Reference
1 Vergara Martínez, V. M. et al. Methyl Jasmonate and Salicylic
Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus
Cultures of Lepechinia Caulescens. Pharmacognosy magazine13 , S886-s889, doi:10.4103/pm.pm_77_17 (2018).
2 Andre, C. M. et al. Anti-inflammatory procyanidins and
triterpenes in 109 apple varieties. Journal of agricultural and
food chemistry 60 , 10546-10554, doi:10.1021/jf302809k (2012).
3 Baricevic, D. et al. Topical anti-inflammatory activity of
Salvia officinalis L. leaves: the relevance of ursolic acid.Journal of ethnopharmacology 75 , 125-132,
doi:10.1016/s0378-8741(00)00396-2 (2001).
4 Saravanan, R., Viswanathan, P. & Pugalendi, K. V. Protective effect
of ursolic acid on ethanol-mediated experimental liver damage in rats.Life sciences 78 , 713-718, doi:10.1016/j.lfs.2005.05.060
(2006).
5 Ullevig, S. L., Zhao, Q., Zamora, D. & Asmis, R. Ursolic acid
protects diabetic mice against monocyte dysfunction and accelerated
atherosclerosis. Atherosclerosis 219 , 409-416,
doi:10.1016/j.atherosclerosis.2011.06.013 (2011).
6 Kurek, A., Markowska, K., Grudniak, A. M., Janiszowska, W. & Wolska,
K. I. The effect of oleanolic and ursolic acids on the hemolytic
properties and biofilm formation of Listeria monocytogenes. Polish
journal of microbiology 63 , 21-25 (2014).
7 Xiang, L. et al. A pentacyclic triterpene natural product,
ursolic acid and its prodrug US597 inhibit targets within cell adhesion
pathway and prevent cancer metastasis. Oncotarget 6 ,
9295-9312, doi:10.18632/oncotarget.3261 (2015).
8 Rashid, S., Dar, B. A., Majeed, R., Hamid, A. & Bhat, B. A. Synthesis
and biological evaluation of ursolic acid-triazolyl derivatives as
potential anti-cancer agents. European journal of medicinal
chemistry 66 , 238-245, doi:10.1016/j.ejmech.2013.05.029
(2013).
9 Jin, H. et al. Ursolic acid-loaded chitosan nanoparticles
induce potent anti-angiogenesis in tumor. Applied microbiology and
biotechnology 100 , 6643-6652, doi:10.1007/s00253-016-7360-8
(2016).
10 Pateraki, I., Heskes, A. M. & Hamberger, B. Cytochromes P450 for
terpene functionalisation and metabolic engineering. Advances in
biochemical engineering/biotechnology 148 , 107-139,
doi:10.1007/10_2014_301 (2015).
11 Li, J. S., Wang, W. J., Sun, Y., Zhang, Y. H. & Zheng, L. Ursolic
acid inhibits the development of nonalcoholic fatty liver disease by
attenuating endoplasmic reticulum stress. Food & function6 , 1643-1651, doi:10.1039/c5fo00083a (2015).
12 Paramasivan, K. & Mutturi, S. Progress in terpene synthesis
strategies through engineering of Saccharomyces cerevisiae.Critical reviews in biotechnology 37 , 974-989,
doi:10.1080/07388551.2017.1299679 (2017).
13 Xiao, H. & Zhong, J. J. Production of Useful Terpenoids by
Higher-Fungus Cell Factory and Synthetic Biology Approaches.Trends in biotechnology 34 , 242-255,
doi:10.1016/j.tibtech.2015.12.007 (2016).
14 Lim, S. W. et al. Simultaneous effect of ursolic acid and
oleanolic acid on epidermal permeability barrier function and epidermal
keratinocyte differentiation via peroxisome proliferator-activated
receptor-alpha. The Journal of dermatology 34 , 625-634,
doi:10.1111/j.1346-8138.2007.00344.x (2007).
