High-throughput computational screening of porous polymer networks for natural gas sweetening based on neural network
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ABSTRACT: The Capture and storage of toxic industrial chemicals such as H2S using porous polymer networks (PPNs) has shown promising application because of their high porosity, high surface area, high stability, low-cost and lightweight. In this work, 17,846 PPNs with the diamond-like topology were computationally screened to identify the optimal adsorbents for the removal of H2S and CO2 from humid natural gas based on the combination of molecular simulation and machine learning algorithms. The top-performing PPNs such as hPAFs-0201 with the highest adsorption performance scores (APS) were evaluated and identified based on their adsorption capacities and selectivity for H2S and CO2. The strong affinity between water molecules and the framework atoms in a few PPNs has a significant impact on the adsorption selectivity of acid gases. Based on decision tree analysis, we found two main design paths of the optimal PPNs for natural gas sweetening, which are the PPNs with LCD ≤ 4.648 Å, Vf ≤ 0.035, and PLD ≤ 3.889 Å, and those with 4.648 Å ≤ LCD ≤ 5.959 Å, ρ ≤ 837 kg·m-3. In addition, we constructed different machine learning models, particularly artificial neural network (ANN), available to accurately predict the APS of PPNs. 2D projection map of geometrical properties of PPNs using the t-distributed stochastic neighbor embedding (t-SNE) method shows that the screened 390 samples exhibit the similar structures. Among the top-23 PPNs with the highest APS, hPAFs-0201 has enhanced natural gas sweetening performance due to its strong affinity between the N-rich organic linkers and acid gases. hPAFs-0752 shows the highest isosteric adsorption heat of H2S and CO2 (Q˚st =49.84 kJ·mol-1), resulting in its second-highest APS as well as high hydrophilicity. Based on the combination of molecular simulation and machine learning, comprehensive insights into the high-throughput screening of PPNs in this work will provide new ideas for the design of high-performance PPNs for gas separation.
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1. INTRODUCTION
Acid gases, including H2S and CO2, are considered a major source of environmental pollution and are widespread in the process of energy generation and chemical production.1 For many hydrocarbon streams, such as natural gas, biogas, or syngas, they need to be puriﬁed to remove unacceptable amounts of acid gases (such as H2S and CO2) to reduce pollution or avoid catalyst poisoning.2 For instance, under 1 ppm H2S is required for fuel cell applications, where the electrodes are very susceptible to sulfur poisoning.3 In general, raw natural gas is a complex mixture of methane (CH4), ethane, and other light alkanes, H2S, carbon dioxide (CO2), and water (H2O) vapor.4 Natural gas rich in CO2 has a reduced heating value and is easily solidified in high-pressure and low-temperature pipeline,5 while excess H2S causes undesirable pipeline and equipment corrosion, harmful combustion products, and catalyst poisoning.6 In this context, natural gas must be purified to remove or reduce the acid gases before it can be transported through pipelines, stored in gas tanks, and applied in specific fields. Natural gas sweetening refers to the removal of acidic compounds, primarily H2S and CO2, from sour natural gas with the concentration of the acidic components over 4 ppm. Currently, amine scrubbing remains the main technology used for sweetening natural gas, but amine regeneration is highly energy-intensive.2, 7 As an alternative, adsorption separation technologies (e.g. pressure swing adsorption, PSA) using new adsorbents for natural gas sweetening have gradually become the focus of attention in the industry due to their energy-saving advantages.8-9 
Over past decades, a variety of adsorbents, such as microporous molecular sieves7 (zeolites), metal oxides10, carbon materials11 and metal-organic frameworks12 (MOFs) have been massively utilized in the domain of H2S and CO2 capture from gas mixtures containing CH4, N2, H2, and/or H2O. Maghsoudi et al13 first investigated pure component adsorption of H2S and CH4 in an all-silica zeolite of the chabazite (CHA) framework, which exhibited a high H2S capacity of 4 mmol g-1 at 25 °C and 2 bar. Shah et al2 carried out a large-scale computational screening of the adsorption of binary H2S/CH4 and H2S/C2H6 mixtures in the all-silica forms of 386 zeolitic frameworks. Competitive adsorption of a five-component mixture involving H2S, CO2, CH4, C2H6, and N2 was adopted to evaluate the performance of the 16 most promising zeolites under close-to-real conditions. Skrzypski et al14 studied the mixed Cu−Zn oxides for sulfidation and found a 6-fold increase in capacity at 200 °C by doping 6 mol% Cu. Yu et al11 prepared the Nitrogen-doped porous carbons with high H2S adsorption capacity (0.97-1.25 mmol g-1) by using various carbon sources. However, those traditional absorbents still face the challenge that the presence of a small amount of water vapor in natural gas will reduce their selective removal of H2S and CO2.2 Compared with zeolites, MOFs are a relatively new family of nanoporous materials, which are constructed by self-assembly between inorganic centers (metals or metal oxides) and organic building blocks.15 Due to the ultrahigh surface areas and high porosity, MOFs give much higher gas uptake capacities compared to other adsorbents and are considered as versatile materials for gas storage16, gas separation17, senor18, molecular catalysis19, drug delivery20, etc. MOFs offer a large parameter space to rationally design the size, shape, and functionality of pores with high adsorption and/or diffusion selectivity toward the molecule of interest.21 Among a large number of MOFs, many have been experimentally and computationally examined for H2S or CO2 separation from various gas mixtures.22-24 Mg-MOF-74 exhibited high CO2 uptake of 5.4 mmol g-1 at 0.1 atm, due to its high CO2 affinity.25 Furthermore, Mg-MOF-74 also showed the high selectivity (859 at 5 bar) for CO2 adsorption separation from a binary mixture of CO2/H2 at 313 K because of the polarizability difference between CO2 and H2 and more CO2 adsorption sites in the MOF.26-27 Keskin and co-workers28 computationally screened the MOF database to identify the optimal materials for CO2 separation from flue gas (CO2/N2) and landfill gas (CO2/CH4) under realistic operating conditions. Snurr et al29 developed the quantitative structure-property relationship of 137953 hypothetical MOFs (hMOFs) for CO2/CH4 and CO2/N2 separation by simulating pure CO2, N2, and CH4 uptakes in those hMOFs. They further successfully designed a genetic algorithm to screen 55 163 hMOFs for pre-combustion CO2 capture, which was utilized to guide the synthesis of high-performance MOFs.30 Li et al22 computationally screened out the optimal MOFs with high selectivity toward CO2 over H2O from the database of CoRE-MOFs. Woo and coworkers12 successfully developed robust quantitative structure-property relationship (QSPR) models based on machine learning, which were applied in prescreening a large number of topologically diverse MOF structures (358, 400 MOFs with 1166 network topologies) to identify top performing MOFs for pre-combustion carbon capture. From hundreds of thousands of zeolite and zeolitic imidazolate frameworks, Smit and co-workers31 identified 50 top-performance materials in silico for CO2/N2 separation. Jiang and co-workers screened 4764 real MOFs to identify the best adsorbents for CO2/CH4 and CO2/N2 separation, and further studied the potential application of hMOFs and CoRE-MOFs for membrane separation of the CO2/N2/CH4 mixtures.32-34 They also screened 6013 CoRE-MOFs for the simultaneous separation of H2S and CO2 from wet natural gas (represented by a hexanary mixture including CH4/C2H6/C3H8/H2S/CO2/H2O), and found that most of the optimal MOFs were constructed by the N-containing organic linkers.9 Porous polymer networks (PPNs) are quasi-ordered porous organic polymers. In addition to their topological diversity and high surface area similar to MOFs, they also have the advantages of low cost, light weight, high stability because they are composed of non-metallic elements connected by covalent bonds.35 PPNs show significant potential similar to MOFs in energy-related applications such as gas separation and gas storage. Martin and coworkers35 theoretically constructed 17,846 PPNs with diamond-like topology, and identified the optimal materials for methane storage based on molecular simulations. Zhou and coworkers36-37 synthesized a series of PPNs, and found that PPN-4 exhibited high performance for CO2 capture. However, few studies have examined PPNs for H2S separation. 
In this work, we computationally screened 17,846 hypothetical PPNs to identify the optimal adsorbents that can simultaneously remove H2S and CO2 from natural gas containing a small amount of water vapor. According to the previous studies, the strong affinity between water molecules and the frameworks may have a significant impact on the adsorption performance of acid gases in MOFs.9, 22 So we mimicked the high-acid natural gas as a hexanary mixture containing CH4/C2H6/C3H8/H2S/CO2/H2O with the molar ratio of 0.697/0.1/0.05/0.05/0.1/0.003. Considering that PPNs do not contain metal atoms with a strong affinity for water molecules, we did not conduct further hydrophobicity tests on PPNs. We describe the molecular models of 17,846 PPNs and guest gases in Section 2, as well as the screening methods. We also explore the relationship between PPN descriptors and performance metrics based on various machine learning algorithms in Section 3. At the same time, the best PPNs are identified and the general design criteria of novel PPNs are recommended.
2. MODELS AND COMPUTATIONAL METHODS
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[bookmark: _Ref54705236]Figure 1. The topological structure (dia) of 17,846 hypothetical PPNs. The four typical representatives are PPN-3 to PPN-6, and their tetrahedral vertices are adamantane, silicon, germanium, and carbon, respectively.

