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Abstract. The paper presents an a posteriori error estimator for a (piecewise
linear) nonconforming finite element approximation of the problem defining the
interaction between a free fluid and poroelastic structure. The free fluid is gov-
erned by the Stokes equations, while the flow in the poroelastic medium is mod-
eled using the Biot poroelasticity system. Equilibrium and kinematic conditions
are imposed on the interface. The approach utilizes the same nonconforming
Crouzeix-Raviart element discretization on the entire domain [Houédanou Koffi
Wilfrid, Results in Applied Mathematics 7 (2020) 100127, Elsevier]. For this dis-
cretization, we derive a residual indicator based on the jumps of normal derivative
of the nonconforming approximation. Lower and upper bounds form the main
results with minimal assumptions on the mesh.
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1. Introduction

In this paper, we develop an a posteriori error analysis for solving the interaction of a free
incompressible viscous Newtonian fluid with a fluid within a poroelastic medium. This is a chal-
lenging multiphysics problem with applications to predicting and controlling processes arising in
groundwater flow in fractured aquifers, oil and gas extraction, arterial flows, and industrial filters.
In these applications, it is important to model properly the interaction between the free fluid with
the fluid within the porous medium, and to take into account the effect of the deformation of the
medium. For example, geomechanical effects play an important role in hydraulic fracturing, as
well as in modeling phenomena such as subsidence and compaction.
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2 HOUÉDANOU KOFFI WILFRID(A)

We adopt the Stokes equations to model the free fluid and the Biot system [1] for the fluid
in the poroelastic media. In the latter, the volumetric deformation of the elastic porous matrix
is complemented with the Darcy equation that describes the average velocity of the fluid in the
pores. The model features two different kinds of coupling across the interface: Stokes-Darcy
coupling [2–10] and fluid-structure interaction (FSI) [11–15].

The well-posedness of the mathematical model based on the Stokes-Biot system for the cou-
pling between a fluid and a poroelastic structure is studied in [16]. A numerical study of the
problem, using a Navier-Stokes equations for the fluid, is presented in [11, 17], utilizing a vari-
ational multiscale approach to stabilized the finite element spaces. The problem is solved using
both a monolithic and a partitioned approach, with the latter requiring subiterations between the
two problems.

Nonphysical pressure oscillations are observed in finite element calculations of Biot’s poroelas-
tic equations in low-permeable media. These pressure oscillations may be understood as a failure
of compatibility between the finite element spaces, rather than elastic locking. In [18], Joachim
Berdal Haga et al. have presented evidence to support this view by comparing and contrasting
the pressure oscillations in low-permeable porous media with those in low-compressible porous
media. As a consequence, it is possible to use established families of stable mixed elements as
candidates for choosing finite element spaces for Biot’s equations. Through comparison with the
displacement-solid pressure mixed formulation of linear elasticity, they identify the spurious pres-
sure modes as a specific consequence of a vanishing Brezzi inf-sup constant. Since the Brezzi
inf-sup condition for the poroelastic equations takes on a similar form as in, e.g., the mixed linear
elasticity or Stokes problem, this identification opens up the field to a plethora of stable element
candidates. These can be used directly for the basic solid displacement-fluid pressure two-field
formulation of poroelasticity, or in combinations for the various three- and four-field formulations
involving solid pressure and/or fluid velocity [18].

Finite element analysis of an arbitrary Lagrangian-Eulerian method for Stokes/parabolic mov-
ing interface problem with jump coefficients has been studied in [19]. The authors in [20] study
a numerical solution of the coupled system of the time-dependent Stokes and fully dynamic Biot
equations. They establish stability of the scheme and derive error estimates for the fully discrete
coupled scheme. Numerical errors and convergence rates for smooth problems as well as tests on
realistic material parameters have been presented. In [21], Jing Wen and Yinnian He consider a
strongly conservative discretization for the rearranged Stokes-Biot model based on interior penalty
discontinuous Galerkin method and mixed finite element method. The existence and uniqueness
of solution of the numerical scheme have been presented. Then, the analysis of stability and priori
error estimates have been derived. The numerical examples under uniform meshes, which well
validate the analysis of convergence and the strong mass conservation are presented. A staggered
finite element procedure for the coupled Stokes-Biot system with fluid entry resistance has been
studied by Bergkamp et al. in [22] while Ambartsumyan et al. study in [23] flow and transport
in fractured poroelastic media using Stokes flow in the fractures and the Biot model in the porous
media. In [24], semidiscrete continuous-in-time approximation has been proposed for the weak
coupled mixed formulation. For the discretization of the fluid velocity and pressure the authors
have used the finite elements which include the MINI-elements, the Taylor-Hood elements and
the conforming Crouzeix-Raviart elements. For the discretization of the porous medium problem
they choose the spaces that include Raviart-Thomas and Brezzi-Douglas-Marini elements. An a
priori error analysis is performed with some numerical tests confirming the convergence rates.

A posteriori error estimators are computable quantities, expressed in terms of the discrete
solution and of the data that measure the actual discrete errors without the knowledge of the exact
solution. They are essential to design adaptive mesh refinement algorithms which aqui- distribute
the computational effort and optimize the approximation efficiency. Since the pioneering work
of Babuška and Rheinboldt [25–28], adaptive finite element methods based on a posteriori error
estimates have been extensively investigated.

In the article [29], the author studies a stabilized nonconforming mixed finite element method
using the Crouzeix-Raviart element for the Stokes-Biot problem. Considering mixed formulation
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of the Darcy problem, the fluid velocity and pressure are treated as functions defined in the entire
domain. Existence, uniqueness of the finite element solution of the corresponding discrete problem
and a priori estimates have been shown. The proofs use the standard theory for mixed problems.
The approach presented is independent of the normal vectors of the interior edges in both regions,
thus making the resulting finite element matrix sparser.

We use a nonconforming finite element method that has so many advantages for the velocities
and piecewise constant for the pressures in both the Stokes and Biot regions, and apply a stabi-
lization term penalizing the jumps over the element edges of the piecewise continuous velocities.
Indeed, one can construct finite element methods where the incompressibility condition is exactly
satisfied (cf. Fortin [30]) but this leads to the use of complex elements of limited applicability (e.g.
oil and gas extraction for conforming case). Thus, in the work [29], Houédanou has constructed
and studies finite element method using simpler elements where the incompressibility condition is
only approximatively satisfied [cf. definition of operator divh (22)].

So, in this paper we have found it very convenient to use nonconforming finite elements which
violate the interelement continuity condition of the velocities. To our best knowledge, there is no
a-posteriori error estimation for the strongly coupled mixed formulation (19) [29, Section 3] of the
coupled Stokes-Biot problem where a nonconforming finite element method is used.

The paper is organized as follows. Some preliminaries and notation are given in Section 2.
In the section 3 the a posteriori error estimates are derived. The efficiency result is derived using
the technique of bubble function introduced by R. Verfürth [31] and used in similar context by
C. Carstensen [32,33]. The main results are given in the Section 5. We offer our conclusion and
the further works in Section 6.