15 Yu, Z. et al. Pharmacokinetics in Vitro and in Vivo of Two
Novel Prodrugs of Oleanolic Acid in Rats and Its Hepatoprotective
Effects against Liver Injury Induced by CCl4. Molecular
pharmaceutics 13 , 1699-1710,
doi:10.1021/acs.molpharmaceut.6b00129 (2016).
16 Pompei, R., Flore, O., Marccialis, M. A., Pani, A. & Loddo, B.
Glycyrrhizic acid inhibits virus growth and inactivates virus particles.Nature 281 , 689-690, doi:10.1038/281689a0 (1979).
17 Paddon, C. J. et al. High-level semi-synthetic production of
the potent antimalarial artemisinin. Nature 496 ,
528-532, doi:10.1038/nature12051 (2013).
18 Zhuang, Y. et al. Biosynthesis of plant-derived ginsenoside
Rh2 in yeast via repurposing a key promiscuous microbial enzyme.Metabolic engineering 42 , 25-32,
doi:10.1016/j.ymben.2017.04.009 (2017).
19 Zhao, Y., Fan, J., Wang, C., Feng, X. & Li, C. Enhancing oleanolic
acid production in engineered Saccharomyces cerevisiae.Bioresource technology 257 , 339-343,
doi:10.1016/j.biortech.2018.02.096 (2018).
20 Ma, T. et al. Lipid engineering combined with systematic
metabolic engineering of Saccharomyces cerevisiae for high-yield
production of lycopene. Metabolic engineering 52 ,
134-142, doi:10.1016/j.ymben.2018.11.009 (2019).
21 Mancha-Ramirez, A. M. & Slaga, T. J. Ursolic Acid and Chronic
Disease: An Overview of UA’s Effects On Prevention and Treatment of
Obesity and Cancer. Advances in experimental medicine and biology928 , 75-96, doi:10.1007/978-3-319-41334-1_4 (2016).
22 Hussain, H. et al. Ursolic acid derivatives for pharmaceutical
use: a patent review (2012-2016). Expert opinion on therapeutic
patents 27 , 1061-1072, doi:10.1080/13543776.2017.1344219
(2017).
23 Checker, R. et al. Potent anti-inflammatory activity of
ursolic acid, a triterpenoid antioxidant, is mediated through
suppression of NF-κB, AP-1 and NF-AT. PloS one 7 ,
e31318, doi:10.1371/journal.pone.0031318 (2012).
24 Kong, L. et al. Oleanolic acid and ursolic acid: novel
hepatitis C virus antivirals that inhibit NS5B activity. Antiviral
research 98 , 44-53, doi:10.1016/j.antiviral.2013.02.003
(2013).
25 Yim, E. K., Lee, M. J., Lee, K. H., Um, S. J. & Park, J. S.
Antiproliferative and antiviral mechanisms of ursolic acid and
dexamethasone in cervical carcinoma cell lines. International
journal of gynecological cancer : official journal of the International
Gynecological Cancer Society 16 , 2023-2031,
doi:10.1111/j.1525-1438.2006.00726.x (2006).
26 Kunkel, S. D. et al. Ursolic acid increases skeletal muscle
and brown fat and decreases diet-induced obesity, glucose intolerance
and fatty liver disease. PloS one 7 , e39332,
doi:10.1371/journal.pone.0039332 (2012).
27 Dong, X. et al. Downregulation of miR-21 is involved in direct
actions of ursolic acid on the heart: implications for cardiac fibrosis
and hypertrophy. Cardiovascular therapeutics 33 ,
161-167, doi:10.1111/1755-5922.12125 (2015).
28 Meng, Y. et al. Ursolic Acid Induces Apoptosis of Prostate
Cancer Cells via the PI3K/Akt/mTOR Pathway. The American journal
of Chinese medicine 43 , 1471-1486,
doi:10.1142/s0192415x15500834 (2015).
29 Mendes, V. I. S., Bartholomeusz, G. A., Ayres, M., Gandhi, V. &
Salvador, J. A. R. Synthesis and cytotoxic activity of novel A-ring
cleaved ursolic acid derivatives in human non-small cell lung cancer
cells. European journal of medicinal chemistry 123 ,
317-331, doi:10.1016/j.ejmech.2016.07.045 (2016).