Models We selected 17,846 PPNs with the same topology of the diamond (dia) as candidates to search for the optimal absorbents for natural gas sweetening. Those structures were computationally constructed by Martin and coworkers35 using a variety of experimentally available organic linkers. They were directly used in our simulations without further configurational optimization, considering that they had been relaxed using the semi-empirical PM6 electronic structure method. 35 In all diamond-like PPNs, there are four different tetrahedral vertices including adamantane, silicon, germanium, or carbon (by analogy to PPN-3 through PPN-6 as shown in Figure 1), which are bridged by the linear organic linkers. In this work, the 17,846 structures were geometrically characterized by the largest cavity diameter (LCD), the pore limited diameter (PLD), density (ρ), volumetric and gravimetric surface area (VSA and GSA, respectively) and a void fraction (ϕ, aka Vf). These properties including pore sizes and surface areas were estimated by Zeo++ software38 using He and N2 as probes (kinetic diameters: 2.58 Å for He and 3.64 Å for N2), respectively. Figure 2 illustrates the pore size statistical histograms of 17,846 hypothetical PPNs. It is shown that most PPNs exhibit the middle pore size with PLD in the range of 5-25 Å and LCD in the range of 5-30 Å. A little part of PPNs (about 4% of the total) which is built from the longer organic linkers, exhibit the large pore size, with LCD exceeding 40 Å.