2. Preliminaires and notation

2.1. Model problem. We consider a multiphysics model problem for free fluid’s interaction
with a flow in a deformable porous media, where the simulation domain Ω ⊂ Rd, d = 2, 3, is a
union of non-overlapping regions Ωf and Ωp. Here Ωf is a free fluid region with flow governed
by the Stokes equations and Ωp is a poroelastic material governed by the Biot system. For
simplicity of notation, we assume that each region is connected. The extension to non-connected
regions is straightforward. The two regions are separated by an interface Γfp = ∂Ωf ∩ ∂Ωp. Let
Γ? = ∂Ω? r Γfp, ? = f, p. Each interface and boundary is assumed to be polygonal (d = 2) or
polyhedral (d = 3). We denote by nf (resp. np) the unit outward normal vector along ∂Ωf (resp.
Ωp). Note that on the interface Γfp, we have nf = −np. Figure 1 gives a schematic representation
of the geometry. For any function v defined in Ω, since its restriction to Ωf or Ωp could play a

Ωp: Poroelastic Medium

Ωf : Fluid Region
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nfτj
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Figure 1. Global domain Ω consisting of the fluid region Ωf and the poroelastic media region
Ωp separated by the interface Γfp.

different mathematical roles (for instance their traces on Γfp), we will set vf = v|Ωf
and vp = v|Ωp

.
In Ω, we denote by u the fluid velocity and by p the pressure, and let ηp be the displacement in
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Ωp. Let µ > 0 be the fluid viscosity, let f ∈ [L2(Ω)]d be the body force terms, and let g be external
source or sink terms satisfing the compatibility condition

∫
Ω
g(x)dx = 0.

Let D(u) and σf (u, p) denote, respectively, the deformation rate tensor and the stress tensor:

D(u) =
1

2

(
∇u +∇uT

)
, and σf (u, p) = −pI + 2µD(u).

In the free fluid region Ωf , (u, p) satisfy the Stokes equations:

−∇ · σf (u, p) = f in Ωf (1)

∇ · u = g in Ωf (2)

u = 0 on Γf . (3)

Let σe(ηp) and σp(ηp, pp) be the elastic and poroelastic stress tensors, respectively:

σe(ηp) = λp (∇ · ηp) I + 2µpD(ηp), σp(ηp, pp) = σe(ηp)− αppI, (4)

where 0 < λmin ≤ λp(x) ≤ λmax and 0 < µmin ≤ µp(x) ≤ µmax are the Lamé parameters, and
0 < α ≤ 1 is the Biot-Willis constant. The poroelasticity region Ωp is governed by the modified
static Biot system [24]:

−∇ · σp(ηp, pp) = f in Ωp (5)

µK−1u +∇p = 0 in Ωp, (6)

α∇ · ηp +∇ · u = g in Ωp, (7)

u · nd = 0 on Γp (8)

ηp = 0 on Γp. (9)

K the symmetric and uniformly positive definite rock permeability tensor, satisfying, for some
constants 0 < kmin ≤ kmax,

∀ξ ∈ Rd, kminξ
T ξ ≤ ξTK(x)ξ ≤ kmaxξ

T ξ,∀x ∈ Ωp.

Following [1], the interface conditions on the fluid-poroelasticity interface Γfp are mass conserva-
tion, balance of stresses, and the Beavers-Joseph-Saffman (BJS) condition [34] modeling slip with
friction:

uf · nf + up · np = 0 on Γfp, (10)

σfnf + σpnp = 0 on Γfp (11)

−(σfnf ) · nf = pp, on Γfp (12)

−(σfnf ) · τf,j = µαBJF

√
K−1
j (uf ) · τf,j on Γfp, (13)

where τf,j , 1 ≤ j ≤ d−1, is an orthogonal system of unit tangent vectors on Γfp, Kj = (Kτf,j)·τf,j ,
and αBJS ≥ 0 is an experimentally determined friction coefficient. We note that continuity of
flux constraints the normal velocity of the solid skeleton, while the BJS condition accounts for its
tangential velocity.

Equations (1)-(13) consist of the model of the coupled Stokes and Biot flows problem that we
will study below.

2.2. Strongly coupled weak formulation. We begin this subsection by introducing some
useful notation. We first introduce some Sobolev spaces [35] and norms. If W is a bounded domain
of Rd and m is a non negative integer, the Sobolev space Hm(W ) = Wm,2(W ) is defined in the
usual way with the usual norm ‖ · ‖m,W and semi-norm |.|m,W . In particular, H0(W ) = L2(W )
and we write ‖ · ‖W for ‖ · ‖0,W . Similarly we denote by (·, ·)W the L2(W ) [L2(W )]d or [L2(W )]d×d

inner product. For shortness if W is equal to Ω, we will drop the index Ω, while for any m ≥ 0,
‖ · ‖m,?=‖ · ‖m,Ω? , |.|m,? = |.|m,Ω? and (., .)? = (·, ·)Ω? , for ? = f, p. The space Hm

0 (Ω) denotes the
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closure of C∞0 (Ω) in Hm(Ω). Let [Hm(Ω)]d be the space of vector valued functions v = (v1, . . . , vd)
with components vi in Hm(Ω). The norm and the seminorm on [Hm(Ω)]d are given by

‖ v ‖m,Ω:=

(
d∑
i=0

‖ vi ‖2m,Ω

)1/2

and |v|m,Ω :=

(
d∑
i=0

|vi|2m,Ω

)1/2

. (14)

For a connected open subset of the boundary E ⊂ ∂Ωf ∪ ∂Ωp, we write 〈., .〉E for the L2(E) inner
product (or duality pairing), that is, for scalar valued functions λ, σ one defines:

〈λ, σ〉E :=

∫
E

λσds (15)

For a open subset F of the entire domain Ω, i.e. F ⊆ Ω, we define the space H(div;F ) by:

H(div;F ) :=
{
v ∈ [L2(F )]d : div v ∈ L2(F )

}
, (16)

with a norm:

‖ v ‖H(div;F ):=
(
‖ v ‖2[L2(F )]d + ‖ div v ‖2L2(F )

) 1
2

, ∀v ∈ H(div;F ). (17)

To present a variational form of the coupled problem we define the following three spaces for
the velocity u, the structure displacement ηp and the pressure:

H :=
{
v ∈ H(div; Ω) : vf ∈ [H1(Ωf )]d,v = 0 on Γf ,v · np = 0 on Γp

}
,

equipped with the norm:

‖ v ‖H:=
(
|v|21,f+ ‖ v ‖2H(div;Ωp)

) 1
2

,

Xp :=
{
ξp ∈ [H1(Ωp)]

d : ξp = 0 on Γp
}
,

with the norm
‖ ξp ‖Xp

:= |ξp|1,p,
and

M := L2
0(Ω)× L2

0(Ωp),

equipped with the norm ‖ Q ‖M:=
(
‖ Q1 ‖20,Ω + ‖ Q2 ‖20,Ωp

)1/2

,∀Q = (Q1, Q2) ∈M.

Note that the vector valued functions in H have (weakly) continuous normal components on
Γfp (consequence of Theorem I.2.5 of [36, p. 27]).

We set H = H×Xp equipped with the product norm

‖ V ‖H:=‖ v ‖H + ‖ ξp ‖Xp , ∀V = (v, ξp) ∈ H. (18)

Let us further introduce two bilinear forms:

A : H×H→ R, (U,V) 7→ A(U,V) define by,

A(U,V) := (2µD(u),D(v))Ωf
+
(
µK−1u,v

)
Ωp

+ (2µpD(ηp),D(ξp))Ωp
+ (λp∇ · ηp,∇ · ξp)Ωp

+

d−1∑
j=1

〈µαBJS
√
K−1
j uf · τf,j ,vf · τf,j〉Γfp

,

B : H×M→ R, (V,Q) 7→ B(V,Q) with

B(V,Q) := −(Q1,div v)Ω − α(Q2,div ξp)Ωp
, where Q = (Q1, Q2),

and two linear forms
L : H→ R,V 7→ L(V) := (f,v)Ω

and
G : M→ R,Q = (Q1, Q2) 7→ G(Q) := −(g,Q1)Ω.
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The weak formulation of the coupled problem (1)-(13) can be stated as follows: find (U,P) ∈
H×M with U = (u, ηp) and P = (p, pp) such that:{

A(U,V) + B(V,P) = L(V) ∀V = (v, ξp) ∈ H
B(U,Q) = G(Q) ∀Q = (Q1, Q2) ∈M.