30 Ramachandran, S. & Prasad, N. R. Effect of ursolic acid, a
triterpenoid antioxidant, on ultraviolet-B radiation-induced
cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes.Chemico-biological interactions 176 , 99-107,
doi:10.1016/j.cbi.2008.08.010 (2008).
31 Ramírez-Rodríguez, A. M., González-Ortiz, M., Martínez-Abundis, E. &
Acuña Ortega, N. Effect of Ursolic Acid on Metabolic Syndrome, Insulin
Sensitivity, and Inflammation. Journal of medicinal food20 , 882-886, doi:10.1089/jmf.2017.0003 (2017).
32 Li, S. et al. Therapeutic role of ursolic acid on ameliorating
hepatic steatosis and improving metabolic disorders in high-fat
diet-induced non-alcoholic fatty liver disease rats. PloS one9 , e86724, doi:10.1371/journal.pone.0086724 (2014).
33 Xia, E. Q. et al. Microwave-assisted extraction of oleanolic
acid and ursolic acid from Ligustrum lucidum Ait. International
journal of molecular sciences 12 , 5319-5329,
doi:10.3390/ijms12085319 (2011).
34 Yoshida, M. et al. Antiproliferative constituents from
Umbelliferae plants VII. Active triterpenes and rosmarinic acid from
Centella asiatica. Biological & pharmaceutical bulletin28 , 173-175, doi:10.1248/bpb.28.173 (2005).
35 Papadopoulou, K., Melton, R. E., Leggett, M., Daniels, M. J. &
Osbourn, A. E. Compromised disease resistance in saponin-deficient
plants. Proceedings of the National Academy of Sciences of the
United States of America 96 , 12923-12928,
doi:10.1073/pnas.96.22.12923 (1999).
36 Jäger, S., Trojan, H., Kopp, T., Laszczyk, M. N. & Scheffler, A.
Pentacyclic triterpene distribution in various plants - rich sources for
a new group of multi-potent plant extracts. Molecules (Basel,
Switzerland) 14 , 2016-2031, doi:10.3390/molecules14062016
(2009).
37 Brendolise, C. et al. An unusual plant triterpene synthase
with predominant α-amyrin-producing activity identified by
characterizing oxidosqualene cyclases from Malus × domestica. The
FEBS journal 278 , 2485-2499,
doi:10.1111/j.1742-4658.2011.08175.x (2011).
38 Farneti, B. et al. Is there room for improving the
nutraceutical composition of apple? Journal of agricultural and
food chemistry 63 , 2750-2759, doi:10.1021/acs.jafc.5b00291
(2015).
39 Guinda, A., Rada, M., Delgado, T. & Castellano, J. M. Pentacyclic
triterpenic acids from Argania spinosa. Eur. J. Lipid Sci.
Technol. 113 , 231-237, doi:10.1002/ejlt.201000342 (2011).
40 Kowalski, R. Studies of selected plant raw materials as alternative
sources of triterpenes of oleanolic and ursolic acid types.Journal of agricultural and food chemistry 55 , 656-662,
doi:10.1021/jf0625858 (2007).
41 Wojciak-Kosior, M., Sowa, I., Kocjan, R. & Nowak, R. Effect of
different extraction techniques on quantification of oleanolic and
ursolic acid in Lamii albi flos. Industrial Crops and Products44 , 373-377, doi:10.1016/j.indcrop.2012.11.018 (2013).
42 Fu, Q., Zhang, L., Cheng, N., Jia, M. & Zhang, Y. Extraction
optimization of oleanolic and ursolic acids from pomegranate (Punica
granatum L.) flowers. Food and Bioproducts Processing92 , 321-327, doi:10.1016/j.fbp.2012.12.006 (2014).
43 Sheng, H. & Sun, H. Synthesis, biology and clinical significance of
pentacyclic triterpenes: a multi-target approach to prevention and
treatment of metabolic and vascular diseases. Natural product
reports 28 , 543-593, doi:10.1039/c0np00059k (2011).