[bookmark: _Ref54705341]Figure 2. Pore size statistical histograms of 17,846 hypothetical PPNs. PLD-pore limited diameter; LCD-largest cavity diameter. 

The adsorption capacities of sour natural gas with hexanary components in PPNs were simulated by the grand ensemble Monte Carlo (GCMC) method. The framework atoms in PPNs were described by the combination of Lennard-Jones (LJ) and electrostatic potentials as the following equation. 


         (1)
Where εij and σij are the well depth and atomic pair equilibrium distance, respectively. rij is the distance between atoms i and j, qi and qj are the atomic charges of atom i and j, respectively. ε0 = 8.8542×10-12 C2 N-1 m-2 is the permittivity of vacuum.9 The partial atomic charges were estimated using the extended charge equilibration (EQeq) method,39 which can rapidly and accurately calculate atomic partial charges of different nanoporous materials.24, 40 The LJ potential parameters of PPN atoms as shown in Table S1 were directly taken from the universal force field (UFF).41 It can be proved by the previous work9, 42-43 that the UFF can predict natural gas and other gas adsorption properties in various MOFs.
Sour natural gas was mimicked as a hexanary mixture mentioned above. The major components were C1–C3, particularly CH4. At 298 K and 10 bar, the partial pressure of water vapor was 3 kPa, which is close to the saturation pressure of water at the same temperature. It is indicated that the relative humidity of natural gas was approximately close to 100%. All guest molecules except water were mimicked by the TraPPE force field44 as illustrated in Fig. S1. We selected a four-site model to describe the H2S molecule, where there are LJ sites on the S and H atoms, along with the partial charges on H atoms and a dummy atom.45 CO2 was mimicked by a three-site model with the C-O bond length of 1.16 Å and the bond angle of 180˚. CH4, C2H6, and C3H8 were described by a united-atom model with CHx as a single interaction site.44 In humid natural gas, H2O was described by the TIP4P-Ew model.46 The force field parameters of all guest molecules were shown inTable S2a. The Lorentz–Berthelot combining rules were employed to calculate the LJ parameters for cross-term interactions. C3H8 was considered as a flexible molecule, and its intramolecular bond bending potential was described by the parameters given in Table S2b.
High-throughput screening methods As shown in Figure 3, filtered according to their texture properties, 1973 PPNs were considered as candidates for natural gas desulfurization. Qiao et al.9 reported that the optimal ranges of LCD of CoRE MOFs in the removal of H2S and CO2 from natural gas were determined for the range of 3.2Å to 7.2Å. Based on their results, we extended the search range of LCD to 2.5-10 Å to guarantee that all optimal materials in the dataset will not be omitted. We set the threshold of GSA to 100 m2 g-1 to exclude some structures with zero surface area. At the same time, a few structures with a PLD lower than 2.5 Å are also excluded to ensure that gas molecules can enter the channel of each PPN. The statistical data about the geometrical properties of the selected candidates are listed in Table 1. 
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[bookmark: _Ref54705425]Figure 3. Schematic diagram of the screening process for 17,846 PPN materials.

Next, the EQeq method was performed to calculate the partial atomic charges of the framework atoms in all PPNs. Then, the coarse grand-canonical Monte Carlo (GCMC) method was conducted to simulate the adsorption of the hexanary mixture in the 1973 PPNs at 298 K and 10 bar. As shown in Figure 3, 390 PPNs with the selectivity of AG/Cn (AG refers to acid gas including H2S and CO2, and Cn refers to C1-C3) over 2.0 were selected out of the samples according to the results of the coarse GCMC simulations. Finally, refined GCMC simulations of the hexanary mixture adsorption in 390 PPNs were performed further to determine the optimal candidates for natural gas sweetening. All the GCMC simulations were carried out using RASPA software. The spherical cut-off of 12.8 Å was used for all LJ interactions, and Ewald summations were used to calculate the electrostatic interactions. For each PPN, a supercell consisted of enough number of unit cells (at least 25.6 Å along each dimension) was adopted to avoid periodic image errors. PPN atoms were held fixed during the simulation. The GCMC simulation was run for 2 ×105 cycles in the refined simulation and 105 cycles in the coarse simulation, respectively, where the first-half run for equilibration and the last half run for production. Each cycle included n trial moves (n refers to the number of adsorbate molecules with a minimum of 20), including translation, rotation, regrowth, and swap. More cycles adopted will take an insignificant effect on the simulated results. The isosteric heats of acid gases at infinite dilution Q˚st were estimated in a canonical ensemble.
[bookmark: _Ref54709193]Table 1. The statistical data of 1973 porous polymer networks
	statistical data
	GSA (m2 g-1)
	PLD (Å)
	LCD (Å)