(19)

Note that if f and g are of mean zero, (19) directly implies that (1)-(11) hold (the differential
equations being understood in the distributional sense), while the interface conditions (12) and
(13) are imposed in a weak sense.

This problem has a unique solution as proved in [29, Theorem 3.1].

Theorem 2.1. If f ∈ [L2(Ω)]d and g ∈ L2
0(Ω), then there exists a unique solution (U, P ) ∈

H×M to the problem (19).

2.3. Discontinuous Galerkin Discretization. In this section, we will use the noncon-
forming Crouzeix-Raviart piecewise linear finite element approximation for velocity and piecewise
constant approximation for pressure and establish the existence and uniqueness of a finite element
solution of the discrete problem.

Let Th be a family of triangulations of Ω̄ with nondegenerate elements (i.e. triangles for d = 2
and tetrahedrons for d = 3). For any K ∈ Th, we denote by hK the diameter of K and ρK the
diameter of the largest ball inscribed into K.

We set:

h = max
K∈Th

hK , and σh = max
T∈Th

hK
ρK

(20)

We assume that the family of triangulations is regular, in the sense that there exists σ0 > 0 such
that σh 6 σ0, for all h > 0. We also assume that the triangulation is conforming with respect to
the partition of Ω into Ωf and Ωp, namely each K ∈ Th is either in Ωf or in Ωp (see Figs. 2, 3,4
for illustration).

diam(K) = hK

•
ρK

Figure
2. Isotropic
element K in

R2.

Figure
3. Example
of conforming
mesh in R2

•

Figure
4. Example
of noncon-
forming mesh
in R2

Let T fh and T ph be the corresponding induced triangulations of Ωf and Ωp. For any K ∈ Th,
we denote by E(K) (resp. N (K)) the set of its edges (d = 2) or faces (d = 3) (resp. vertices) and

set Eh =
⋃

K∈Th

E(K), Nh =
⋃

K∈Th

N (K). For A ⊂ Ω we define

Eh(A) = {E ∈ Eh : E ⊂ A} .

Notice that Eh can be split up in the form

Eh = Eh(Ω+
f ) ∪ Eh(Ωp) ∪ Eh(∂Ωp) (21)

where Ω+
f = Ωf ∪ Γf . Note that Eh(Γfp) is included in Eh(∂Ωp).
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With every edges E ∈ Eh, we associate a unit vector nE such that nE is orthogonal to E and
equals to the unit exterior normal vector to ∂Ω if E ⊂ ∂Ω. For any E ∈ Eh and any piecewise
continuous function ϕ, we denote by [ϕ]E its jump across E in the direction of nE :

[ϕ]E(x) :=

{
lim
t→0+

ϕ(x+ tnE)− lim
t→0+

ϕ(x− tnE) for an interior edge/face E,

− lim
t→0+

ϕ(x− tnE) for a boundary edge/face E

Based on the above notations, we introduce a variant of the nonconforming Crouzeix-Raviart
piecewise linear finite element space:

Hh :=
{

vh ∈ [L2(Ω)]d : vh|K ∈ [P1(K)]d ∀K ∈ Th, ([vh]E ,1)E = 0 ∀E ∈ Eh(Ω+
f ) ,

([vh · nE ]E , 1)E = 0 ∀E ∈ Eh(Ωp) ∪ Eh(∂Ωp)} ,

Xph :=
{
ξph ∈ [L2(Ωp)]

d : ξph|K ∈ [P1(K)]d ∀K ∈ T ph , ([ξph]E ,1)E = 0 ∀E ∈ Eh(Ω̄p)
}
.

For X ⊆ Ω, we set

Eh(X) :=
{
qh ∈ L2

0(X) : qh|K ∈ P0(K) ∀K ⊂ X,K ∈ Th
}
.

and we define

Mh := Eh(Ω)× Eh(Ωp) ⊂M
Hh := Hh ×Xph * H.

Where Pm(K) is the space of the restrictions to K of all polynomials of degree less than or equal
to m.
The space Mh is equipped with the norm ‖ · ‖M while the norm on Hh will be specified later
on. The choice of Hh is more natural since the space Hh approximates only H(div; Ωp) and not
[H1(Ωp)]

d, while our a-posteriori error analysis is only valid in this larger space.
Let us introduce the discrete divergence operator divh ∈ L(Hh;Eh(Ω)) ∩ L(H;L2

0(Ω)) by

(divh vh)|K = div(vh|K),∀K ∈ Th, (22)

or divh ∈ L(Xph;Eh(Ωp)) ∩ L(Xp;L
2
0(Ωp)) by

(divh ξph)|K = div(ξph|K),∀K ∈ T ph . (23)

Then, for Uh = (uh, ηph) ∈ Hh, Vh = (vh, ξph) ∈ Hh and Qh = (Q1h, Q2h) ∈ Mh, we can
introduce two bilinear forms:

Ah(Uh,Vh) :=
∑
K∈T f

h

(2µD(uh),D(vh))K +
(
µK−1uh,vh

)
Ωp

+
∑
K∈T p

h

(2µpD(ηph),D(ξph))K + (λp divh ηph,divh ξph)Ωp

+

d−1∑
j=1

〈µαBJS
√
K−1
j ufh · τf,j ,vfh · τf,j〉Γfp

,

Bh(Vh,Qh) := −(Q1h,divh vh)Ω − α(Q2h,divh ξph)Ωp .

Then, we propose the following discrete problem: find (Uh,Ph) ∈ Hh × Qh with Uh =
(uh, ηph) ∈ Hh ×Xph and Ph = (ph, pph) ∈ Eh(Ω)× Eh(Ωp) such that:{

Ah(Uh,Vh) + Bh(Vh,Ph) + J(Uh,Vh) = L(Vh) ∀Vh ∈ Hh
Bh(Uh,Qh) = G(Qh) ∀Qh ∈Mh.

(24)

This is the natural discretization of the weak formulation (19) only with the penalizing term
J(Uh,Vh) added, where Vh = (vh, ξph). We define the bilinear form J(·, ·) following the decom-
position of Eh:

J(Uh,Vh) = JΩ+
f

(uh,vh) + JΩp(uh,vh) + J∂Ωp(uh,vh) + JΩ+
p

(ηph, ξph),
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where

JΩ+
f

(uh,vh) := (1 + 2µ)
∑

E∈Eh(Ω+
f )

h−1
E

∫
E

[uh]E · [vh]Eds,

JΩp
(uh,vh) :=

∑
E∈Eh(Ωp)

h−1
E

∫
E

[uh]E · [vh]Eds,

J∂Ωp(uh,vh) :=
∑

E∈Eh(∂Ωp)

h−1
E

∫
E

[uh · nE ]E [vh · nE ]Eds and

JΩ+
p

(ηph, ξph) :=
∑

E∈Eh(Ω+
p )

h−1
E

∫
E

(1 + 2µp)[ηph]E · [ξph]Eds.

Here, hE is the length (d = 2) or diameter (d = 3) of E. Note that each element of Eh only
contributes with one jump term in J(Uh,Vh).

We are now able to define the norm on Hh:

‖ Vh ‖Hh
:=
[
‖ vh ‖2Hh

+ ‖ ξph ‖2Xph
+J(Vh,Vh)

]1/2
, (25)

where

‖ vh ‖Hh
:=

 ∑
K∈T f

h

|vh|21,K +

d−1∑
j=1

〈vfh · τj ,vfh · τj〉Γfp
+ ‖ vh ‖2Ωp

+ ‖ divh vh ‖2Ωp

1/2

,

and

‖ ξph ‖Xph
:=

 ∑
K∈T p

h

|ξph|21,K

1/2

.

