Reference
1 Vergara Martínez, V. M. et al. Methyl Jasmonate and Salicylic Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus Cultures of Lepechinia Caulescens. Pharmacognosy magazine13 , S886-s889, doi:10.4103/pm.pm_77_17 (2018).
2 Andre, C. M. et al. Anti-inflammatory procyanidins and triterpenes in 109 apple varieties. Journal of agricultural and food chemistry 60 , 10546-10554, doi:10.1021/jf302809k (2012).
3 Baricevic, D. et al. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid.Journal of ethnopharmacology 75 , 125-132, doi:10.1016/s0378-8741(00)00396-2 (2001).
4 Saravanan, R., Viswanathan, P. & Pugalendi, K. V. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats.Life sciences 78 , 713-718, doi:10.1016/j.lfs.2005.05.060 (2006).
5 Ullevig, S. L., Zhao, Q., Zamora, D. & Asmis, R. Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis 219 , 409-416, doi:10.1016/j.atherosclerosis.2011.06.013 (2011).
6 Kurek, A., Markowska, K., Grudniak, A. M., Janiszowska, W. & Wolska, K. I. The effect of oleanolic and ursolic acids on the hemolytic properties and biofilm formation of Listeria monocytogenes. Polish journal of microbiology 63 , 21-25 (2014).
7 Xiang, L. et al. A pentacyclic triterpene natural product, ursolic acid and its prodrug US597 inhibit targets within cell adhesion pathway and prevent cancer metastasis. Oncotarget 6 , 9295-9312, doi:10.18632/oncotarget.3261 (2015).
8 Rashid, S., Dar, B. A., Majeed, R., Hamid, A. & Bhat, B. A. Synthesis and biological evaluation of ursolic acid-triazolyl derivatives as potential anti-cancer agents. European journal of medicinal chemistry 66 , 238-245, doi:10.1016/j.ejmech.2013.05.029 (2013).
9 Jin, H. et al. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. Applied microbiology and biotechnology 100 , 6643-6652, doi:10.1007/s00253-016-7360-8 (2016).
10 Pateraki, I., Heskes, A. M. & Hamberger, B. Cytochromes P450 for terpene functionalisation and metabolic engineering. Advances in biochemical engineering/biotechnology 148 , 107-139, doi:10.1007/10_2014_301 (2015).
11 Li, J. S., Wang, W. J., Sun, Y., Zhang, Y. H. & Zheng, L. Ursolic acid inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress. Food & function6 , 1643-1651, doi:10.1039/c5fo00083a (2015).
12 Paramasivan, K. & Mutturi, S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.Critical reviews in biotechnology 37 , 974-989, doi:10.1080/07388551.2017.1299679 (2017).
13 Xiao, H. & Zhong, J. J. Production of Useful Terpenoids by Higher-Fungus Cell Factory and Synthetic Biology Approaches.Trends in biotechnology 34 , 242-255, doi:10.1016/j.tibtech.2015.12.007 (2016).
14 Lim, S. W. et al. Simultaneous effect of ursolic acid and oleanolic acid on epidermal permeability barrier function and epidermal keratinocyte differentiation via peroxisome proliferator-activated receptor-alpha. The Journal of dermatology 34 , 625-634, doi:10.1111/j.1346-8138.2007.00344.x (2007).
15 Yu, Z. et al. Pharmacokinetics in Vitro and in Vivo of Two Novel Prodrugs of Oleanolic Acid in Rats and Its Hepatoprotective Effects against Liver Injury Induced by CCl4. Molecular pharmaceutics 13 , 1699-1710, doi:10.1021/acs.molpharmaceut.6b00129 (2016).
16 Pompei, R., Flore, O., Marccialis, M. A., Pani, A. & Loddo, B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles.Nature 281 , 689-690, doi:10.1038/281689a0 (1979).
17 Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 , 528-532, doi:10.1038/nature12051 (2013).
18 Zhuang, Y. et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme.Metabolic engineering 42 , 25-32, doi:10.1016/j.ymben.2017.04.009 (2017).
19 Zhao, Y., Fan, J., Wang, C., Feng, X. & Li, C. Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae.Bioresource technology 257 , 339-343, doi:10.1016/j.biortech.2018.02.096 (2018).
20 Ma, T. et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic engineering 52 , 134-142, doi:10.1016/j.ymben.2018.11.009 (2019).
21 Mancha-Ramirez, A. M. & Slaga, T. J. Ursolic Acid and Chronic Disease: An Overview of UA’s Effects On Prevention and Treatment of Obesity and Cancer. Advances in experimental medicine and biology928 , 75-96, doi:10.1007/978-3-319-41334-1_4 (2016).