	mean
	3323
	5.73
	7.46

	std
	1454
	1.45
	1.56

	min
	255
	3.25
	3.97

	25%
	2196
	4.51
	6.20

	50%
	3288
	5.70
	7.48

	75%
	4347
	6.90
	8.83

	max
	8576
	9.22
	10.00



Machine learning algorithms The results of refined GCMC simulations were considered as the dataset for our machine learning training and testing. The decision tree (DT) classification model was performed to find the design path of the optimal materials for natural gas sweetening. According to their adsorption performance score (APS, defined as equation 1) for natural gas desulfurization, PPNs were labeled as positive (APS > 5.5) or negative (APS ≤ 5.5). DT was built using the CART algorithm implemented in the scikit-learn module on Python3.6 platform. The other various machine learning models (random forest regression: RFR, gradient boosting regression tree: GBRT, crystal graph convolutional neural network: CGCNN47, and artificial neural network: ANN) were further performed to predict APS of PPNs according to their geometrical and chemical properties listed in Table S5. The text attributes in the dataset were encoded into numbers using the one-hot encoding method. We used the K-fold method (see Scheme S2) for cross-validation in all regression algorithms. RFR and GBRT models were built in the scikit-learn module on Python3.6 platform, while ANN model was performed in the PyTorch framework. The data set in CGCNN model was split randomly into three parts with the ratio of 70%, 15%, and 15% for training set, validation set and test set, respectively. The mean-square error (MSE), mean absolute error (MAE) and Pearson correlation coefficient (r2) were taken as the measure of the model quality. More details about ML algorithms can be found further in the supporting information.
3. RESULTS AND DISCUSSION
First of all, 1973 PPNs with PLD over 2.5 Å, LCD in the range of 2.5-10 Å, and GSA over 100 m2 g-1 were selected from a total of 17846 PPNs based on the structural properties. Then their partial atomic charges were calculated using the EQeq method. Next, the coarse GCMC simulations were performed to compute the adsorption separation properties of H2S and CO2 from natural gas in different PPNs. On this basis, 390 structures with high selectivity (more than 10) of H2S/CH4 were selected, and the hexanary mixture uptakes in the PPNs were further calculated using refined GCMC simulation. Finally, the highest performing PPNs were identified from 390 PPNs based on quantitative structure-property relationships analysis and machine learning training.
Geometry Characterization and Principal Components Analysis PPNs all exhibit diamond-like polymer networks with the tetrahedral centers, which are either carbon, silicon, germanium, or adamantine called hPAFs, hPPN_Si, hPPN_Ge, or ADAF, respectively. The number of PPNs with these four different tetrahedral vertices is 2079, 3721, 3832, and 8214, respectively. A total of 4953 different linear organic linkers were used to build these PPNs. The reason for the larger number of the last type of PPNs is that they have a larger number (4943) of organic linkers although the larger size of vertices makes it more difficult for the networks to form interpenetrated structures. The other types of PPNs have a smaller number of organic linkers (992, 1865, 1913 for carbon, silicon, germanium, respectively). On average, each linker can be used to construct close to two different networks, namely a normal one and an interpenetrated one, along with the adamantine center.


[bookmark: _Ref55034934]Figure 4 a) The quantitative biplots for principal components analysis (PCA) of various structural features of 17846 porous polymer networks (PPNs); b) Heat map of correlation coefficient matrix between geometrical properties of these PPNs.

To further elucidate the structural characteristics of all PPNs, principal components analysis (PCA) of six descriptors including ϕ, ρ, LCD, PLD, GSA, and VSA of PPNs, was utilized to quantitatively assess and determine the relationships between those descriptors. PCA allows dimensionality reduction of multivariate data to be geometrically projected onto lower dimensions called principal components (PCs), thereby retaining trends and patterns along with providing a concise representation of essential information. Those descriptor values were pretreated by a standard scaling process before they were decomposed into principal component score and eigenvector matrices. The results indicated that the first principal component (PC1) can describe approximately 75.1% of the data variance of these original descriptors, while the first two PCs together can account for 93.0%. Accordingly, these descriptors are projected onto a two-dimensional space of the first two PCs (PC1 and PC2), and the PCA biplots are illustrated in Figure 4a. Figure 4b shows the heat map of the correlation coefficient matrix between the geometrical properties of these PPNs. The two eigenvectors between LCD and PLD are almost the same, indicating that the descriptor pair is positively correlated, which is in good agreement with the correlation coefficient as shown in Figure 4b. This situation can be attributed to the use of a single diamond-like topology in this database. Whereas the two eigenvectors between ϕ and ρ are far, and thus form a large angle (close to 180 degrees), indicating that the descriptor pair is negatively correlated. The eigenvector of ϕ is almost identical to the direction of the PC1, while the other four eigenvectors including PLD, LCD, GSA, and ϕ project in the positive direction of the first principal axis (PC1), indicating that these descriptors give the positive contribution to the new dimensional space. 
Structure-property Relationship The acid gas including H2S and CO2 in natural gas is expected to be simultaneously removed by pressure swing adsorption technology. Therefore, we defined the selectivity of acid gas components over the residual hydrocarbon components by the following equation.

             (1)
where SAG/Cn, Ni, and yi are the selectivity of acid gases (including H2S and CO2), the component i loadings in PPNs, and the molar fraction of component i in natural gas bulk, respectively. Cn (n =1, 2, 3) refers to methane, ethane, and propane, respectively. Considering that there is a trade-off between the component loadings and the selectivity (see Figure 5), a new performance metric was adopted to evaluate the comprehensive adsorption performance of natural gas separation in PPNs, which is the same as previously reported work.43, 48 The metric was called adsorption performance score (APS) and defined by the following equation.

   (2)



[bookmark: _Ref54972460]Figure 5. The trade-off relationship between selectivity and capacity for natural gas sweetening. The data points are scaled and colored by APS values. The light blue shaded area includes the top hPPN materials with the highest APS.

