References
Bhuiya, M. W., Sakuraba, H., Kujo, C., Nunoura-Kominato, N., Kawarabayasi, Y., Kikuchi, H., & Ohshima, T. (2000). Glutamate dehydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1: enzymatic characterization, identification of the encoding gene, and phylogenetic implications. Extremophiles, 4 (6), 333-341.
Bombelli, P., Bradley, R. W., Scott, A. M., Philips, A. J., McCormick, A. J., Cruz, S. M., . . . Cameron, P. J. (2011). Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy & Environmental Science, 4 (11), 4690-4698.
Bradley, R. W., Bombelli, P., Lea-Smith, D. J., & Howe, C. J. (2013). Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Physical Chemistry Chemical Physics, 15 (32), 13611-13618.
Brinsmade, S. R., & Escalante-Semerena, J. C. (2007). In vivo and in vitro analyses of single-amino acid variants of the Salmonella enterica phosphotransacetylase enzyme provide insights into the function of its N-terminal domain. Journal of Biological Chemistry, 282 (17), 12629-12640.
Cereda, A., Hitchcock, A., Symes, M. D., Cronin, L., Bibby, T. S., & Jones, A. K. (2014). A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803. PLoS One, 9 (3).
Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure.Electrochemistry communications, 8 (3), 489-494.
El-Mansi, M., Cozzone, A. J., Shiloach, J., & Eikmanns, B. J. (2006). Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Current opinion in microbiology, 9 (2), 173-179.
Glazier, D. S. (2009). Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Functional Ecology, 23 (5), 963-968.
Gul, M. M., & Ahmad, K. S. (2019). Bioelectrochemical systems: Sustainable bio-energy powerhouses. Biosensors and Bioelectronics , 111576.
Han, S., Gao, X.-y., Ying, H.-j., & Zhou, C. C. (2016). NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells. Green Chemistry, 18 (8), 2473-2478.
Hong, Y., Call, D. F., Werner, C. M., & Logan, B. E. (2011). Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosensors and Bioelectronics, 28 (1), 71-76.
Jeske, L., Placzek, S., Schomburg, I., Chang, A., & Schomburg, D. (2019). BRENDA in 2019: a European ELIXIR core data resource.Nucleic acids research, 47 (D1), D542-D549.
Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7 (5), 375-381.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., . . . Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental science & technology, 40 (17), 5181-5192.
Madiraju, K. S., Lyew, D., Kok, R., & Raghavan, V. (2012). Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell. Bioresource technology, 110 , 214-218.
Mao, L., & Verwoerd, W. S. (2013). Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation. Journal of industrial microbiology & biotechnology, 40 (10), 1161-1180.
McCormick, A. J., Bombelli, P., Scott, A. M., Philips, A. J., Smith, A. G., Fisher, A. C., & Howe, C. J. (2011). Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy & Environmental Science, 4 (11), 4699-4709.
Mekanik, M., Motamedian, E., Fotovat, R., & Jafarian, V. (2019). Reconstruction of a genome-scale metabolic model for Auxenochlorella protothecoides to study hydrogen production under anaerobiosis using multiple optimal solutions. International Journal of Hydrogen Energy, 44 (5), 2580-2591.
Motamedian, E., & Naeimpoor, F. (2018). LAMOS: A linear algorithm to identify the origin of multiple optimal flux distributions in metabolic networks. Computers & Chemical Engineering, 117 , 372-377.
Motamedian, E., Sarmadi, M., & Derakhshan, E. (2019). Development of a regulatory defined medium using a system-oriented strategy to reduce the intracellular constraints. Process Biochemistry, 87 , 10-16.
Naraghi, Z. G., Yaghmaei, S., Mardanpour, M. M., & Hasany, M. (2015). Produced water treatment with simultaneous bioenergy production using novel bioelectrochemical systems. Electrochimica Acta, 180 , 535-544.
Nogales, J., Gudmundsson, S., Knight, E. M., Palsson, B. O., & Thiele, I. (2012). Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proceedings of the National Academy of Sciences, 109 (7), 2678-2683.
Qi, X., Ren, Y., Liang, P., & Wang, X. (2018). New insights in photosynthetic microbial fuel cell using anoxygenic phototrophic bacteria. Bioresource technology, 258 , 310-317.
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: from fundamentals to applications. A review.Journal of power sources, 356 , 225-244.
Sarcina, M., Bouzovitis, N., & Mullineaux, C. W. (2006). Mobilization of photosystem II induced by intense red light in the cyanobacterium Synechococcus sp PCC7942. The Plant Cell, 18 (2), 457-464.
Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D., Feist, A. M., . . . Rahmanian, S. (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nature protocols, 6 (9), 1290.
Slate, A. J., Whitehead, K. A., Brownson, D. A., & Banks, C. E. (2019). Microbial fuel cells: An overview of current technology. Renewable and sustainable energy reviews, 101 , 60-81.
Thiel, K., Patrikainen, P., Nagy, C., Fitzpatrick, D., Pope, N., Aro, E.-M., & Kallio, P. (2019). Redirecting photosynthetic electron flux in the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of flavodiiron protein Flv3. Microbial cell factories, 18 (1), 189.
Zhang, L., Zhu, X., Li, J., Liao, Q., & Ye, D. (2011). Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. Journal of power sources, 196 (15), 6029-6035.
Table 1. Comparison of reaction rates for generating glycerol 3-phosphate. The fluxes are presented in the unit of mmol/gDCW/h.