € small enough such that
+
Cy—¢ <m ! ) ck>0
m+
and
LO)=H""0)+e¢ / Uy (x)uy (x)dx > 0.
Q
Hence, (@2) becomes
1 (x)
_ , ,t m(x
L@z en|HO+ ulf +1Val, +o_+ [ [ SLEE2D) 3)
pC) 0 m(x)
0
for a constant # > 0. Eventually,
L@ >L0)>0,Vt>0.
Now, we denote, for some constants o, I' > 0, that
L'@®)>TL° ().
For this reason, we estimate
[ x| <l < € el .
Q
which indicates
1/(1-a)
—a 1/(1-a
/uu, (x,t)dx <C ||u||11){(1 )||ut||2/( )
Q
and Young’s inequality satisfies
1/(1-a)
i(1—a 0/(1-a
/uu, (x,t)dx <C [IIuIIZf1 )+ ||u,||2/( )] ,
Q
where 1/u + 1/0 = 1. The choice of ® = 2 (1 — ) will make /(1 — @) =2/ (1 = 2a) < p~. Thus,
1/(1-a)
P 2
/uu, (x, 1) dx <C [||u||p_ + || ] ,
Q
where s = p/ (1 — ). From 29), we get
1/(1-a) 1
> () |z (x, p, 0"
/uu, (x,t)dx <C||H@®|+ ||u, (t)|| + o0 +/ s 44)
Q 0 Q

Moreover, we have
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1/(1-a)
LY0=0 4y = H(l_“)(t)+£/uut(x,t)dx

Q
1/(1—a)
< 2¢/0-9 |7 (1) + /uu,dx
Q
1 (x)
<cC IH(I)|+||u,(t)||2+o(u)+//g(x)lzn(i;:;’t)l dxdp|. 45)
0 Q

5o Therefore, for some ¥ > 0, from (43)), we obtain

L'(t)>PLY09 1),
160 A simple Integration over (0, ) gives
1

—o/1-0) (0) — Pat/ (1 — a)
1e1  which implies that the solution blows up in a finite time T*, with

LYY= (1) >
®) = 7

T*<1——a'

T Wa L (0)
12 The proof of the theorem was completed. O

s 4 | DECAY

1ea In this part, we prove our decay result, when b = 0. Now, we introduce the following variable

Z(x’pat)=uz(x9t_1p)’ XEQ’ PE(O,I), t>0a

165 thus,

7z, (x,p, 1) +2,(x,p,1) =0, x €Q, p€(0,1), 7> 0.
s Consequently, problem (T is transformed into:

uy — div (|Vul”72 Vu) + pyu, (x,1) [u, (x,1)|
+uz(x, 1,0 ]z (x, 1, H|"72 = 0in Q X (0, ),
72, (X, p, 1) + 2, (x, p,1) = 0in Q X (0, 1) X (0, 00)

m(x)—2

: (46)
Z(x’pso)zfo(x9_pr) anX(O’ 1)
u(x,t)=0 on 0Q x [0, 1)
u(x,0)=uy(x), u, (x,0) = u; (x) in Q.
1e7  We define the modified functional energy to the problem by
1 2 1
E@®) == |ul + / —— | VulP® dx
2 ” l‘” p(X)
Q
1 (x)
t m(x
+/ EWlzCpl™ @
m(x)

0 Q
1es  where £ is the continuous function given in (21) and 7 > 0.
169 Similar to Lemma 7, we easily establish, for 4, > |u,| and for some C, > 0,



170

176

177

180

181

182

183

184

185
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that

E (1) < —co/ <|ut|’”(") +z(x, 1,t)|'"<x>) dx <0. (48)
Q

Lemma9. (Komornik,"*Let E : Rt - R*bea nonincreasing function and assume that there are constants ¢, @ > 0 such that

/E“" (ndt < éE“ (0)E(s) = cE(s), Vs > 0.

N

Then, we have

E@)<cE©0)/(1+0° ife>0,
E({)<cE@0)e™ ifc=0.
forall t > 0.