As shown in Figure 5, the data points in the selectivity/adsorption capacity coordinate system were scaled and colored by APS values. hPAFs-0201 exhibits medium adsorption capacity of acid gas with the highest APS. PPNs with the highest SAG/Cn do not exhibit high APS because of their low adsorption capacities, while those with the highest NAG do not exhibit high APS because of their low adsorption selectivity. Besides, hPAFs-0752, ADAF-2142, and hPAFs-1250 also exhibit the second-highest APS only to hPAFs-0201. The light blue shaded area includes the top hPPN materials with the highest APS. It is indicated that there should be enough free space to store acid gas in PPNs, ensuring that NAG can get over 1.5 mmol·g-1. At the same time, the excessively large pore ​​size will weaken the interaction between gas molecules and pore walls, thereby reducing the adsorption selectivity of PPNs to acid gases. 

[image: ]
[bookmark: _Ref55138839]Figure 6. Structure-Selectivity Relationship plots in 390 PPNs. The data points were scaled and colored by APS values.

Figure 6 shows the effect of various geometrical parameters (LCD, VSA, GSA, ρ, Vf, and Vp) on the adsorption selectivity of PPNs to acid gases. The data points were scaled and colored by APS values. It is shown that the optimal SAG/Cn is in the range of 10-25. Therefore, PPNs with SAG/Cn of more than 25 generally exhibit low APS due to their too low NAG. However, it is not that there is not enough free space to store gas in those PPNs as shown in Figure 6. Their LCD is larger than 5.5 Å, and some even reach close to 10 Å. They also exhibit high surface area and high pore volume. Why are acid gases and hydrocarbons not adsorbed in the pore volume of those PPNs? We found that those PPNs all show super high water adsorption capacity as listed in Table S4. Especially the adsorption capacity of hPAFs-2026 for water can reach close to 103 mol·kg-1, while hPAFs-1030 also exhibits high NH2O of 82.5 mol·kg-1. Considering that the water content in natural gas is very low, it is indicated that those PPNs have strong hydrophilicity. The linkers of those PPNs are shown in Figure S3. Therefore, it is the difference in competitive adsorption between the gas and water molecules, rather than the molecular size sieving effect, which results in the high SAG/Cn of those PPNs. Besides, the pore size of the optimal PPNs with the highest APS is between 3.8-4.8 Å. If the pore size is too small, the gas molecules do not enter the cavity. Conversely, if the pore size is too large, the affinity between guest molecules and pore walls will weaken and thus result in low selectivity. The optimal VSA and GSA are in the range of 500-2250 m2·cm-3 and 500-3500 m2·g-1, respectively. Because the candidate samples do not contain those PPNs with LCD of greater than 10 Å, the void fraction of all 390 PPNs is below 0.5. The actual void fraction of the PPNs with high APS is very concentrated in the range of 3×10-3-0.1. The optimal pore volume is in the range of 6×10-3-0.15, while the optimal density is in the range of 600-1500 g·cm-3. 
Decision tree analysis Figure 7 illustrated the decision tree model of the acid gas adsorption performance score high than 5.5 from natural gas in 390 PPNs. The dataset was randomly split into a training set and test set in the ratio of 8:2, and 312 PPNs in the training dataset were divided into two categories of negative (160 PPNs) and positive (152 PPNs) according to the threshold of APS. The numbers of samples were kept approximately equal to avoid class-imbalance problems. Seven descriptors including Vp as mentioned above were selected as the split nodes of the binary decision tree. Gini coefficient is used as a metric for selecting the best split. It is shown that the optimal split branch of the decision tree is the leftmost one, which is LCD ≤ 4.648 Å, Vf ≤ 0.035, and PLD ≤ 3.889 Å. 28 PPNs with high APS can be completely selected through this split path. Among these PPNs, 80% of the top 10 PPNs and 100% of the top 6 PPNs can be found in the best PPN list shown in Table S3. This approach is consistent with the conclusion of the structure-activity relationship analysis as mentioned above. The other main split branch of the decision tree is 4.648 Å≤ LCD ≤ 5.959 Å, ρ≤ 837 kg·m-3. 43 out of 52 PPNs with high APS can be selected through this path. The classification accuracy of this path is slightly lower than the first path and the APS of the PPNs obtained is usually larger than 10. These two main classification paths found through decision tree analysis can provide a guideline for the research and development of new porous polymer networks for natural gas sweetening.
[image: ]
[bookmark: _Ref55139407]Figure 7. The decision tree model of the acid gas adsorption performance score (APS) higher than 5.5 from natural gas in 390 PPNs. Each branch of the tree represents a threshold level specified for the feature value, where PPNs that meet the threshold branch to the left, and PPNs that do not meet the threshold branch to the right. High-performing nodes are highlighted in blue. 

