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ABSTRACT

Purpose: The  field  of  cancer  nanomedicine has  made  significant  progress,  but  its  clinical

translation  is  impeded  by  many  challenges,  such  as  the  difficulty  in  analysing  intracellular

anticancer drug release by the nanocarriers due to the lack of suitable tools. Here, we propose the

development of a combinatorial imaging and analysis technique to evaluate anticancer drug such

as doxorubicin HCl (DOX) released by a nanocarrier inside the HCT116 colon cancer cells and

its subsequent intracellular accumulation. 

Procedure: Fluorescent cell images were captured and subjected to combined image analysis and

machine learning based procedures to assess and quantify the delivery and retention rate of DOX

inside the cancer cells by multifunctional CNT-DOX-Fe3O4nanocarrier.

Results:  We  show  that  DOX  in  HCT116  cells  was  higher  for  multifunctional  CNT-DOX-
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Fe3O4nanocarrierthan  free  DOX,  indicating  efficient  and  steady  release  of  DOX  as  well  as

superior retentive property of the nanocarrier. Initially (1 h and 4 h) the luminance intensity of

DOX in the cell cytoplasm delivered by CNT-DOX-Fe3O4nanocarrier was ~0.34 times and ~0.42

times lesser than that of free DOX delivered normally. However, at 24 h and 48 h post treatment

the  luminance  intensity  of  DOX for  CNT-DOX-Fe3O4nanocarrier  was  ~1.98 times and 1.92

times higher than that of free DOX. Furthermore, the luminance intensity of DOX for CNT-

DOX-Fe3O4in the whole cell was ~1.35 times and ~1.62 times higher than that of free DOX at

24h and 48 h, respectively.

Conclusions: The  high-throughput  nature  of  our  image  analysis  workflow  allowed  us  to

automate the process of DOX retention analysis, and enabled us to devise machine learning-

based modeling to predict the percentage of anticancer drug retention in cells. The development

of models to automatically quantify and predict intracellular drug release in cancer cells could

benefit personalized treatments by optimizing the design of nanocarriers.

Keywords:  Bio-Image  Analysis,  Computer  Vision,  Machine  Learning,  Predictive  Modeling,

Nanocarriers, Cancer

1. INTRODUCTION

Nanotechnology has immensely contributed in    the    evolution    of    precision medicine as it

offers many benefits and opens new opportunities to address the complexity of cancer [1-3].

Moreover, nanotechnology has opened up new opportunities in designing efficient drug-carrier

system for cancer therapy [4-6]. Several studies have been carried out to understand the impact

of different nanocarrier designs in intracellular delivery of anticancer drugs [7, 8]. Morphologic

characteristic of nanocarriers such as size influence the cellular uptake efficiency [9].Hence, it is

2



imperative to quantitatively know the intracellular anticancer drug released to design an optimum

nanocarrier. However, due to the lack of suitable tools to analyze their output, rational designing

of nanocarrier platform is extremely difficult [2]. Due to this difficulty, there have been limited

studies that probe the anticancer drug delivery and intracellular accumulation of nanocarriers

with  cancer  cells  [10].  Integration  of  artificial  intelligence  (AI)  approaches,  using  pattern

analysis and classification algorithms, can aid in overcoming this gap. Application of AI can help

optimize  design  of  nanocarriers  by  predicting  interactions  with  the  targeted  cancer  cells,  in

addition  to,  drug  release  kinetics,  thus  affecting  therapeutic  efficacy  [2].AI  is  a  branch  of

computer science that executes tasks that need “human intelligence.” Machine learning (ML), an

area of AI, is an approach that trains model using large datasets  of previous examples.  It is

applied in order to find patterns and classify data or find an optimal solution to a given problem.

Machine learning and AI in general have been used in different fields of medicine including

medical imaging and analysis of gene expression patterns.

