References
Allesina, S. & Pascual, M. (2009). Googling food webs: Can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. , 5.
Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos , 117, 1227–1239.
Barnes, C., Jennings, S. & Barry, J.T. (2009). Environmental correlates of large-scale spatial variation in the δ13C of marine animals.Estuar. Coast. Shelf Sci. , 81, 368–374.
Baum, J.K. & Worm, B. (2009). Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. , 78, 699–714.
Beukhof, E., Dencker, T.S., Palomares, M.L.D. & Maureaud, A. (2019a). A trait collection of marine fish species from North Atlantic and Northeast Pacific continental shelf seas.
Beukhof, E., Frelat, R., Pecuchet, L., Maureaud, A., Dencker, T.S., Sólmundsson, J., et al. (2019b). Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. , 9, 17878.
Blanchard, J.L., Law, R., Castle, M.D. & Jennings, S. (2011). Coupled energy pathways and the resilience of size-structured food webs.Theor. Ecol. , 4, 289–300.
Bonacich, P. (1987). Power and centrality: A familly of measures.Am. J. Sociol. , 92, 1170–1182.
Corcoran-Barrios, D., Avila-Thieme, M.I., Valdovinos, F.S., Navarrete, S.A. & Marquet, P.A. (2019). NetworkExtinction.
Curtsdotter, A., Binzer, A., Brose, U., de Castro, F., Ebenman, B., Eklöf, A., et al. (2011). Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs. Basic Appl. Ecol. , 12, 571–580.
Dee, L.E., Allesina, S., Bonn, A., Eklöf, A., Gaines, S.D., Hines, J.,et al. (2017). Operationalizing Network Theory for Ecosystem Service Assessments. Trends Ecol. Evol. , 32, 118–130.
Delmas, E., Besson, M., Brice, M.H., Burkle, L.A., Dalla Riva, G. V., Fortin, M.J., et al. (2019). Analysing ecological networks of species interactions. Biol. Rev. , 94, 16–36.
Duarte, C.M., Agusti, S., Barbier, E., Britten, G.L., Castilla, J.C., Gattuso, J.P., et al. (2020). Rebuilding marine life.Nature , 580, 39–51.
Dunne, J.A. & Williams, R.J. (2009). Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci. , 364, 1711–1723.
Dunne, J.A., Williams, R.J. & Martinez, I. (2002). Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. , 5, 558–567.
Dunne, J.A., Williams, R.J. & Martinez, N.D. (2004). Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. , 273, 291–302.
Estrada, E. (2007). Characterization of topological keystone species. Local, global and “meso-scale” centralities in food webs. Ecol. Complex. , 4, 48–57.
Gaichas, S.K. & Francis, R.C. (2008). Network models for ecosystem-based fishery analysis: A review of concepts and application to the Gulf of Alaska marine food web. Can. J. Fish. Aquat. Sci. , 65, 1965–1982.
Garren, F., Laffargue, P. & Duhamel, E. (2019). EVHOE 2019 cruise, RV Thalassa.
Gilarranz, L.J., Mora, C. & Bascompte, J. (2016). Anthropogenic effects are associated with a lower persistence of marine food webs. Nat. Commun. , 7, 1–5.
Guénette, S. & Gascuel, D. (2012). Shifting baselines in European fisheries: The case of the Celtic Sea and Bay of Biscay. Ocean Coast. Manag. , 70, 10–21.
Harvey, E., Gounand, I., Ward, C.L. & Altermatt, F. (2017). Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. , 54, 371–379.
Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Loc’h, F. Le & Albouy, C. (2016). Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change.Ecography (Cop.). , 39, 1227–1237.
Hernvann, P.-Y. & Gascuel, D. (2020). Exploring the impacts of fishing and environment on the Celtic Sea ecosystem since 1950. Fish. Res. , 225, 105472.
Hernvann, P.-Y., Grüss, A., Gascuel, D., Kopp, D., Robert, M., Piroddi, C., et al. (2020). The Celtic Sea through time and space: ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci.
Hill, M.O. & Smith, J.E. (1976). Principal component analysis of taxonomic data with multi-state discrete characters. Taxon , 25, 249–255.
ICES. (2018a). Celtic Seas Ecoregion. In: ICES Ecosystem Overviews . pp. 1–17.
ICES. (2018b). ICES Fisheries Overviews Celtic Seas Ecoregion.ICES Advice 2018 , 1–37.
ICES. (2019). Official Nominal Catches 2006-2017. Version 16-09-2019. Available at: http://ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx. Last accessed 16 September 2019.
ICES. (2020). Working Group for the Celtic Seas Ecoregion (WGCSE) . ICES Sci. reports .
IPCC. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Work- ing Group II to the Third Assessment Report of the IPCC . Press Synd. Univ. Cambridge .
Jennings, S. & van der Molen, J. (2015). Trophic levels of marine consumers from nitrogen stable isotope analysis: estimation and uncertainty. ICES J. Mar. Sci. , 72, 2289–2300.