44 Yin, M. C., Lin, M. C., Mong, M. C. & Lin, C. Y. Bioavailability,
distribution, and antioxidative effects of selected triterpenes in mice.Journal of agricultural and food chemistry 60 ,
7697-7701, doi:10.1021/jf302529x (2012).
45 Sultana, N. Clinically useful anticancer, antitumor, and antiwrinkle
agent, ursolic acid and related derivatives as medicinally important
natural product. Journal of enzyme inhibition and medicinal
chemistry 26 , 616-642, doi:10.3109/14756366.2010.546793
(2011).
46 Mazumder, K., Tanaka, K. & Fukase, K. Cytotoxic activity of ursolic
acid derivatives obtained by isolation and oxidative derivatization.Molecules (Basel, Switzerland) 18 , 8929-8944,
doi:10.3390/molecules18088929 (2013).
47 Liu, M. C. et al. Synthesis and cytotoxicity of novel ursolic
acid derivatives containing an acyl piperazine moiety. European
journal of medicinal chemistry 58 , 128-135,
doi:10.1016/j.ejmech.2012.08.048 (2012).
48 Bai, K. K. et al. Synthesis and evaluation of ursolic acid
derivatives as potent cytotoxic agents. Bioorganic & medicinal
chemistry letters 22 , 2488-2493,
doi:10.1016/j.bmcl.2012.02.009 (2012).
49 Chadalapaka, G., Jutooru, I., McAlees, A., Stefanac, T. & Safe, S.
Structure-dependent inhibition of bladder and pancreatic cancer cell
growth by 2-substituted glycyrrhetinic and ursolic acid derivatives.Bioorganic & medicinal chemistry letters 18 , 2633-2639,
doi:10.1016/j.bmcl.2008.03.031 (2008).
50 Shanmugam, M. K. et al. Oleanolic acid and its synthetic
derivatives for the prevention and therapy of cancer: preclinical and
clinical evidence. Cancer letters 346 , 206-216,
doi:10.1016/j.canlet.2014.01.016 (2014).
51 Tu, H. Y. et al. Ursolic acid derivatives induce cell cycle
arrest and apoptosis in NTUB1 cells associated with reactive oxygen
species. Bioorganic & medicinal chemistry 17 ,
7265-7274, doi:10.1016/j.bmc.2009.08.046 (2009).
52 Leal, A. S., Wang, R., Salvador, J. A. & Jing, Y. Synthesis of novel
ursolic acid heterocyclic derivatives with improved abilities of
antiproliferation and induction of p53, p21waf1 and NOXA in pancreatic
cancer cells. Bioorganic & medicinal chemistry 20 ,
5774-5786, doi:10.1016/j.bmc.2012.08.010 (2012).
53 Liu, X. T. et al. Cholestane and spirostane glycosides from
the rhizomes of Dioscorea septemloba. Phytochemistry 69 ,
1411-1418, doi:10.1016/j.phytochem.2007.12.014 (2008).
54 Tian, J. et al. Dibenzo-α-pyrones from the endophytic fungus
Alternaria sp. Samif01: isolation, structure elucidation, and their
antibacterial and antioxidant activities. Natural product
research 31 , 387-396, doi:10.1080/14786419.2016.1205052
(2017).
55 Zhang, L. H., Wang, H. W., Xu, J. Y., Li, J. & Liu, L. A new
Secondary metabolites of the crinoid (Comanthina schlegeli) associated
fungus Alternaria brassicae 93. Natural product research30 , 2305-2310, doi:10.1080/14786419.2016.1166498 (2016).
56 Liu, D. L., Liu, Y., Qiu, F., Gao, Y. & Zhang, J. Z.
Biotransformation of oleanolic acid by Alternaria longipes and
Penicillium adametzi. Journal of Asian natural products research13 , 160-167, doi:10.1080/10286020.2010.547028 (2011).