Here,  we propose  the  development  of  a  combinatorial  imaging  and analysis  technique  to

evaluate anticancer drug such as doxorubicin HCl (DOX) delivery by nanocarriers inside the

HCT116  colon  cancer  cells  and  intracellular  accumulation.  This  is  achieved  by  using

luminance microscopy to image DOX distribution within HCT116 cells followed by machine

learning-based segmentation and image analysis. Our method can automatically and efficiently

identify DOX’s presence in HCT116 cells. This allows us to measure the amount of DOX

delivered by nanocarrier to the cancer cells. For this study, we have used a multifunctional

nanocarrier  designed by chemically  conjugating Fe3O4 NPs,  to  Carbon Nano Tubes (CNT)

through reactive spacer Glutathione (GSH) and loading of anticancer drug DOX in the cavity

of CNT[11].  CNT platform was utilized  as  a  cargo for the cancer  therapy  because it  can
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internalize into mammalian cells easily [12]. Furthermore, it offers the benefit of easy surface

modification, allowing incorporation of multiple components by conjugation chemistry [13].

Importantly, functionalized CNTs are compatible with biological fluids and leads to their rapid

excretion,  thus showing low toxicity  [12, 14].The advantage of anchoring Fe3O4 NPs is  to

impart magnetic property to the nanocarrier. DOX was used as a model anticancer drug in the

present study because it is widely utilized in the treatment of a broad spectrum of tumors and

in  addition  possess  fluorescence  capability.  The  study  will  help  understand  the  ability  of

nanocarriers  in  interacting  with  cancer  cells,  and  intracellular  drug  release  kinetics,  thus

helping in design optimum nanocarriers for effective anticancer drug delivery.

2. METHODOLOGY

The objective of this  exercise is  to identify a hidden trend in  drug delivery and retention

through traditional methods as well by nanocarriers, and identify effectiveness of nanocarriers

in this context. In the present study, as a model anticancer drug, we have used  doxorubicin

HCl (DOX).  DOX is  a  widely  utilized  anticancer  drug used  in  the  treatment  of  a  broad

spectrum of tumors. Furthermore, it  also possesses fluorescence capability. Fluorescence of

HCT 116 cells when exposed to free DOX and CNT-DOX-Fe3O4nanocarrierwill have a direct

correlation with the entry and retention of DOX inside the cells. Hence, by machine learning-

based image analysis we tried to measure DOX accumulation and retention. Pixel luminance is

considered  to be a  direct  measure of fluorescence  in  digital  images.  Hence,  luminance  of

images is calculated henceforth for the purpose. Luminance also directly correlates with the

amount of drug accumulation inside the cell.
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A. Materials

Multi-walled Carbon Nano Tubes (CNTs) of purity >99% and having outer diameter of 10-15 nm;

length 1-5 µm were procured from Ad-Nano Technologies, India. Ferrous chloride hexahydrate, 

ferric chloride tetrahydrate, N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (EDC.HCl) and 

glutathione (GSH), McCoy’s 5A, fetal bovine serum (FBS), Penicillin and streptomycin were 

purchased from Sigma-Aldrich, USA. Doxorubicin hydrochloride (DOX) was received from 

Naprod Life Sciences, India as a gift. HCT116 cells were purchased from the National Centre for 

Cell Science, India. Ultrapure water (MilliQ) from a Merck Millipore system, Germany, was used 

throughout. All other chemicals utilized were of analytical grade.

B. Synthesis of CNT-DOX-Fe3O4nanocarrier

The Synthesis scheme of DOX loaded CNT-DOX-Fe3O4nanocarrieris presented in Figure 1. 

CNT-DOX-Fe3O4NPs were prepared using a procedure previously reported by us [11]. In brief, 

5 mg of Fe3O4 NPs prepared by co-precipitation of ferric and ferrous ions (2:1) were mixed with

4 mg of GSH in 200 μL solution of ultra-pure water and 50 μL of methanol to form Fe3O4-GSH.

Then, 20 mg of Fe3O4-GSH was agitated with 20 mg of oxidized CNT loaded with DOX for 30 

min in 5 mL of phosphate buffer (pH 7.4) also containing 5 mg of EDC. The conjugated CNT-

DOX-Fe3O4 NPs were separated magnetically and washed thoroughly using phosphate buffer 

and then dried at 40 °C.
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Fig. 1 Synthesis scheme of DOX loaded CNT-DOX-Fe3O4nanocarrier.