Machine learning algorithms In addition to the aforementioned geometrical parameters, local chemical properties also have a significant impact on the natural gas adsorption performance of PPNs. To more systematically understand the relationship between more descriptors, including geometrical and chemical ones, and the APS of PPNs, we built a deep neural network as shown in Scheme S1 to predict their APS for natural gas sweetening. This deep neural network includes one input layer (yellow), one output layer (red), and two hidden layers (green). The other machine learning algorithms including RFR, GBRT and CGCNN were also performed to predict the APS of PPNs as a comparison. As listed in Table S5, the “core” descriptor is a text feature, which presents four different types of the tetrahedral vertices of PPNs, we converted it into four-dimensional numbers with one-hot encoding. The “ID” descriptor, which refers to the different linkers of PPNs, was deleted in the final machine learning models because it will result in overfitting when it is converted into high-dimensional codes with one-hot encoding. The other descriptors including 10 geometrical ones and 26 chemical ones together with these four-dimensional codes were considered as input neurons and APS was used as the output neuron. The 5-fold cross-validation method was adopted to evaluate the performance of the model and to avoid overfitting. Pearson correlation coefficient (r2), mean square error (MSE) and mean absolute error (MAE) were taken as metrics to evaluate the performance of ML models like our previous studies.49 The evaluated scores by cross-validation for testing datasets from various ML trained models are listed in Table 2. It is shown that our ML models except CGCNN exhibit excellent performance in predicting APS of PPNs. Their average r2 is all over 0.97, and their average MSE is all less than 3.38.
The high-dimensional space of geometrical properties of PPNs was projected to 2D visual map using the t-distributed stochastic neighbour embedding (t-SNE) as shown in Figure 8a. The t-SNE method can preserve local similarity, ensuring similar structures are mapped close to each other in two dimensions. It is indicated that the screened 390 PPNs with the high-performance for acid gas capture exhibit the similar structures. CGCNN algorithms can high-efficiently extracted feature information from periodic crystal systems and converted it into graph inputs of the convolutional neural network, which can be trained to predict various targeted properties of the crystals.47, 50 Figure 8b shows the parity plots of CGCNN predicted versus GCMC simulated APS. Because the number of trained samples is small (less than 500), especially the number of samples with high-APS is smaller, the prediction accuracy of the CGCNN model needs to be further improved.
[image: ]
[bookmark: _Ref55139614]Figure 8. a) 2D projection map of geometrical properties of PPNs using the t-distributed stochastic neighbor embedding (t-SNE)51 method. The grey points refer to all samples of PPNs, and the points representing the screened 390 samples are colored by their APS (adsorption performance score). b) The parity plots of CGCNN predicted versus GCMC simulated APS. 


[bookmark: _Ref55140676]Table 2. The evaluated scores by cross-validation for testing datasets from ML trained models
	Test
Fold
	ANN
	RFR
	GBRT

	
	MSE
	r2
	MSE
	r2
	MSE
	r2

	1
	0.2050
	0.9975
	1.7464
	0.9790
	0.2975
	0.9964

	2
	0.1014
	0.9986
	2.1728
	0.9710
	0.0160
	0.9998

	3
	0.0806
	0.9984
	0.1095
	0.9978
	0.0354
	0.9993

	4
	0.0091
	0.9999
	11.8748
	0.9229
	9.2778
	0.9397

	5
	0.0066
	0.9999
	0.9891
	0.9821
	0.2862
	0.9948

	Average
	0.0805±0.0728
	0.9989±0.0009
	3.3785±4.3058
	0.9705±0.0254
	1.9826±3.6495
	0.9860±0.0232





[bookmark: _Ref55139884]Figure 9. Parity plots of machine learning predicted versus GCMC simulated APS (adsorption performance score) based on the algorithms of ANN (artificial neural network), RFR (random forest regression), and GBRT (gradient boosting regression tree). Green hollow spheres refer to the training dataset points. 3D solid spheres refer to the testing dataset points, which are colored by the bias of prediction. 

The parity plots in Figure 9. Parity plots of machine learning predicted versus GCMC simulated APS (adsorption performance score) based on the algorithms of ANN (artificial neural network), RFR (random forest regression), and GBRT (gradient boosting regression tree). compares the simulated APS with those predicted with various ML algorithms in Fold 4. The results show that ANN demonstrates almost perfect prediction performance on both the test set and the training set. For PPNs with lower APS (< 30), RFR and GBRT show excellent prediction performance on both the test set and the training set. However, they have large deviations in the prediction of high-performance PPNs. 
Top-performance Materials Through the above comprehensive analysis based on the structure-property relationship and machine learning classification and prediction models, we have a deeper understanding of the structural characteristics of PPNs for optimal natural gas sweetening. The top-23 PPNs with an APS of more than 20 were selected and their adsorption performance of natural gas was listed in Table S3. The APS threshold used here is roughly equivalent to the threshold of TSN=2 (TSN refers to the trade-off between NAG and SAG/Cn) set by Qiao et al. Among the list of those PPNs, hPAFs-1199 exhibits the highest NAG of 4.894 mol kg-1, while hPAFs-0201 exhibits the highest SAG/Cn of 24.0 as well as the highest APS. hPAFs-0752 shows the second-highest APS, while it also exhibits a high adsorption capacity of water (NH2O=1.708 mol·kg-1) due to its high hydrophilicity. It is indicated that the water content as well as the acid gas were simultaneously removed from the natural gas by the adsorbent. However, most of the optimal PPNs show a low adsorption capacity of water with hydrophobicity. It is proved that the hydrophobicity of PPNs is beneficial to improve their natural gas sweetening performance because water molecules may preferentially occupy the adsorption sites in hydrophilic PPNs. According to the number of different tetrahedral centers contained in the optimal PPNs, the order is carbon, silicon, germanium, and adamantane. It can be inferred that the larger size of the central atom, the less conducive to improving the natural gas sweetening performance of PPNs. The linkers of top-performing PPNs with the highest APS are shown partially in Figure S4. Among the top-23 PPNs, linker_4059 appears three times, linker_3982, linker_4346, and linker_1424 each appears twice, and the remaining linkers each appear once. The configurational snapshot of CO2 and H2S adsorbed in hPAFs-0201 was shown in Figure S5. hPAFs-0201 contains the N-rich organic linker called 1,2,4-1H-triazole, which has a strong affinity for acid gases, leading to its enhanced natural gas sweetening performance. Many previous studies have confirmed that MOFs composed of N-rich organic linkers also exhibit enhanced carbon capture or natural gas sweetening properties.9, 52 hPAFs-0752 shows the highest isosteric adsorption heat of H2S and CO2 (Q˚st =49.84 kJ·mol-1), indicating that there is a strong interaction between the linker_3984 and acid gases. Those linkers could be promising in the molecular design of porous absorbents for acid gas sweetening.