The following results holds [29, Theorems 4.1 and 5.1]:

Theorem 2.2. There exists a unique solution (Uh,Ph) ∈ Hh ×Mh to discrete problem (24)
and if the solution (U,P) ∈ H ×M of the continuous problem (19) is smooth enough, then we
have:

‖ U−Uh ‖Hh∪H + ‖ P−Ph ‖M . h
(
|u|2,Ωf

+ |u|2,Ωp
+ |ηp|2,Ωp

+ |p|1,Ωf
+ |p|1,Ωp

)
.

Here and below, in order to avoid excessive use of constants, the abbreviation x . y stand for
x ≤ cy, with c a positive constant independent of x, y and Th.

3. Error estimators

In order to solve the Stokes-Biot coupled problem by efficient adaptive finite element methods,
reliable and efficient a posteriori error analysis is important to provide appropriated indicators.
In this section, we first define the local and global indicators and then the lower and upper error
bounds are derived (see Sects. 5.2.1 and 5.2.2).

3.1. Residual error estimators. The general philosophy of residual error estimators is to
estimate an appropriate norm of the correct residual by terms that can be evaluated easier, and
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that involve the data at hand. To this end denote the exact element residuals by:

R1 = f +∇ · σf (uh, ph) in K ∈ T fh (26)

R2 = g −∇ · uh in K ∈ T fh (27)

R3 = µK−1uh +∇ph in K ∈ T ph (28)

R4 = f +∇ · σp(ηph, pph) in K ∈ T ph (29)

R5 = g − α∇ · ηph −∇ · uh in K ∈ T ph (30)

R6(j) = µαBJF

√
K−1
j (ufh) · τf,j + (σf (uh, ph)nf ) · τf,j on E ∈ Eh(∂K ∩ Γ̄fp) (31)

R7 = pph + (σf (ufh, ph)nf ) · nf on E ∈ Eh(∂K ∩ Γ̄fp). (32)

As it is common, these exact residuals are replaced by some finite-dimensional approximation
called approximate element residual ri,K , i ∈ {1, 4}:

ri,K ∈ [Pm(K)]d on K ∈ T lh , l ∈ {f, p}.

This approximation is here achieved by projecting f on the space of piecewise constant functions
in Ωl, more precisely for all K ∈ Th, we take

fK,l =
1

|K|

∫
K

f(x)dx, l ∈ {f, p}, ∀K ∈ T lh .

Finally the global function fh is defined by:

fh,l = fK,l in K, ∀K ∈ T lh .

Hence

r1,K := fK,f +∇ · σf (uh, ph) in K ∈ T fh , (33)

r4,K := fK,p +∇ · σp(ηph, pph) in K ∈ T ph , (34)

with ul,h := uh|Ωl
and pl,h := ph|Ωl

l = f, p.
Next, introduce the gradient jump in normal direction by

JE,nE
:=

{
[σf (uh, ph) · nE ]E for an interior edge/face E ∈ Eh(Ωf ),

0 for a boundary edge/face E ∈ Eh(Γf ).

and

GE,nE
:=

{
[σp(ηp,h, pp,h) · nE ]E for an interior edge/face E ∈ Eh(Ωp),

0 for a boundary edge/face E ∈ Eh(Γp).

Definition 3.1. (Residual error estimator) The residual error estimator is locally defined
by:

ΥK :=

(
11∑
i=1

Υ2
i,K

) 1
2

, for each K ∈ Th, (35)
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where

Υ2
1,K :=

{
h2
K ‖ r1,K ‖2K if K ∈ T fh ,
h2
K ‖ r4,K ‖2K if K ∈ T ph ,

(36)

Υ2
2,K :=

{
‖ R3 ‖2K if K ∈ T ph ,

0 if K ∈ T fh ,
(37)

Υ2
3,K :=

{
‖ curl(R3) ‖2K if K ∈ T ph ,

0 if K ∈ T fh ,
(38)

Υ2
4,K :=

{
‖ R2 ‖2K if K ∈ T fh ,
‖ R5 ‖2K if K ∈ T ph ,

(39)

Υ2
5,K :=

∑
E∈Eh(∂K∩Γ̄fp)

hE


d−1∑
j=1

‖ R6(j) ‖2E

 , (40)

Υ2
6,K :=

∑
E∈Eh(∂K∩Γ̄fp)

hE ‖ R7 ‖2E (41)

Υ2
7,K :=


∑

E∈Eh(∂K∩Ω̄f )

hE ‖ JE,nE
‖2E if K ∈ T fh ,∑

E∈Eh(∂K∩Ω̄p)

hE
(
‖ GE,nE

‖2E + ‖ [ph]E ‖2E
)

if K ∈ T ph ,
(42)

Υ2
8,K :=

∑
E∈Eh(∂K∩Ωp)

h−1
E ‖ [uh]E ‖2E , (43)

Υ2
9,K :=

∑
E∈Eh(∂K∩∂Ωp)

h−1
E ‖ [uh · nE ]E ‖2E , (44)

Υ2
10,K :=

∑
E∈Eh(∂K∩Ω+

f )

h−1
E (1 + 2µ) ‖ [uh]E ‖2E (45)

Υ11,K :=
∑

E∈Eh(∂K∩Ω+
p )

h−1
E ‖ (1 + 2µp)[ηph]E ‖2E . (46)

The global residual error estimator is given by:

Υ :=

( ∑
K∈Th

Υ2
K

) 1
2

. (47)

Furthermore denote the local and global approximation terms by

ΨK := hK ‖ f− fh ‖K ,∀K ∈ Th,

and

Ψ :=

( ∑
K∈Th

Ψ2
K

)1/2

. (48)

4. Analytical tools

4.1. Some technical results. Our a posteriori analysis requires some analytical results that
are recalled.

The first one concerns a sort of Helmholtz decomposition of elements of H. Recall first that
if d = 3,

H0(curl,Ωp) = {ψ ∈ L2(Ωp)
3 : curlψ ∈ L2(Ωp)

3 and ψ × n = 0 on ∂Ωp}.
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Theorem 4.1. (Ref. [2, Page 708]) Any v ∈ H admits the Helmholtz type decomposition

v = v0 + v1, (49)

where v0, v1 ∈ H but satisfying v0 ∈ H1(Ω)d,

v1 =

{
0 in Ωf ,

curlβp in Ωp,
(50)

where βp ∈ H1
0 (Ωp) if d = 2, while βp ∈ H1(Ωp)

3 ∩H0(curl,Ωp) if d = 3, with the estimate

‖v0‖1,Ω + ‖βp‖1,Ωp . ‖v‖H. (51)

The second result that we need is a regularity result for the solution u ∈ H of (19):

Theorem 4.2. ( [2, Page 710]) Let (U,P) ∈ H × M be the unique solution of (19) with
U = (u, ηp) ∈ H×Xp. If K ∈ [C0,1(Ω̄p)]

d×d, then there exists δ > 0 such that:

u|Ωp
∈ [H

1
2 +δ(Ωp)]

d.

Note that the regularity of u ∈ [H
1
2 +δ(Ωp)]

d, with δ > 0 allows to give a meaning to
JΩp(u,w) + J∂Ωp(u,w) for all w ∈ H ∪ Hh and hence to show that J(U,W) = 0 for all
W = (w, ξp) ∈ H ∪Hh.