To prove our main result, we need of the following lemmas.
Lemma 10. ® The functional

1
FH=r / / ePTEX) |z (x, p, D™ dxdp
0 Q

satisfies

E(x) |z (x, p. 0| dxdp

P~

1
!/ m(x) s
F (t)s/f(x)|u,| dx — te /
Q 0
along the solution of (@6).

Lemma 11. B8 Let u be a solution of (46). Then, for some C > 0,

Opy (Vi) 2 C || Va7 (49)

Theorem 2. Let u, € I/VOI"’ ) (Q), u; € L*(Q) be given and assume that m (-), p(-) € C(fl). Suppose that the conditions
are satisfied and

2<p <P < <m) <mt <ph¥xec(Q).
Then, there exist two constants ¢, @ > 0 independent of ¢ such that any global solution of satisfies,

E@) <ce ™ if m(x)=2,
E@®) <cE©) /(1 +0¥" D ifm+ > 2.

Proof. We multiply the first equation of {#6) by uE" (t), for ¢ > 0 that will be specified later, and integrate over Q X (s,7),
s <T.So, we get

T
/Er (t)/ [uut, —udiv (IVL:|”(X)_2 Vu) + pyuu, |u,|m(x)_2 + pouz(x,1,1) |z (x, 1, t)Im(x)_z] dxdt =0,
Q

S

which implies that

T
/ E () / & () =+ 1Val™ o g e e (50)
+upuz (x, 1,1) |z (x, 1,17 '

Q

N

By using the definition of E (1), given in (7)), and the relation
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% E’(t)/uu,dx =rE"' () E' (t)/uu,dx+E’(t)%/uu,dx,
Q Q

o
1ss  the equation (50) becomes

T T T
2/E’+1 ®)dt < —/% E (t)/uu,dx dt+r/E’—1 @) E’' (t)/uutdxdt
K K Q s Q
T T
+2 / E" (1) / wdxdt — p, / E" (1) / wt u, "7 dxdt
K Q s Q
T

—yz/E’(t)/uz(x,1,t)|z(x,1,t)|’"(")_2 dxdt
s Q
T 1

m(x)
b b t
+2/E’(t)// £z p DI o 51)
m(x)

s 0 Q
1s7  Now, we estimate the right-hand side terms of equation (¥T)), respectively.
188 The first term is estimated as follows:

T

d| .
—/EE(I)/uutdx dt
Q

N

= E’(s)/uut(x,s)dx—E’(T)/uu,(x,T)dx
Q Q

IA

%E’(s) /uz(x,s)dx+/ut2(x,s)dx

Q Q

+%E’(T) /uz(x,T)dx+/u$(x,T)dx

Q Q

IA

E"(s) %c*/|Vu(x,s)|2dx+E(s)
Q

+E"(T) %c*/IVu(x,T)|2dx+E(T)
Q

1.0 Where c, is the embedding constant. So, we get
T

_/it E’(t)/uu,dx dt
Q

N

I\

E' @) [cIVu@IE + E ()]

+ET(T) [e Va2 + E(T))

B )+ B (5) (IVu @)l )

IA

Z
pt
’

+E (D) + BN (D) (IVu D7)

10 where ¢ is a generic positive constant that may change their value from a line to another. Then, we use (49), and recalling that
101 E (¢) is nonincreasing, we obtain
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T
- / % E (1) / uu dx |dt| < E™(s)+ cE"(s) (0 (Vu(s)))l’i*
s Q

+E™N(T) + cE"(T) (0, (Vu(T))) ™
< E*'(s)+c(E (s))’*ni+ + E™N(T) +c(E (T))’*:)i+
< E*'(s)+c(E (s))’+»i+ ) (52)

12 In the last estimate, for p~ > 2, we applied the following Holder inequality

/|Vu|2dx5 Q|7 /|Vu|1” dx
Q Q

s The estimate (52), for the case p~ = 2, is true.