C. Cell Culture

HCT116 cells obtained from NCCS were cultured in McCoy’s cell culture medium supplemented

with  10%  fetal  bovine  serum  and  100  unit/mL  penicillin,  100  mg/mL  streptomycin  and

maintained in CO2 incubator at 37 °C and 5% CO2.

D. Time Dependent Cellular Entry Studies using Fluorescence Microscopy

5000 HCT116 cells were seeded in each well of 96 well plates. After 24 h, cells were treated in a 

time dependent manner (1 h, 4 h, 24 h and 48 h) with free DOX and CNT-DOX-Fe3O4nanocarrier 

and the concentration of DOX was 0.377 µg/mL (IC50). The free DOX and the nanocarrier loaded

with DOX (60 µg/mg) were added according to the IC50 value of DOX. The cells were washed 

with phosphate buffered saline (PBS) after removing the media at consecutive time points and 

processed for fluorescence microscopy. Cells were fixed with 4.0% (w/v) paraformaldehyde for 

15 min at room temperature and then maintained in PBS after washing with PBS. Cells were 
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examined under a fluorescence microscope (Carl Zeiss, Axio Observer A3, USA) after staining 

with 4,6-diamidino-2-phenylindole (DAPI) (Sigma).

E. Artificial Intelligence Workflow Adopted

Figure2 describes the overall AI workflow adopted to devise the Luminance Prediction Model

from cell images. At first,  cell images were obtained using a fluorescence Microscope. Then

they  are  passed  over  to  Computer  Vision  Module for  analysis  and  extraction  of  Average

Luminance Values as image features. Then features are sent over to Machine Learning Module

that learns the model from cell luminance data to come up with a Luminance Prediction Model

that can be used for generalization of future accumulation trends.

Fig. 2 Artificial Intelligence workflow adopted for the process.
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F. Full Cell Imaging Using Fluorescence Microscopy

The cellular uptake and retention of DOX was studied over time by luminance cell imaging.

Luminance  of  cells  is  a  direct  measure  of  drug  concentration  in  the  cell.  HCT116  cells

incubated  with  DOX,  CNT-DOX-Fe3O4were  examined  under  fluorescence  microscope  at

definite time intervals. Figures 3aand3b show the cell fluorescence images of HCT116 cells.

Fig. 3aHCT116 Cell images treated with FREE DOX at different times.
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Fig. 3bHCT116 Cell images treated with CNT-DOX-Fe3O4 at different times.

G. Extraction  of   Cytoplasm Images  by  Image  Arithmetic  between   Full  Cell  and  Nucleus

Images

From the lab experiments,  full  cell  composite luminance images were obtained. Separately,

nucleus luminance images were obtained after staining them with DAPI. By performing pixel

level subtraction between RGB colour images of Full Cell Composite and Nucleus Luminance

Images, the Cytoplasm images were extracted. The arithmetic is straight forward as shown in

Figure 4a.
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Bright Pixel Intensity CalculationAverage Luminance Calculation

RGB Image Grayscale Image

- =

Full Cell Composite

Image

Nucleus Luminance

Image
Cytoplasm Image

Fig. 4a Image arithmetic between Full Cell Composite &Nucleus images to extract
cytoplasm images.

These Cytoplasm images were further studied for DOX retention rates in the cytoplasm.

H. Computer Vision Workflow for Feature Extraction from Microscopic Images

Figure  4bshows  the  Computer  Vision workflow  adopted  to  extract  features  from  the

microscopic images. Since,  Pixel Luminance is a measure of  fluorescence  in the cells. Hence,

the luminance is calculated.

Fig. 4b Computer Vision workflow for average luminance calculation.

Total intensity of bright pixels present in the grayscale image is calculated by measuring the
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intensities of the individual bright pixels and taking their sum. That is 

TotalIntensity (I )=∑
i=1

n

(PixelIntensity ) i (1)

Averageluminance=
TotalIntensity (I )

TotalBrig htPixels (n)
(2a)

Norm. Avg . luminance=
Avg . luminance

max ⁡(Avg . luminance )
(2b)

I. Statistical Visualization of Extracted Data to Identify Model Type

1) Free DOX treated cell and cytoplasm scatter plots

The set of  Time – Luminance values for free DOX treated cell and cytoplasm images are

given in Tables 1a & 1b. 