CONCLUSION
In summary, 17,846 PPNs with the diamond-like topology were theoretically screened to identify the optimal adsorbents for natural gas sweetening base on the combination of molecular simulation and machine learning. The principal components analysis (PCA) and pair correlation illustrated that LCD and PLD are positively correlated, while ϕ and ρ are far are negatively correlated. The first two PCs (PC1 and PC2) together can account for 93.0%, indicating that the geometrical descriptors can be approximately projected onto a two-dimensional space. Based on decision tree analysis, we found two main design path of the optimal PPNs for natural gas sweetening, which is the PPNs with LCD ≤ 4.648 Å, Vf ≤ 0.035, and PLD ≤ 3.889 Å or with 4.648 Å ≤ LCD ≤ 5.959 Å, ρ ≤ 837 kg·m-3. The simulation results of natural gas adsorption in PPNs demonstrated that the strong affinity between water molecules and the framework atoms in a few PPNs has a significant impact on the adsorption selectivity of acid gases. We also constructed different machine learning models in order to predict their APS according to the geometrical and chemical properties of PPNs. 2D projection map of geometrical properties of PPNs using the t-SNE method shows that the screened 390 samples exhibit the similar structures. It is also found that particularly artificial neural network (ANN) can accurately predict the APS of acid gas adsorption. Among the top-23 PPNs with the highest APS, hPAFs-0201 has enhanced natural gas sweetening performance due to its strong affinity between the N-rich organic linkers and acid gases. hPAFs-0752 shows the highest isosteric adsorption heat of H2S and CO2 (Q˚st =49.84 kJ·mol-1), resulting in its second-highest APS as well as high hydrophilicity. Our comprehensive insights into high-throughput screening and machine learning of PPNs in this work will provide new ideas for the design of high-performance PPNs for gas separation.
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[bookmark: _ENREF_36]36. Lu, W.; Yuan, D.; Zhao, D.; Schilling, C. I.; Plietzsch, O.; Muller, T.; Bräse, S.; Guenther, J.; Blümel, J.; Krishna, R.; Li, Z.; Zhou, H.-C., Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chem. Mater. 2010, 22 (21), 5964-5972.
[bookmark: _ENREF_37]37. Yuan, D.; Lu, W.; Zhao, D.; Zhou, H.-C., Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities. Adv. Mater. 2011, 23 (32), 3723-3725.
[bookmark: _ENREF_38]38. Willems, T. F.; Rycroft, C.; Kazi, M.; Meza, J. C.; Haranczyk, M., Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mat. 2012, 149 (1), 134-141.
[bookmark: _ENREF_39]39. Christopher, E. W.; Ki Chul, K.; Randall, Q. S., An Extended Charge Equilibration Method. J. Phys. Chem. Lett. 2012, 3 (17), 2506-2511.
[bookmark: _ENREF_40]40. Li, W.; Xia, X.; Li, S., Screening of Covalent–Organic Frameworks for Adsorption Heat Pumps. ACS Appl. Mater. Inter. 2020, 12 (2), 3265-3273.
[bookmark: _ENREF_41]41. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114 (25), 10024-10035.
[bookmark: _ENREF_42]42. Wu, X.; Wang, Y.; Cai, Z.; Zhao, D.; Cai, W., Revealing Enhancement Mechanism of Volumetric Hydrogen Storage Capacity of Nano-porous  Frameworks by Molecular Simulation. Chem. Eng. Sci. 2020, 226, 115837-115837.
[bookmark: _ENREF_43]43. Chiau Junior, M. J.; Wang, Y.; Wu, X.; Cai, W., Computational screening of metal-organic frameworks with open copper sites for hydrogen purification. Int. J. Hydrogen Energy 2020, 45 (51), 27320--27330.
[bookmark: _ENREF_44]44. Martin, M. G.; Siepmann, J. I., Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B 1998, 102 (14), 2569-2577.
[bookmark: _ENREF_45]45. Mansi, S. S.; Michael, T.; Siepmann, J. I., Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide. J. Phys. Chem. B 2015, 119 (23), 7041-7052.
[bookmark: _ENREF_46]46. Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 2004, 120 (20), 9665-9678.
[bookmark: _ENREF_47]47. Xie, T.; Grossman, J. C., Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120 (14), 145301.
[bookmark: _ENREF_48]48. Peng, L.; Zhu, Q.; Wu, P.; Wu, X.; Cai, W., High-throughput computational screening of metal-organic frameworks with topological diversity for hexane isomer separations. Phys. Chem. Chem. Phys. 2019, 21 (16), 8508-8516.
[bookmark: _ENREF_49]49. Wu, X.; Xiang, S.; Su, J.; Cai, W., Understanding Quantitative Relationship between Methane Storage Capacities and Characteristic Properties of Metal–Organic Frameworks Based on Machine Learning. J. Phys. Chem. C 2019, 123 (14), 8550-8559.
[bookmark: _ENREF_50]50. Wang, R.; Zhong, Y.; Bi, L.; Yang, M.; Xu, D., Accelerating Discovery of Metal–Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning. ACS Appl. Mater. Inter. 2020, 12(47), 52797–52807.
[bookmark: _ENREF_51]51. Van der maaten, L.; Hinton, G., Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 1, 1-48.
[bookmark: _ENREF_52]52. Zhang, K.; Qao, Z.; Jiang, J., Molecular Design of Zirconium Tetrazolate Metal-Organic Frameworks for CO2 Capture. Cryst. Growth Des. 2017, 17 (2), 543-549.