2

P

1

©

104 Similarly, we deal with the term
T T
r / E () E (1) / widxdi| < —¢ / E () E (1) [E (T) + cEF (r)] di
K Q s
T T
< —c /E ") E' (t)+/(E(t))’+f+“ E' () di
<c [E”“ (s)+ (E (s))’*ﬁ] . (53)

1905 To treat the other term, we establish

Q, = {er, |u, (x,0)| = 1} and Q_ = {er, |u, (x,1)] < 1},

106 and we exploit the Holder’s and Young’s inequalities, then we have

T T
Z/Er (z)/ufdxdt = 2/E’ (t) /ufdx+/ufdx dt
s Q s Q, Q
, v 2/m -
< c/E’(t) /|u,|’"' x|+ /lut|’"+ x| |ar
s Q, -
o[ 2 2/mt
< c/E’(t) /|u,|m(x)dx + /|ut|m(x)dx dt
s Q Q
T
< c/Er(t) (£ 0)"" + (=E 0)"" | ar
) T T
< ce / (E @)™ /™D dt 4 ¢, / (=E' (1)) dt
s ’

T T

+ce/E’+‘(t)dt+c6/(—E’ (t))z('“)/'"+ dt.

N N
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. Now, we consider two cases, m~ >2and m™ =2

16|
197 where ¢, = ril <@>_r.
108 Choose r such that r = m* /2 — 1 will make r:f"_z =r+1+ mr;___";
190 For m~ > 2, we have
T
2 / E" (1) / u’dxdt
s Q
T T
< ce / E™ () di + ce (E (0) 5 / E™*' (t)dt + ¢, E (s)
. s
< ce / E™' (t)dt + ¢, E (s), (54)

200 where cisa positive constant.
201 For m™ =2, we get

T T

z/E’(t)/ufdxdr = Z/E’ ) /ufdx+/u3dx dt
s Q s Q, Q_
T [ 2/m*
< c/E’(t) /|u,|m(x)dx+ /|u,|’"+ dx di
s Q, \Q_
T [ 2/m*
< c/E’(t) /|u,|m(x)dx+ /|u,|m(x)dx dt
N Q Q
T ) T
< c/E’ o) (—E" (1) dt+c/E’ ® (—E' (t))z/”” dt
T ' T

N

< cE™! (s)+cs/E’+1 (t)dt+c6/(—E’ ) ar,

N

T
/ E™ (t)dt + ¢ E (5)

N

Therefore, with the choice of r = m* /2 — 1, we obtain
T
E" (1) / wdxdt| < cE™' (s) + ce
Q

2
T
< cs/ E™ (1)dt + (c, + cE"(0)) E(s)
(55)

N

s
T

< cs/E’+l (t)dt + ¢, E(s),

Duetom®™ > p*andr = %= — 1, then r + p% — 1 > 0. As aresult, the estimates li and || become,

203 where ;E =c,+cE"(0).

204
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208

209

210

211

2

[+

2

Stanislav Antontsev ET AL 17

T
d| .
—/E E (t)/uutdx dt

< EFN () +c(E ()™
N Q
< [F@+cEo) T Ee=cEw, (56)
and
T
r / E- (1) E (1) / widxdi| < ¢ [E’“ (s) + (E (s))’*ﬁ]
s Q
<c[EO+EO))TE@ =B, 57
respectively.
For the next term, by using Young’s inequality, we show
T
r m(x)—1
—yl/E (t)/u|ur| dxdt
s Q
T T
<e /Er(t)/|u|"’(x)dxdt+c/E’(t)/c ) |u|™™ dxar
N
<e

/Er(t) /lul"’ dx+/|u|”’ dx |dt
+e / E' (1) / ¢, () |u,|"™ dxat,
Q

N

where we used Young’s inequality with

P =9 iy =m0,
m(x)—1

and thus

c, (x)=m&x) = Dm (x)m(x)/(l—m(x)) £l/(=m(x))

Using the embedding, we get

T T
r m(x)—1 r m- +
_”I/E (I)/M|M,| =1 xdt < E/E ) [Cl ||Vu||p, +c, ||Vu||:',]
N Q N
T

+/E’(t)/c5(x)|u,|m(x)dx,
Q

N

where ¢, and ¢, are positive constants independent of ¢.