Let us finish this section by an estimation of the non conformity error (see [2, Theorem 3.3]):

Theorem 4.3. For any Uh = (uh, ηph) ∈ Hh we have

inf
Wh∈Hh∩H

‖Uh −Wh‖2Hh
. J(Uh,Uh). (52)

4.2. Clément interpolation operator. In order to derive the upper error bounds, we
introduce the Clément interpolation operator I0

Cl : H1
0 (Ω) −→ Pbc (Th) that approximates optimally

non-smooth functions by continuous piecewise linear functions:

Pbc (Th) :=
{
v ∈ C0(Ω) : v|K ∈ P1(K), ∀K ∈ Th and v = 0 on ∂Ω

}
In addition, we will make use of a vector valued version of I0

Cl, that is, I0
Cl : [H1

0 (Ω)]d −→ [Pbc (Th)]d,

which is defined componentwise by I0
Cl. The following lemma establishes the local approximation

properties of I0
Cl (and hence of I0

Cl), for a proof see [37, Section 3].

Lemma 4.1. There exist constants C1, C2 > 0, independent of h, such that for all v ∈ H1
0 (Ω)

there hold

‖ v − I0
Cl(v) ‖K ≤ C1hK ‖ v ‖1,∆(K) ∀K ∈ Th, and (53)

‖ v − I0
Cl(v) ‖E ≤ C2h

1/2
E ‖ v ‖1,∆(E) ∀E ∈ Eh, (54)

where ∆(K) := ∪{K ′ ∈ Th : K ′ ∩K 6= ∅} and ∆(E) := ∪{K ′ ∈ Th : K ′ ∩ E 6= ∅}.

4.3. Inverse inequalities. In order to derive the lower error bounds, we proceed similarly as
in [32] and [33], by applying inverse inequalities, and the localization technique based on simplex-
bubble and face-bubble functions. To this end, we recall some notation and introduce further
preliminary results. Given K ∈ Th, and E ∈ E(K), we let bK and bE be the usual simplexe-bubble
and face-bubble functions respectively (see (1.5) and (1.6) in [38]). In particular, bK satisfies
bK ∈ P3(K), supp(bK) ⊆ K, bK = 0 on ∂K, and 0 ≤ bK ≤ 1 on K. Similarly, bE ∈ P2(K),
supp(bE) ⊆ ωE := {K ′ ∈ Th : E ∈ E(K ′)}, bE = 0 on ∂K r E and 0 ≤ bE ≤ 1 in ωE . We also
recall from [31] that, given k ∈ N, there exists an extension operator L : C(E) −→ C(K) that
satisfies L(p) ∈ Pk(K) and L(p)|E = p,∀p ∈ Pk(E). A corresponding vectorial version of L, that
is, the componentwise application of L, is denoted by L. Additional properties of bK , bE and L
are collected in the following lemma (see [31]):
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Lemma 4.2. Given k ∈ N∗, there exist positive constants depending only on k and shape-
regularity of the triangulations (minimum angle condition), such that for each simplexe K and
E ∈ E(K) there hold

‖ q ‖K . ‖ qb1/2K ‖K.‖ q ‖K ,∀q ∈ Pk(K) (55)

|qbK |1,K . h−1
K ‖ q ‖K ,∀q ∈ Pk(K) (56)

‖ p ‖E . ‖ b1/2E p ‖E.‖ p ‖E ,∀p ∈ Pk(E) (57)

‖ L(p) ‖K +hE |L(p)|1,K . h
1/2
E ‖ p ‖E ∀p ∈ Pk(E) (58)

Lemma 4.3. (Continuous trace inequality) There exists a positive constant β1 > 0 depending
only on σ0 such that

‖ v ‖2∂K 6 β1 ‖ v ‖K‖ v ‖1,K , ∀K ∈ Th,∀v ∈ [H1(K)]d. (59)

5. Main results

We set X := H×M and Xh := Hh ×Mh and define on X, the continuous bilinear form B by:

B(U,W) := A(U,V) + B(V,P) + B(U,Q) for U = (U,P) and for W = (V,Q).

We also define on the discrete space Hh, the form,

Bh(Uh,Wh) := Ah(Uh,Vh)+Bh(Vh,Ph)+Bh(Uh,Qh)+J(Uh,Vh) for Uh = (Uh,Ph) and Wh = (Vh,Qh).

The spaces X and Xh are equipped with the product-norms:

|||(U,P)||| =‖ U ‖H + ‖ P ‖M and |||(Uh,Ph)|||h =‖ Uh ‖Hh∪H + ‖ Ph ‖M respectively.

To prove local efficiency for ω ⊂ Ω, let us denote by

‖ (W,Q) ‖2h,ω =
∑

K⊂ω̄∩Ω̄f

|v|21,K +
∑

K⊂ω̄∩Ω̄p

|ξp|21,K

+
∑

K⊂ω̄∩Ω̄p

(‖ v ‖2K + ‖ divh v ‖2K)

+ ‖vf × n‖2Γfp∩ω̄ +
∑
K⊂ω̄

JK(W,W)

+ ‖ Q ‖ω, ∀(W,Q) = (v, ξp,Q) ∈ Hh ∪H×Xp ∪Xph ×M,

where

JK(W,W) = (1 + 2µ)
∑

E∈Eh(Ω+
f )∩E(K)

h−1
E ‖[v]E‖2E

+
∑

E∈Eh(Ωp)∩E(K)

h−1
E ‖[v]E‖2E +

∑
E∈Eh(∂Ωp)∩E(K)

h−1
E ‖[v · nE ]E‖2E

+
∑

E∈Eh(∂Ωp)∩E(K)

h−1
E ‖ [(1 + µp)ξp]E ‖2E

5.1. Optimality result. The main result of this paper can be stated as follows:

(1) Reliability of {ΥK}K∈Th : The a posteriori error estimator Υ is consider reliable if it
satisfies:

|||(U−Uh,P−Ph)|||h . Υ + Ψ. (60)

(2) Efficiency of {ΥK}K∈Th :
Under the assumptions of Theorem 4.2, the following lower error bound holds:

ΥK . |||(U−Uh,P−Ph)|||h,w̃K
+

∑
K′∈w̃K

ΨK′ , (61)

where w̃K is a finite union of neighboring elements of K.
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5.2. Proof of the a-posteriori error estimate.
5.2.1. Proof of the Reliability Estimate. In this subsection, we shall prove the estimate

(60).
Let us start with the following result.

Lemma 5.1. Let the assumptions of Theorem 4.2 be satisfied. Then for all W = (V,P) ∈
H×M, we have the estimate:

Bh(U− Uh,W) . (Υ̃ + Ψ)|||W|||h, (62)

where the estimator Υ̃ is defined by:

Υ̃ :=

{ ∑
K∈Th

(
7∑
i=1

Υ2
i,K

)} 1
2

. (63)

Proof. Let W = (V,Q) ∈ H ×M with V = (v, ηp) and Q = (Q1, Q2). By Theorem 4.1 v
admits the decomposition (49) with v0,v1 ∈ H and satisfying the properties stated in Theorem
4.1. Then we take Wh = (Vh,0) ∈ Hh ×Mh where Vh = (vh, ξph) with vh = v0,h + v1,h, where

v0,h = I0
Clv0 and

v1,h =

{
0 in Ωf ,

curl I0
Clψ in Ωp,

and ξph = I0
Clξp. (64)

In 2D, I0
Clψ is the standard Clément interpolant of ψ, while in 3D, we take the vectorial Clément

interpolant from [2] that satisfies the same estimate as the standard one (see [2]). Note that
v0,h belongs to Hh ∩ [H1

0 (Ω)]d while v1,h simply belongs to H ∩ Hh (I0
Clψ being in H1

0 (Ωp)

if d = 2 and I0
Clψ ∈ H1(Ωp)

3 ∩ H0(curl,Ωp) if d = 3), its curl belongs to H0(div,Ωp), hence

v1,h, its extension by zero in Ωf , stays in H0(div,Ω). With these definitions and noticing that
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div(v− vh) = div(v0 − v0,h) and that J(Uh,Vh) = 0, we may write:

Bh(U− Uh,W) = Bh(U− Uh,W−Wh)

= Ah(U−Uh,V−Vh) + Bh(V−Vh,P−Ph) + Bh(U−Uh,Q)

= Ah(U,V−Vh) + Bh(V−Vh,P) + Bh(U,Q)

− [Ah(Uh,V−Vh) + Bh(V−Vh,Ph) + Bh(Uh,Q)]

= L(V−Vh) + G(Q)

− [Ah(Uh,V−Vh) + Bh(V−Vh,Ph) + Bh(Uh,Q)]

= (f,v− vh)Ω − (g,Q1)Ω

− [Ah(Uh,V−Vh) + Bh(V−Vh,Ph) + Bh(Uh,Q)]

=
∑
K∈Th

{(f,v− vh)K − (g,Q1)K}

− Ah(Uh,V−Vh)−Bh(V−Vh,Ph)−Bh(Uh,Q)

=
∑
K∈Th

{(f,v− vh)K} −
∑
K∈T f

h

(g,Q1)K

−
∑
K∈T f

h

(2µD(uh),D(v− vh))K −
∑
K∈Th

(
µK−1uh,v− vh

)
K

−
∑
K∈T p

h

(2µpD(ηph),D(ξ − ξph))K −
∑
K∈T p

h

(λp divh ηph,div(ξp − ξph))K

−
d−1∑
j=1

〈µαBJS
√
K−1
j ufh · τf,j , (vf − vfh) · τf,j〉Γfp

+
∑
K∈Th

(ph,div(v0 − v0h))K +
∑
K∈T p

h

α(pph,div(ξp − ξph))K

+
∑
K∈Th

(Q,div uh)K +
∑
K∈T p

h

α(Q2,div(ηph))K

Integrate by parts element by element and add boundary (resp. internal) terms that appear on
the same edge (resp. at the same element) and reminding that v = v0 and vh = v0,h in Ωf , we
obtain:

Bh(U− Uh,W) =
∑
K∈T f

h

(R1,v− vh)K −
∑
K∈T p

h

(R3,v− vh)K +
∑
K∈T p

h

(R4, ξp − ξph)K

−
∑
K∈T f

h

(R2, Q1)K −
∑
K∈T p

h

(R5, Q2)K +
∑

E∈Eh(Γfp)

(R7, (v0 − v0h) · nf )E

−
∑

E∈Eh(Γfp)

d−1∑
j=1

(R6(j), (v0 − v0h) · τj)E −
∑

E∈Eh(Ω+
f )

(JE,nE
,v0 − v0h)E

−
∑

E∈Eh(Ω+
p )

(GE,nE
, ξp − ξph)E +

∑
E∈Eh(Ωp)

([pph]E , (v0 − v0,h) · nE)E
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We now introduce the approximation fh of f for appropriated terms and we have:

Bh(U− Uh,W) =
∑
K∈T f

h

(r1,v− vh)K −
∑
K∈T p

h

(R3,v0 − v0,h)K +
∑
K∈T p

h

(r4, ξp − ξph)K

−
∑
K∈T f

h

(R2, Q1)K −
∑
K∈T p

h

(R5, Q2)K +
∑

E∈Eh(Γfp)

(R7, (v0 − v0h) · nf )E

−
∑

E∈Eh(Γfp)

d−1∑
j=1

(R6(j), (v0 − v0h) · τj)E −
∑

E∈Eh(Ω+
f )

(JE,nE
,v0 − v0h)E

−
∑

E∈Eh(Ω+
p )

(GE,nE
, ξp − ξph)E +

∑
E∈Eh(Ωp)

([pph]E , (v0 − v0,h) · nE)E

+
∑
K∈Th

(f− fh,v− vh)K −
∑
K∈T p

h

(R3,v1 − v1,h)K

Now for a triangle K ∈ T ph , we recall that

v1 − v1,h = curl(ψ − I0
Clψ) in K,

and use Green’s formula to get∑
K∈T p

h

(R3,v1 − v1,h)K =
∑
K∈T p

h

(
R3, curl(ψ − I0

Clψ)
)
K

−
∑
K∈T p

h

[(
curl R3, ψ − I0

Clψ
)
K

+
(
curl R3 × n, ψ − I0

Clψ
)
∂K

]
We deduce the error equation,

Bh(U− Uh,W) =
∑
K∈T f

h

(r1,v− vh)K −
∑
K∈T p

h

(R3,v0 − v0,h)K +
∑
K∈T p

h

(r4, ξp − ξph)K

−
∑
K∈T f

h

(R2, Q1)K −
∑
K∈T p

h

(R5, Q2)K +
∑

E∈Eh(Γfp)

(R7, (v0 − v0h) · nf )E

−
∑

E∈Eh(Γfp)

d−1∑
j=1

(R6(j), (v0 − v0h) · τj)E −
∑

E∈Eh(Ω+
f )

(JE,nE
,v0 − v0h)E

−
∑

E∈Eh(Ω+
p )

(GE,nE
, ξp − ξph)E +

∑
E∈Eh(Ωp)

([pph]E , (v0 − v0,h) · nE)E

+
∑
K∈Th

(f− fh,v− vh)K

+
∑
K∈T p

h

[(
curl R3, ψ − I0

Clψ
)
K

−
(
curl R3 × n, ψ − I0

Clψ
)
∂K

]
Cauchy-Schwarz inequality and the approximation properties of Lemma 4.1 imply the required
estimate and finish the proof.

�

The second result of this subsection is given by the following lemma:

Lemma 5.2. Under the assumptions of Theorem 4.2, the following estimation holds:

|||(U−Uh,P−Ph)|||h . Υ̃ + Ψ + inf
Wh∈H∩Hh×Mh

|||Uh −Wh|||h, (65)
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where Uh = (Uh,Ph) and Υ̃ is given by (63).

Proof. For an arbitrary Wh ∈ H ∩Hh ×Mh, the inf-sup condition of B on H×M leads to

|||U−Wh|||h . sup
W∈H×M

B(U−Wh,W)

|||W|||h
, (66)

hence

|||U−Wh|||h . sup
Wh∈H×M

{
Bh(U− Uh,W) + Bh(Uh −Wh,W)

|||W|||h

}
. (67)

Combining the estimates (62) and (67), it comes:

|||U−Wh|||h . Υ̃ + Ψ + sup
W∈H×M

Bh(Uh −Wh,W)

|||W|||h
. (68)

The continuity of the operator Bh implies that:

|||U−Wh|||h . Υ̃ + Ψ + |||Uh −Wh|||h. (69)

Thus, by the triangular inequality we deduce that:

|||U− Uh|||h . Υ̃ + Ψ + |||Uh −Wh|||h, ∀Wh ∈ H ∩Hh ×Mh, (70)

or equivalently,

|||(U−Uh,P−Ph)|||h . Υ̃ + Ψ + inf
Wh∈H∩Hh×Mh

|||Uh −Wh|||h. (71)

Thus, this lemma holds. �

Combining Theorem 4.3 and estimate (65), we have the main result in this subsection:

Theorem 5.1. Under the assumptions of Theorem 4.2, the a posteriori error estimator Υ
satisfies (60).

5.2.2. Proof of the Efficiency Estimate. In this subsection, we shall prove the estimate
(61). We bound each term of the residual separately. Since by theorem4.2 the jump of U =
(u, ηp) ∈ H × Xp is zero through all the edges of Ωp, hence for all i ∈ {8, 9, 10, 11}, we clearly
have:

Υ2
i,K . JK(Uh,Uh)) = JK(Uh −U,Uh −U) . |||(U−Uh,P−Ph)|||h,K (72)

Hence it remains to estimate the local indicators for i ≤ 7.