Jennings, S., Reynolds, J.D., Mills, S.C., Jennings, S., Reynolds, J.D. & Mills, S.C. (1998). Life History Correlates of Responses to Fisheries Exploitation. Proc. R. Soc. B Biol. Sci. , 265, 333–339.
Jonsson, T., Berg, S., Pimenov, A., Palmer, C. & Emmerson, M. (2015). The reliability of R50 as a measure of vulnerability of food webs to sequential species deletions. Oikos , 124, 446–457.
Jordán, F. (2009). Keystone species and food webs. Philos. Trans. R. Soc. B Biol. Sci. , 364, 1733–1741.
Jordán, F., Liu, W.C. & Davis, A.J. (2006). Topological keystone species: Measures of positional importance in food webs. Oikos , 112, 535–546.
Klemm, K., Serrano, M.Á., Eguíluz, V.M. & Miguel, M.S. (2012). A measure of individual role in collective dynamics. Sci. Rep. , 2, 1–8.
Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A. V. & Planque, B. (2018). Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography (Cop.).
Martinez, N.D. (1992). Constant Connectance in Community Food Webs.Am. Nat. , 139, 1208–1218.
Mérillet, L., Kopp, D., Robert, M., Mouchet, M. & Pavoine, S. (2020). Environment outweighs the effects of fishing in regulating demersal community structure in an exploited marine ecosystem. Glob. Chang. Biol. , 2106–2119.
Moullec, F., Gascuel, D., Bentorcha, K., Guénette, S. & Robert, M. (2017). Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems? J. Mar. Syst. , 172, 104–117.
Newman, M.E.J. & Girvan, M. (2004). Finding and evaluating community structure in networks. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. , 69, 1–15.
Nordstrom, M.C., Aarnio, K., Tornroos, A. & Bonsdorff, E. (2015). Nestedness of trophic links and biological traits in a marine food web.Ecosphere , 6, 1–14.
Pauly, D. & Palomares, M. (2005). Fishing Down Marine Food Web- It is Far More Pervasive Than We Thought. Bull. Mar. Sci. , 76, 197–211.
Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C., et al. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.Science (80-. ). , 355.
Pianka, E.R. (1970). On r- and K-Selection. Am. Nat. , 104, 592–597.
Post, D.M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology , 83, 703–718.
Le Quesne, W.J.F. & Jennings, S. (2012). Predicting species vulnerability with minimal data to support rapid risk assessment of fishing impacts on biodiversity. J. Appl. Ecol. , 49, 20–28.
R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Found. Stat. Comput.
Robinson, M.L. & Strauss, S.Y. (2020). Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure. Proc. Natl. Acad. Sci. U. S. A. , 117, 2043–2048.
Scotti, M. & Jordán, F. (2010). Relationships between centrality indices and trophic levels in food webs. Community Ecol. , 11, 59–67.
Staniczenko, P.P.A., Lewis, O.T., Jones, N.S. & Reed-Tsochas, F. (2010). Structural dynamics and robustness of food webs. Ecol. Lett. , 13, 891–899.
Stouffer, D.B. & Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. , 108, 3648–3652.
Sweeting, C.J., Polunin, N.V.C. & Jennings, S. (2006). Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. , 20, 595–601.
Thébault, E. & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science (80-. ). , 329, 853–856.
Tillin, H.M., Hull, S.C. & Tyler-walters, H. (2010). Development of a Sensitivity Matrix (pressures-MCZ/MPA features) .
van Treeck, R., Van Wichelen, J. & Wolter, C. (2020). Fish species sensitivity classification for environmental impact assessment, conservation and restoration planning. Sci. Total Environ. , 708, 135173.
Tylianakis, J.M., Tscharntke, T. & Lewis, O.T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs.Nature , 445, 202–205.
De Visser, S.N., Freymann, B.P. & Olff, H. (2011). The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. , 80, 484–494.
Wallach, A.D., Dekker, A.H., Lurgi, M., Montoya, J.M., Fordham, D.A. & Ritchie, E.G. (2017). Trophic cascades in 3D: network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. , 8, 135–142.
Wiedmann, M., Primicerio, R., Dolgov, A., Ottesen, C. & Aschan, M. (2014). Life history variation in Barents Sea fish: Implications for sensitivity to fishing in a changing environment. Ecol. Evol. , 4, 3596–3611.
Winemiller, K.O. & Rose, K.A. (1992). Patterns of life-history diversification in North American fishes: implications for population regulation. Can. J. Fish. Aquat. Sci. , 49, 2196–2218.
Worm, B. & Paine, R.T. (2016). Humans as a Hyperkeystone Species.Trends Ecol. Evol. , 31, 600–607.
Zhou, S., Kolding, J., Garcia, S.M., Plank, M.J., Bundy, A., Charles, A., et al. (2019). Balanced harvest: concept, policies, evidence, and management implications. Rev. Fish Biol. Fish. , 29, 711–733.