57 Zhang, J., Cheng, Z. H., Yu, B. Y., Cordell, G. A. & Qiu, S. X. J.
T. L. Novel biotransformation of pentacyclic triterpenoid acids by
Nocardia sp. NRRL 5646. 46 , 2337-2340 (2005).
58 Leipold, D. et al. Biosynthesis of ursolic acid derivatives by
microbial metabolism of ursolic acid with Nocardia sp.
strains—Proposal of new biosynthetic pathways. 45 , 1043-1051
(2010).
59 Fu, S. B. et al. Multihydroxylation of ursolic acid by
Pestalotiopsis microspora isolated from the medicinal plant Huperzia
serrata. Fitoterapia 82 , 1057-1061,
doi:10.1016/j.fitote.2011.06.009 (2011).
60 Ibrahim, A. et al. Microbial metabolism of biologically active
secondary metabolites from Nerium oleander L. Chemical &
pharmaceutical bulletin 56 , 1253-1258, doi:10.1248/cpb.56.1253
(2008).
61 Huang, F. X. et al. Microbial transformation of ursolic acid
by Syncephalastrum racemosum (Cohn) Schroter AS 3.264.Phytochemistry 82 , 56-60,
doi:10.1016/j.phytochem.2012.06.020 (2012).
62 Zhang, C. X., Ma, W. J., Liu, D. L., Jia, X. J. & Zhao, Y. M.
Biotransformation of ursolic acid by Alternaria longipes AS3.2875.Natural product research 32 , 536-543,
doi:10.1080/14786419.2017.1327860 (2018).
63 Zhang, S.-S. et al. Three new triterpenoids transformed from
ursolic acid by Mucor spinosus AS3.3450 and their cytotoxicity.Phytochemistry Letters 32 , 33-37,
doi:https://doi.org/10.1016/j.phytol.2019.04.019(2019).
64 Dai, Z., Liu, Y., Huang, L. & Zhang, X. Production of miltiradiene
by metabolically engineered Saccharomyces cerevisiae.Biotechnology and bioengineering 109 , 2845-2853,
doi:10.1002/bit.24547 (2012).
65 Liu, H., Fan, J., Wang, C., Li, C. & Zhou, X. Enhanced β-Amyrin
Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA
Supply Pathway. Journal of agricultural and food chemistry67 , 3723-3732, doi:10.1021/acs.jafc.9b00653 (2019).
66 Katabami, A. et al. Production of squalene by squalene
synthases and their truncated mutants in Escherichia coli. Journal
of bioscience and bioengineering 119 , 165-171,
doi:10.1016/j.jbiosc.2014.07.013 (2015).
67 Leonard, E. et al. Combining metabolic and protein engineering
of a terpenoid biosynthetic pathway for overproduction and selectivity
control. Proceedings of the National Academy of Sciences of the
United States of America 107 , 13654-13659,
doi:10.1073/pnas.1006138107 (2010).
68 Trikka, F. A. et al. Iterative carotenogenic screens identify
combinations of yeast gene deletions that enhance sclareol production.Microbial cell factories 14 , 60,
doi:10.1186/s12934-015-0246-0 (2015).
69 Westfall, P. J. et al. Production of amorphadiene in yeast,
and its conversion to dihydroartemisinic acid, precursor to the
antimalarial agent artemisinin. Proceedings of the National
Academy of Sciences of the United States of America 109 ,
E111-118, doi:10.1073/pnas.1110740109 (2012).
70 Zhao, J. et al. Dynamic control of ERG20 expression combined
with minimized endogenous downstream metabolism contributes to the
improvement of geraniol production in Saccharomyces cerevisiae.Microbial cell factories 16 , 17,
doi:10.1186/s12934-017-0641-9 (2017).
71 Kushiro, T., Shibuya, M. & Ebizuka, Y. Beta-amyrin
synthase–cloning of oxidosqualene cyclase that catalyzes the
formation of the most popular triterpene among higher plants.European journal of biochemistry 256 , 238-244,
doi:10.1046/j.1432-1327.1998.2560238.x (1998).