From ([#7) and {@9), we have
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T

_#1/Er(t)/u|utlm(x)_ldxdt
Q

s
T

E/E’ ) [cl (op(x) (Vu)):_; +c, (op(x) (Vu)):_*] dt

N

IA

T

+e / E" (1) / ¢, (x) |u,|"™ dxdr
Q

s
T T

ec;/E’“ (t)(E(t))';_;_ldt+ec£/E’+l (t)(E(t))';_:_l dt

s s
T

+e / E"(t) / ¢, (x) |u,|"™ dxar
Q

N

IA

T

e <<E O)F "+ (E (0»3'_:‘1) / E™* (1) dt

N

IA

T

+ / E" (1) / cp (%) u,|"™ dxa,
Q

N

where c; , cé and ¢’ are positive constants independent of .

The next term of (5I)) can be estimated in a similar way to obtain

T

—yz/E’ (t)/u|.z(x,1,t)|’"<">—1 dxdt
Q

s
T

5/Er ) [Cl (0p0 (V) + €3 (00 (Vu))?_*] dt

N

IA

T

+c/E’(t)/c£ (x) |z (x, 1,0)|™™ dxdt
Q

s
T

e <(E(0))Z_;_1+(E(O)):_:_1>/E’+1 (t) dt

N

IA

T

+c / E" (1) / ¢, (x)]z(x,1,1)|"™ dxdt.
Q

N

(58)

(39)
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215 For the last term of (31)), by using Lemma 11, we have the following:

T 1
m(x)
2/E,(t)//§(x>|z(x,p,t)| dxdods
m(x)
s 0 Q
T 1
% / E (1) / / £(x) |2 (x. . 1)|™™ dxd pdt

—2—T E’(t)— //e PTE(x) |z|™™ dxdp | dt
m-

T

+%/Er(t)/§(x)|u,|m(x) dxdt
Q

N

IA

IA

t=T

IA

m-

T
+%/Er(t)/§(x)|u,|m(x) dxdr.
Q

N

1
“2T B / / e (x) 2] dxdp
0 Q

t=s

216 As & (x) is bounded, by using (@7), we get

T 1
m(x)
2/E’(t)/ £(@) |z (x, p.1)] dxd pdt
m(x)

< T prs >E<s>+ = gl (1)
< 2:; CET(0)E(s) + —E” (TYE (s) < ¢*E (s), (60)
217 for some ¢* > 0.
218 By combining (51)-(60), we infer
T T
/ E™ (tydr < ce<(1+(E(0)>F‘1+(E(0>)F“>> / E™ (1) dt
N r N
+cE(s)+c/E’(t)/cE (%) |z (x, 1,0)|"™ dxdt. (61)
K Q

210 We choose € > 0 so small such that

¢ <1 +(E@O)7 " +(E(0)):_:_1> <1

220 Then, we have

T T

/E’“ (t)dtﬁcE(s)+c/E’(t)/cg(x)lz(x,l,t)l”’(x)dxdt.
Q

N N

221 Where ¢ is fixed, then ¢, (x) < M, since that m (x) is bounded. So, we obtain
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225

231

232

233

234

236

237
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T

T
/E*+1 (Hdt < cE(s)+cM/Er(z)/|z(x,1,t)|’”<x>dxdt
s Q

N

I\

T
CE(s) — CoM / E" () E' (1) dt

CoM
< cE(s)+ % (E™! (s) = E™(T))
r
< cE(s). (62)
Thus, by taking T — oo, we get
/EmT (t)dt < cE(s).
Therefore, Komornik’s Lemma (with ¢ = r = m* /2 — 1) provides the desired result. O
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