(1) Residual Element r1,K in Ωf . Let K ∈ T fh and set wK := r1,KbK ∈ [H1
0 (K)]d, and

consider ∫
K

r1,K ·wK =

∫
K

[fK,f +∇ · σf (uh, ph)] ·wK (73)

Introduce f and use the weak formulation (19) with V = (wK ,0) ∈ H to get,∫
K

r1,K ·wK =

∫
K

(fK,f − f) ·wK

+

∫
K

(2µD(u) : D(wK)− p div wK)

+

∫
K

[2µdiv D(uh)−∇ph] ·wK

Integrating by parts in this last term we get∫
K

r1,K ·wK =

∫
K

(fK,f − f) ·wK + 2µ

∫
K

D(u− uh) : D(wK)

−
∫
K

(p− ph) div wK .
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Cauchy-Schwarz inequality implies that∫
K

r1,K ·wK . ‖ f− fK,f ‖K‖ wK ‖K +[2µ ‖ ∇(u− uh) ‖K + ‖ p− ph ‖K ] ‖ ∇wK ‖K

The inverse inequalities (55), (56) and the obvious relation ‖ wK ‖K6‖ r1,K ‖K imply

‖ r1,K ‖2K . [‖ f− fK,f ‖K +h−1
K ‖ ∇(u− uh) ‖K +h−1

K ‖ p− ph ‖K ] ‖ r1,K ‖K
or equivalently,

hK ‖ r1,K ‖K . ΨK + |||(U−Uh,P−Ph)|||h,K (74)

(2) Residual Element r4,K in Ωp. Let K ∈ T ph and wK := r4,KbK ∈ [H1
0 (K)]d and we

consider ∫
K

r4,K ·wK =

∫
K

[fK,p +∇ · σp(ηph, pph)] ·wK (75)

introduce f and use the weak formulation (19) with V = (0,wK) ∈ H to get∫
K

r4,K ·wK =

∫
K

(fK,p − f) ·wK +

∫
K

2µpD(ηp) : D(wK)

+

∫
K

λp∇ · ηp∇ ·wK − α
∫
K

pp∇ ·wK

+ α

∫
K

∇pph ·wK −
∫
K

∇[λp(∇ · ηph)] ·wK −
∫
K

∇ · [2µpD(ηph)] ·wK

Integrating by parts in these three last terms we get∫
K

r4,K ·wK =

∫
K

(fK,p − f) ·wK +

∫
K

2µpD(ηp − ηph) : D(wK)

+

∫
K

λp∇ · (ηp − ηph)∇ ·wK − α
∫
K

(pp − pph)∇ ·wK .

Cauchy-Schwarz inequality, the conditions 0 < λmin ≤ λp(x) ≤ λmax and 0 < µmin ≤
µp(x) ≤ µmax for all x ∈ Ωp, and the inverse inequalities (55), (56) lead to

hK ‖ r4,K ‖K . ΨK + |||(U−Uh,P−Ph)|||h,K (76)

From (74) and (76), we deduce:

Υ1,K . ΨK + |||(U−Uh,P−Ph)|||h,K . (77)

(3) Residual Element R3 in Ωp. Let K ∈ T ph and, use the relation µK−1u +∇p = 0 in
Ωp to obtain

R3 = [µK−1uh +∇ph]

= −[µK−1u +∇p] + [µK−1uh) +∇(ph)]

= −[µK−1(u− uh) +∇(p− ph)]

As before Cauchy-Schwarz inequality leads to

Υ2,K =‖ R3 ‖0,K . |||(U−Uh,P−Ph)|||h,K (78)

(4) Curl Residual Element curl R3 in Ωp: For K ∈ T ph , we use also the relation µK−1u+
∇p = 0 in Ωp to obtain

curl R3 = curl(µK−1uh +∇ph)

= − curl[µK−1u +∇p] + curl[µK−1uh) +∇(ph)]

= − curl[µK−1(u− uh) +∇(p− ph)]

Using Cauchy-Schwarz inequality, we obtain,

Υ3,K =‖ curl R3 ‖0,K . |||(U−Uh,P−Ph)|||h,K (79)
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(5) Residual Element R2 in Ωf : We directly see that

g − div uh = div u− div uh = div(u− uh),

hence by Cauchy-Schwarz inequality we conclude

‖ R2 ‖K . |||(U−Uh,P−Ph)|||h,K . (80)

(6) Residual Element R5 in Ωp: As before, we directly, see that

g − α∇ · ηph +∇ · uh = α∇ · (ηp − ηph) +∇ · (u− uh),

hence by Cauchy-Schwarz inequality we have,

‖ R5 ‖K . |||(U−Uh,P−Ph)|||h,K . (81)

The inequalities (80) and (81) lead to:

Υ4,K . |||(U−Uh,P−Ph)|||h,K . (82)

(7) Normal Jump JE,nE
in Ωf : For each edge/face E ∈ Eh(Ωf ), we consider wE =

K1 ∪K2. As JE,nE
∈ [P0(E)]d we set

wE := −JE,nE
bE ∈ [H1

0 (wE)]d.

First the weak formulation (19) with V = (wE ,0) ∈ H yields

A(U,V) + B(V,P) = L(V),

that is equivalent to∫
wE

f ·wE =

∫
wE

2µD(u) : D(wE)−
∫
wE

p div wE −
∫
∂wE

σf (u, p)nE ·wE . (83)

By elementwise partial integration we further have

−
∫
E

JE,nE
·wE =

∫
wE

2µD(uh) : D(wE)−
∫
wE

ph div(wE)

−
2∑
i=1

∫
Ki

(−2µdiv D(uh) +∇ph) ·wE

Hence by the previous identity (83) we get

−
∫
E

JE,nE
·wE =

2∑
i=1

∫
Ki

[f + 2µdiv D(uh) +∇ph] ·wE

−
∫
wE

D(u− uh) : D(wE) +

∫
wE

(p− ph) div(wE)

We introduce the approximation fh of f, use the Cauchy-Schwarz inequality and the
inverse inequalities (57)-(58) to get

‖ JE,nE
‖E . h

1/2
E

(
2∑
i=1

(‖ f− fh ‖Ki
+ ‖ r1,Ki

‖Ki
)

)
+ h

−1/2
E (|u− uh|1,ωE

+ ‖ p− ph ‖ωE
)

The previous bound (74) of r1,Ki
and the obvious estimate hE 6 hK imply that

h
1/2
E ‖ JE,nE

‖E . |u− uh|1,ωE
+ ‖ p− ph ‖ωE

+
∑

K′⊂ωE

hK′ ‖ f− fh ‖K′ . (84)

(8) Pressure Jump in Ωp : For each edge/face E ∈ Eh(Ωp), we consider ωE = K1 ∪K2.
As [ph]E ∈ P0(E) we set

wE := [ph]EbEnE ∈ [H1
0 (ωE)]d.
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First we notice that as p ∈ H1(ωE) we have by Green formula∫
ωE

(∇p ·wE + p div wE) = 0.

Again by elementwise partial integration we further have∫
E

[ph]EwE .nE =

2∑
i=1

∫
Ki

(∇ph ·wE + ph div wE).

Taking the difference of these two identities we obtain∫
E

[ph]EwE .nE =

2∑
i=1

∫
Ti

(∇(ph − p) ·wE + (ph − p) div wE).

Recalling that ∇p = −µK−1u and introducing the term µK−1uh, we find

∫
E

[ph]EwE .nE =

2∑
i=1

∫
Ki

(∇ph + µK−1u) ·wE + (ph − p) div wE)

=

2∑
i=1

∫
Ki

(∇ph + µK−1uh) ·wE + (ph − p) div wE)

+

2∑
i=1

∫
Ki

(µK−1(u− uh)) ·wE .