72 Hu, Y. et al. Metabolic engineering of Saccharomyces
cerevisiae for production of germacrene A, a precursor of beta-elemene.Journal of industrial microbiology & biotechnology 44 ,
1065-1072, doi:10.1007/s10295-017-1934-z (2017).
73 Czarnotta, E. et al. Fermentation and purification strategies
for the production of betulinic acid and its lupane-type precursors in
Saccharomyces cerevisiae. Biotechnology and bioengineering114 , 2528-2538, doi:10.1002/bit.26377 (2017).
74 Klingenberg, M. Pigments of rat liver microsomes. Archives of
biochemistry and biophysics 75 , 376-386,
doi:10.1016/0003-9861(58)90436-3 (1958).
75 Dai, Z. et al. Identification of a novel cytochrome P450
enzyme that catalyzes the C-2α hydroxylation of pentacyclic
triterpenoids and its application in yeast cell factories.Metabolic engineering 51 , 70-78,
doi:10.1016/j.ymben.2018.10.001 (2019).
76 Lamb, D. C. & Waterman, M. R. Unusual properties of the cytochrome
P450 superfamily. Philosophical transactions of the Royal Society
of London. Series B, Biological sciences 368 , 20120434,
doi:10.1098/rstb.2012.0434 (2013).
77 Chang, C. H. et al. The cysteine 703 to isoleucine or
histidine mutation of the oxidosqualene-lanosterol cyclase from
Saccharomyces cerevisiae generates an iridal-type triterpenoid.Biochimie 94 , 2376-2381,
doi:10.1016/j.biochi.2012.06.014 (2012).
78 Wu, P. et al. Synthesis and Evaluation of Novel Triterpene
Analogues of Ursolic Acid as Potential Antidiabetic Agent. PloS
one 10 , e0138767, doi:10.1371/journal.pone.0138767 (2015).
79 Lu, C., Zhang, C., Zhao, F., Li, D. & Lu, W. Biosynthesis of Ursolic
Acid and Oleanolic Acid in Saccharomyces cerevisiae. Aiche
Journal 64 , 3794-3802, doi:10.1002/aic.16370 (2018).
80 Sun, W. et al. Novel trends for producing plant triterpenoids
in yeast. Critical reviews in biotechnology 39 , 618-632,
doi:10.1080/07388551.2019.1608503 (2019).
81 Zheng, X. et al. Characterisation of two oxidosqualene
cyclases responsible for triterpenoid biosynthesis in Ilex asprella.International journal of molecular sciences 16 ,
3564-3578, doi:10.3390/ijms16023564 (2015).
82 Zhang, G. et al. Refactoring -amyrin synthesis in
Saccharomyces cerevisiae. Aiche Journal 61 , 3172-3179,
doi:10.1002/aic.14950 (2015).
83 Yu, Y. et al. Productive Amyrin Synthases for Efficient
α-Amyrin Synthesis in Engineered Saccharomyces cerevisiae. ACS
synthetic biology 7 , 2391-2402, doi:10.1021/acssynbio.8b00176
(2018).
84 Yu, Y. et al. Engineering Saccharomyces cerevisiae for high
yield production of α-amyrin via synergistic remodeling of α-amyrin
synthase and expanding the storage pool. Metabolic engineering ,
doi:10.1016/j.ymben.2020.08.010 (2020).
85 Yasumoto, S., Fukushima, E. O., Seki, H. & Muranaka, T. Novel
triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily
enzymes. FEBS letters 590 , 533-540,
doi:10.1002/1873-3468.12074 (2016).
86 Fukushima, E. O. et al. CYP716A subfamily members are
multifunctional oxidases in triterpenoid biosynthesis. Plant &
cell physiology 52 , 2050-2061, doi:10.1093/pcp/pcr146 (2011).
87 Moses, T. et al. OSC2 and CYP716A14v2 catalyze the
biosynthesis of triterpenoids for the cuticle of aerial organs of
Artemisia annua. The Plant cell 27 , 286-301,
doi:10.1105/tpc.114.134486 (2015).