image3.wmf
126

0

()4+

4

ijijij

ijij

ijijij

qq

Ur

rrr

ss

e

pe

éù

æöæö

êú

=-

ç÷ç÷

ç÷ç÷

êú

èøèø

ëû


oleObject2.bin

image4.jpeg
17,846 PPNs ’ Best PPNs |

Pore size characterization ‘ Refined GCMC simulation

PLD>25 A

25A <LCD<10A 390 PPNs
GSA> 100 m*g™
Yes
1,973 PPNs
Eqeq calculation Coarse GCMC simulation

.




image5.emf
-12-10 -8 -6 -4 -2 0 2 4 6 8

-10

-5

0

5

-0.5 0.0 0.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1

-0.72

-0.72

0.31

-0.86

-0.93

-0.72

1

0.99

-0.7

0.56

0.83

-0.72

0.99

1

-0.7

0.57

0.84

0.31

-0.7

-0.7

1

-0.2

-0.54

-0.86

0.56

0.57

-0.2

1

0.82

-0.93

0.83

0.84

-0.54

0.82

1

Principal Component 2

Principal Component 1

LCD



VSA

GSA



 LCD PLD VSA GSA 



LCD

PLD

VSA

GSA



-1.00

-0.875

-0.750

-0.625

-0.500

-0.375

-0.250

-0.125

0.00

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.00

a) b)


oleObject3.bin

image6.wmf
22123

22123

HSC

/

HS

[(  )/()]

  

[()/()]

n

COCC

AGC

COCCC

NNNNN

S

yyyyy

+++

=

+++


oleObject4.bin

image7.wmf
22

//

  

nn

AGAGCHSCOAGC

APSNSNNS

=´=+´

（

）


oleObject5.bin

image8.emf
0 1 2 3 4 5 6

0

10

20

30

40

50

60

APS

Selectivity

N

AG 

/mmol g

-1

hPAFs-1250

9.00

19.3

29.7

40.0

50.3

60.7

71.0

81.3

91.7

APS

20 40 60 80 100

hPAFs-0201

hPAFs-0752

ADAF-2142


oleObject6.bin

image9.jpeg
Selectivity
w 5 W
(=} =3 S

5]
(=]

—_
(=}

Selectivity
W &5 W
[=} (=} (=]

53
S

—_
(=]

0

L] A
2 2
® E{ I 3| A
“ e® 7l
*
P " A
el .. | Rl
Yom o ® R ] vy
4 5 6 7 8 9 10 0.5k 1.0k 1.5k 2.0k 2.5k 3.0k 0 1.0k 2.0k 3.0k 4.0k 5.0k 6.0k
LCD/A VSA/m%ecm~3 GSA/m?g~!
. . N
: 2 2
S IR 3| A
] ]
® . o ©n %]
M : A
oer o N WYY TN
04 06 08 1.0 12 14 00 01 02 03 04 0.0 02 04 06 0.8 1.0
density/g cm ™3 Vi V,_-,/cm3 g1




image10.jpeg
LCD < 4.648
gini 5
samples = 312
value = [160, 152]
class = negative

‘density < 836.833
0.491
samples = 278
value = [158, 120]
class = negative

class = positive

samples = 87
value = [44, 43]
class = negative




image11.jpeg
2000 +

1500

1000

500

-500

-1000

-1500

-2000

9350
a1
7025
s
700
3
275
21

05000

-6000

100

80

60 |

40

Predicted by CGCNN

T T T T T
-4000 -2000 0 2000 4000

Test set MAE=4.163
Valid set MAE=5.393

Train set MAE=2.767

T
6000

Predicted by GCMC

100




image12.emf
0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

ANN

predicted

 APS

r2=0.9999 r2=0.9229

RFR

simulated APS

r2=0.9397

GBRT


oleObject7.bin

image1.jpeg
tetrahedral vertice

N

Adamantane: PPN-3

Si:  PPN-4
Ge:  PPN-5
G PPN-6




image2.emf
0 10 20 30 40 50 60 70

0

1000

2000

3000

4000

5000

Count

PLD(

Å

)

10 20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

5000

Count

LCD(

Å

)


oleObject1.bin