Where  ‘x’  represents  Time  (hours)  the  HCT116 cells  were exposed to  free  DOX, and ‘y’

represents Normalized Average Luminance, which is obtained by dividing the entire value set

with the maximum value in the group, to slash the set to [0, 1], in order to have a uniform scale

across all measurements.

Scatter diagrams plotted for data from Tables 1a & 1b, between Time (h) and Normalized Avg.

Luminance, are shown in Figures 5, indicates a non-linearity in the data. 
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(a)

(b)

Fig. 5Time-Luminance scatter plots for free DOX treated HCT116 cell images. (a) Full Cell and

(b) Cytoplasm.

2) CNT-DOX-Fe3O4treated cell and cytoplasm scatter Plots

The set of Time – Luminance values for CNT-DOX-Fe3O4treated cell and cytoplasm images are

given in Tables 2a & 2b:

Scatter  diagrams plotted  for  data  from  Tables 2a & 2b,  between  Time (h) and  Normalized

Average Luminance, are shown in Figures 6, which also indicate non-linearity in the data. 

(a)
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(b)

Fig. 6Time-Luminance scatter plots for CNT-DOX-Fe3O4 treated (a) Full cell and (b) Cytoplasm.

J. Statistical Machine Learning for Model Identification

Looking at the scatter plots, Least Squares Regression Parabola seems to be a good  Non-

linear Regression tool that generalizes the data obtained from lab experiments.

The Least Squares Parabola equation that fits a given set of data can be written as [13]

y=a+bx+c x2 (3)

Where x is the independent variable,  y is dependent variable, and a, b and c are regression

coefficients.  Our  objective  is  to  estimate  the  values  of  a,  b  and  c so  that  a  non-linear

parabolic curve can be obtained that approximates the given data distribution.

The regression coefficients  a, b and c can be obtained from solving the following  normal

equations

∑ y=na+b∑ x+c∑ x2 (4)

∑ xy=a∑ x+b∑ x2
+c∑ x3 (5)

∑ x2 y=a∑ x2
+b∑ x3

+c∑ x 4 (6)
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The eqn. (4) is obtained by taking summation of both sides of eqn. (3). Eqn. (5) is obtained

by multiplying eqn. (3) by x on both sides and then taking summation on both sides. Taking

the summation of eqn.(3) after multiplying with x2, yields eqn. (6).

Now with a given set of (x, y) pair values, we can calculate all the summations used in the

normal equations (4) – (6). Solving these equations with summations properly placed, we

can get the values of a, b and c. Substituting them in the eqn. (3) yields the Least Squares

Regression Parabola equation.

K. Least Squares Regression Curves Generation

a) For free DOX treated Cell images

By  going  through  the  procedure  discussed  in  section  2.E, the  Least  Squares  Regression

Parabola  equation for  free DOX treated cell images, as  obtained by the model on learning

from data given in Table 1a is:

y=0.974680−0.012915 x+0.000114 x2 (7)

The Residual Least Square Error is = 0.0009444

The  Regression  Parabola  Curve to  generalize  the  accumulation  kinetics  is  shown in  the

Figure 7.
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Fig. 7 Time-Luminance Regression Parabola for free DOX treated Full Cell images.

b) For free DOX treated cytoplasm  images

The Least Squares Regression Parabola equation for free DOX treated cytoplasm images as

learned from data given in Table 1b is:

y=0.948587−0.027997 x+0.000356 x2 (8)

The Residual Least Square Error is = 0.0040616

The  corresponding  Regression  Parabola  Curve to  generalize  the  reaction  kinetics  as  per

equation identified in eqn.8 is shown in the Figure 8.

Fig. 8Time-Luminance Regression Parabola for free DOX treated Cytoplasm images.
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c) CNT-DOX-Fe3O4treated cell images 

The Least Square Regression Parabola Equation learned from the data in Table 2a is

y=0.907974+0.005695 x+−0.00008 x2 (9)

The Residual Least Square Error is = 2.6063603e-05.  The corresponding curve is shown in

Figure 9.