Cauchy-Schwarz inequality and inverse inequalities lead to

‖[ph]E‖E .
2∑
i=1

‖R3‖Ki
h

1
2

E + ‖ph − p‖Kih
− 1

2

E

+ h
1
2

E

2∑
i=1

‖K−1(u− uh)‖Ki .

Since hE ≤ 1, then by (78), we deduce that

h
1
2

E‖[ph]E‖E . ‖p− ph‖ωE
+ ‖K−1(u− uh)‖ωE

. (85)

(9) Normal Jump GE,nE
in Ωp: For each edge/face E ∈ Eh(Ωp), we consider wE =

K1 ∪K2. As GE,nE
∈ [P0(E)]d we set

wE := −GE,nE
bE ∈ [H1

0 (wE)]d.

First the weak formulation (19) with V = (0,wE) ∈ H×Xp yields

A(U,V) + B(V,P) = L(V),

that is equivalent to∫
wE

f ·wE =

∫
wE

µK−1u ·wE +

∫
wE

2µpD(ηp) : D(wE)

+

∫
wE

λp∇ · ηp∇ ·wE − α
∫
wE

pp∇ ·wE −
∫
∂wE

[σp(ηp, pp)nE ] ·wE

By elementwise partial integration we further have

−
∫
wE

GE,nE
·wE =

∫
wE

2µpD(ηph) : D(wE) +

∫
wE

λp∇ · ηph∇ ·wE − α
∫
wE

pph∇ ·wE

−
2∑
i=1

∫
Ki

−σp(ηph, pph) ·wE .
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By the previous identity we get,

−
∫
wE

GE,nE
·wE = −

∫
wE

2µpD(ηp − ηph) : D(wE)−
∫
wE

λp∇ · (ηp − ηph)∇ ·wE

+ α

∫
wE

(pp − pph)∇ ·wE +

2∑
i=1

∫
Ki

[fh + σp(ηph, pph)] ·wE

+

∫
wE

µK−1(u− uh) ·wE +

∫
wE

[µK−1uh +∇pph] ·wE

+

2∑
i=1

∫
Ki

(f− fh) ·wE

The previous bounds of r4,K , R3 and the obvious estimate hE ≤ hK imply that

h
1/2
E ‖ GE,nE

‖E . |||(U−Uh,P−Ph)|||h,wE
+ ΨK1 + ΨK2 . (86)

From (84), (85) and (86) we deduce the estimation

Υ7,K . |||(U−Uh,P−Ph)|||h,w̃K
+

∑
K′⊂w̃K

ΨK′ . (87)

(10) Interface Elements on Γfp (Υ5,K and Υ6,K):
To estimate Υ5,K and Υ6,K , we fix an edge E included in Γfp and for a constant rE
fixed later on and a unit vector i, we consider

wE := rEbEi,

that clearly belongs to H. We take W = (wE ,0) and the weak formulation (19) yields:∫
wE

f ·wE = A(U,W) + B(W,P), (88)

that is equivalent to∫
wE

f ·wE =

∫
Kf

[2µD(u) : D(wE)− p∇ ·wE ] +

∫
Kp

[µK−1u ·wE − p∇ ·wE ]

+

d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j uf · τf,j ][wE · τf,j

]
(89)

where Kf (resp. Kp) is the unique triangle/tetrahedron included in Ω̄f (resp. Ω̄p) having
E as edge/face. On the other hand, integrating by parts in Kf and in Kp yields

∫
Kf

(2µD(uh) : D(wE)− ph div wE) +

∫
Kp

(µK−1uh ·wE − ph div wE)

+

d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j uf,h · τf,j ][wE,f · τf,j

]
= −

∫
Kf

(2µdiv D(uh)−∇ph) ·wE +

∫
Kp

(µK−1uh ·wE +∇ph) ·wE

+

d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j uf,h · τf,j ][wE,f · τf,j

]
−
∫
E

([ph]EwE · nE − 2µ(D(uf,hnE) ·wE).
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Subtracting this identity to (89) we find∫
E

([ph]EwE · nE − 2µ(D(uf,hnE) ·wE)−
d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j ufh · τf,j ][wE,f · τf,j

]
=

∫
Kf

(2µD(u− uh) : D(wE)− (p− ph) div wE) +

∫
Kp

(µK−1(u− uh) ·wE − (p− ph) div wE)

+

d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j (uf − ufh) · τf,j ][wE,f · τf,j

]
−
∫
Kf

(f + 2µdiv D(uh)−∇ph) ·wE −
∫
Kp

(−µK−1uh ·wE −∇ph) ·wE .

In that last terms introducing the element residual r1,K and R3, we arrive at

∫
E

([ph]EwE · nE − 2µ(D(uf,h)nE ·wE)−
d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j (uf − ufh) · τf,j ][wE,f · τf,j

]
=

∫
Kf

(2µD(u− uh) : D(wE)− (p− ph) div wE)

+

∫
Kp

(µK−1(u− uh) ·wE − (p− ph) div wE) (90)

+

d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j (uf − ufh) · τf,j ][wE,f · τf,j

]
−
∫
Kf

(f− fh + rf,K) ·wE −
∫
Kp

R3 ·wE .

(a) To estimate Υ5,K , for each j = 1, . . . , d− 1, we take rE = R6(j) and i = τj . With
this choice, the identity (90) and the inverse inequality (57) yield

‖rE‖2E .
∫
Kf

[(2µD(u− uh) : D(wE)− (p− ph) div wE)]

+

∫
Kp

[(µK−1(u− uh) ·wE − (p− ph) div wE)]

+

d−1∑
j=1

∫
Γfp

[
µαBJS

√
K−1
j (uf − ufh) · τf,j ][wE,f · τf,j

]
−

∫
Kf

(f− fh + r1,K) ·wE −
∫
Kp

R3 ·wE .

Hence Cauchy-Schwarz inequality, the inverse inequalities (58) and the estimates of
bounds r1,Kl

and R3 lead to:

h
1
2

E‖R6(j)‖E . |u− uh|h,ωE
+ ‖p− ph‖h,ωE

+ ΨKf
+ ΨKp , (91)

with ωE = Kf ∪Kp.
Thus,

Υ5,K . |||(U−Uh,P−Ph)|||h,w̃K
+

∑
K′⊂w̃K

ΨK′ . (92)

(b) To estimate Υ6,K , we take rE = R7 and i = nf . As before the identity (90), the
inverse inequalities (57) and (58) and the estimates of bounds rK,l and R3 lead to

Υ6,K . |||(U−Uh,P−Ph)|||h,w̃K
+

∑
K′⊂w̃K

ΨK′ . (93)
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Combining The estimates (72), (77), (78), (79), (82), (85), (87) and (92) we have the main result
of this section:

Theorem 5.2. Under the assumptions of Theorem 4.2, the family {ΥK}K∈Th satisfies (61).

6. Summary

In this paper we have discussed a posteriori error estimates for a finite element approximation
of the Stokes-Biot system. A residual type a posteriori error estimator is provided, that is both
reliable and efficient. Many issues remain to be addressed in this area, let us mention other types
of a posteriori error estimators or implementation and convergence analysis of adaptive finite
element methods. Further it is well known that an internal layer appears at the interface Γfp as
the permeability tensor degenerates, in that case anisotropic meshes have to be used in this layer
(see for instance [8]). Hence we intend to extend our results to such anisotropic meshes.
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[3] S. Caucao, G. N. Gatica, and R. Oyarzùa. A posteriori error analysis of a fully-mixed formulation for the Navier-

Stokes/Darcy coupled problem with nonlinear viscosity. Comput. Methods Appl. Mech. Engrg., 315:943–971,

2016.
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