88 Yasumoto, S., Seki, H., Shimizu, Y., Fukushima, E. O. & Muranaka, T.
Functional Characterization of CYP716 Family P450 Enzymes in
Triterpenoid Biosynthesis in Tomato. Frontiers in plant science8 , 21, doi:10.3389/fpls.2017.00021 (2017).
89 Suzuki, H. et al. Comparative analysis of CYP716A subfamily
enzymes for the heterologous production of C-28 oxidized triterpenoids
in transgenic yeast. Plant biotechnology (Tokyo, Japan)35 , 131-139, doi:10.5511/plantbiotechnology.18.0416a (2018).
90 Han, J. Y., Kim, M. J., Ban, Y. W., Hwang, H. S. & Choi, Y. E. The
involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type
ginsenoside biosynthesis in Panax ginseng. Plant & cell
physiology 54 , 2034-2046, doi:10.1093/pcp/pct141 (2013).
91 Khakimov, B. et al. Identification and genome organization of
saponin pathway genes from a wild crucifer, and their use for transient
production of saponins in Nicotiana benthamiana. The Plant journal
: for cell and molecular biology 84 , 478-490,
doi:10.1111/tpj.13012 (2015).
92 Miettinen, K. et al. The ancient CYP716 family is a major
contributor to the diversification of eudicot triterpenoid biosynthesis.Nature communications 8 , 14153, doi:10.1038/ncomms14153
(2017).
93 Andre, C. M. et al. Multifunctional oxidosqualene cyclases and
cytochrome P450 involved in the biosynthesis of apple fruit triterpenic
acids. The New phytologist 211 , 1279-1294,
doi:10.1111/nph.13996 (2016).
94 Tamura, K. et al. CYP716A179 functions as a triterpene C-28
oxidase in tissue-cultured stolons of Glycyrrhiza uralensis. Plant
cell reports 36 , 437-445, doi:10.1007/s00299-016-2092-x
(2017).
95 Misra, R. C. et al. Two CYP716A subfamily cytochrome P450
monooxygenases of sweet basil play similar but nonredundant roles in
ursane- and oleanane-type pentacyclic triterpene biosynthesis. The
New phytologist 214 , 706-720, doi:10.1111/nph.14412 (2017).
96 Sandeep, Misra, R. C., Chanotiya, C. S., Mukhopadhyay, P. & Ghosh,
S. Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene
structural diversity in the medicinal tree banaba. The New
phytologist 222 , 408-424, doi:10.1111/nph.15606 (2019).
97 Huang, L. et al. Molecular characterization of the pentacyclic
triterpenoid biosynthetic pathway in Catharanthus roseus. Planta236 , 1571-1581, doi:10.1007/s00425-012-1712-0 (2012).
98 Farhi, M. et al. Harnessing yeast subcellular compartments for
the production of plant terpenoids. Metabolic engineering13 , 474-481, doi:10.1016/j.ymben.2011.05.001 (2011).
99 Arendt, P. et al. An endoplasmic reticulum-engineered yeast
platform for overproduction of triterpenoids. Metabolic
engineering 40 , 165-175, doi:10.1016/j.ymben.2017.02.007
(2017).
100 Nakamura, M. et al. Transcriptome sequencing and
identification of cytochrome P450 monooxygenases involved in the
biosynthesis of maslinic acid and corosolic acid in Avicennia marina.Plant biotechnology (Tokyo, Japan) 35 , 341-348,
doi:10.5511/plantbiotechnology.18.0810a (2018).
101 Xu, Y. et al. Blocking inhibition to YAP by ActinomycinD
enhances anti-tumor efficacy of Corosolic acid in treating liver cancer.Cellular signalling 29 , 209-217,
doi:10.1016/j.cellsig.2016.11.001 (2017).
102 Ji, X. et al. Identification of α-Amyrin 28-Carboxylase and
Glycosyltransferase From Ilex asprella and Production of Ursolic Acid
28-O-β-D-Glucopyranoside in Engineered Yeast. Frontiers in plant
science 11 , 612, doi:10.3389/fpls.2020.00612 (2020).