Fig. 9Time-Luminance Regression Parabola for CNT-DOX-Fe3O4 treated full cell images.

d) CNT-DOX-Fe3O4treated Cytoplasm images

The Least Squares Regression Parabola Equation obtained from the data given in Table 2b is

y=0.211136+0.051466 x+−0.000813 x2     (10)

The Residual Least Square Error is = 0.0037100. The corresponding curve is shown in Figure

10.
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Fig. 10Time-Luminance Regression Parabola for CNT-DOX-Fe3O4 treated Cytoplasm images.

3. RESULTS AND DISCUSSIONS

The Regression Polynomials obtained in the equations (7) – (10), have  Least Square Residual

Errors as 0.0009444, 0.0040616, 2.6063603e-05 & 0.0037100, respectively. Given the number

of data points and the corresponding residual errors, it can be seen that the errors are very less.

This implies that the corresponding curves are nearly perfect fit. These polynomials can be used

to model anticancer drug treatment outcomes in the future, given the same reaction parameters

and conditions.

Studying the Cell Luminance normalized values, it is found that initially in the 1 h the luminance

intensity  of DOX delivered in the cell  through CNT-DOX-Fe3O4nanocarrier was ~0.34 times

lesser than that of free DOX delivered normally. At4 h post treatment, the luminance intensity of

DOX delivered through CNT-DOX-Fe3O4nanocarrier was ~0.42 times lesser than that of free

DOX. However, the luminance intensity of DOX delivered by CNT-DOX-Fe3O4 increased and it

was ~1.98 times and 1.92 times higher in the 24h and48 h respectively, than that of free DOX.

Furthermore, the luminance intensity of DOX delivered through CNT-DOX-Fe3O4 in the whole
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cell was ~1.35 times and ~1.62 times higher than that of free DOX at 24h and 48 h, respectively.

From the Regression Parabola plots also, it is observed that when free DOX is administered then

the drug enters the HCT116 cell fast, but also effluxes fast. This property is evident from both

the plots, Figure 7 and 8, depicting free DOX accumulation and retention rate in both full cell

and cell cytoplasm.

However, when the DOX is administered using CNT-DOX-Fe3O4nanocarrier, the drug initially

enters the HCT116 cells slowly, but gradually increases and is then retained in the cell for a long

time. This phenomenon is evident from the plots in Figures 9 and 10. From these figures it can

be  seen  that  DOX  concentration  in  the  cells  increases  gradually  till  4h.  However,  the

concentration increases sharply till the 24h and remains with a considerable concentration till 48

h.

4. CONCLUSION

The  objective  of  this  computational  exercise  was  to  model  a  combinatorial  imaging  and

analysis technique to evaluate delivery of DOX by nanocarriers inside the cancer cells and its

subsequent intracellular accumulation. A Polynomial Regression Model, created by Statistical

Machine Learning, did this satisfactorily even though with cell images available at only four

time points. The predicted intermediate values of the model reveal that DOX delivered by the

multifunctional CNT-DOX-Fe3O4nanocarrier in HCT116 colon cancer cells is higher which is

in correlation with human cognizable insights.  Furthermore,  the model confirms that DOX

delivery with CNT-DOX-Fe3O4nanocarrieris far more effective than free delivery. This model

appears to be a good regression tool that can be used for future research involving reaction

kinetics modeling with very small data set.
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Tables

Table 1a: Time – Luminance data for free DOX treated HCT116 Cell images
Time (x) (h) 1 4 24 48

Norm. Avg. Lum. (y) 1.0 0.878012 0.741396 0.614171

Table 1b: Time – Luminance data for free DOX treated HCT116 cell Cytoplasm images
Time (x) (h) 1 4 24 48

Norm. Avg. Lum. (y) 1.0 0.745175 0.504721 0.418948

Table 2a: Time – Luminance data for CNT-DOX-Fe3O4 treated HCT116 Cell images
Time (x) (Hr) 1 4 24 48

Norm. Avg. Fluo.

(y)
0.919921

0.92168

3
1.0 0.994856

Table 2b: Time – Luminance data for CNT-DOX-Fe3O4 treated HCT116 Cytoplasm images 
Time (x) (Hr) 1 4 24 48

Norm. Avg. Fluo.

(y)
0.337344

0.31117

1
1.0 0.802517
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