22 Hussain, H. et al. Ursolic acid derivatives for pharmaceutical use: a patent review (2012-2016). Expert opinion on therapeutic patents 27 , 1061-1072, doi:10.1080/13543776.2017.1344219 (2017).
23 Checker, R. et al. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PloS one 7 , e31318, doi:10.1371/journal.pone.0031318 (2012).
24 Kong, L. et al. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral research 98 , 44-53, doi:10.1016/j.antiviral.2013.02.003 (2013).
25 Yim, E. K., Lee, M. J., Lee, K. H., Um, S. J. & Park, J. S. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society 16 , 2023-2031, doi:10.1111/j.1525-1438.2006.00726.x (2006).
26 Kunkel, S. D. et al. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PloS one 7 , e39332, doi:10.1371/journal.pone.0039332 (2012).
27 Dong, X. et al. Downregulation of miR-21 is involved in direct actions of ursolic acid on the heart: implications for cardiac fibrosis and hypertrophy. Cardiovascular therapeutics 33 , 161-167, doi:10.1111/1755-5922.12125 (2015).
28 Meng, Y. et al. Ursolic Acid Induces Apoptosis of Prostate Cancer Cells via the PI3K/Akt/mTOR Pathway. The American journal of Chinese medicine 43 , 1471-1486, doi:10.1142/s0192415x15500834 (2015).
29 Mendes, V. I. S., Bartholomeusz, G. A., Ayres, M., Gandhi, V. & Salvador, J. A. R. Synthesis and cytotoxic activity of novel A-ring cleaved ursolic acid derivatives in human non-small cell lung cancer cells. European journal of medicinal chemistry 123 , 317-331, doi:10.1016/j.ejmech.2016.07.045 (2016).
30 Ramachandran, S. & Prasad, N. R. Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes.Chemico-biological interactions 176 , 99-107, doi:10.1016/j.cbi.2008.08.010 (2008).
31 Ramírez-Rodríguez, A. M., González-Ortiz, M., Martínez-Abundis, E. & Acuña Ortega, N. Effect of Ursolic Acid on Metabolic Syndrome, Insulin Sensitivity, and Inflammation. Journal of medicinal food20 , 882-886, doi:10.1089/jmf.2017.0003 (2017).
32 Li, S. et al. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PloS one9 , e86724, doi:10.1371/journal.pone.0086724 (2014).
33 Xia, E. Q. et al. Microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. International journal of molecular sciences 12 , 5319-5329, doi:10.3390/ijms12085319 (2011).
34 Yoshida, M. et al. Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biological & pharmaceutical bulletin28 , 173-175, doi:10.1248/bpb.28.173 (2005).
35 Papadopoulou, K., Melton, R. E., Leggett, M., Daniels, M. J. & Osbourn, A. E. Compromised disease resistance in saponin-deficient plants. Proceedings of the National Academy of Sciences of the United States of America 96 , 12923-12928, doi:10.1073/pnas.96.22.12923 (1999).
36 Jäger, S., Trojan, H., Kopp, T., Laszczyk, M. N. & Scheffler, A. Pentacyclic triterpene distribution in various plants - rich sources for a new group of multi-potent plant extracts. Molecules (Basel, Switzerland) 14 , 2016-2031, doi:10.3390/molecules14062016 (2009).
37 Brendolise, C. et al. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica. The FEBS journal 278 , 2485-2499, doi:10.1111/j.1742-4658.2011.08175.x (2011).
38 Farneti, B. et al. Is there room for improving the nutraceutical composition of apple? Journal of agricultural and food chemistry 63 , 2750-2759, doi:10.1021/acs.jafc.5b00291 (2015).
39 Guinda, A., Rada, M., Delgado, T. & Castellano, J. M. Pentacyclic triterpenic acids from Argania spinosa. Eur. J. Lipid Sci. Technol. 113 , 231-237, doi:10.1002/ejlt.201000342 (2011).
40 Kowalski, R. Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types.Journal of agricultural and food chemistry 55 , 656-662, doi:10.1021/jf0625858 (2007).
41 Wojciak-Kosior, M., Sowa, I., Kocjan, R. & Nowak, R. Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos. Industrial Crops and Products44 , 373-377, doi:10.1016/j.indcrop.2012.11.018 (2013).
42 Fu, Q., Zhang, L., Cheng, N., Jia, M. & Zhang, Y. Extraction optimization of oleanolic and ursolic acids from pomegranate (Punica granatum L.) flowers. Food and Bioproducts Processing92 , 321-327, doi:10.1016/j.fbp.2012.12.006 (2014).
43 Sheng, H. & Sun, H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Natural product reports 28 , 543-593, doi:10.1039/c0np00059k (2011).
44 Yin, M. C., Lin, M. C., Mong, M. C. & Lin, C. Y. Bioavailability, distribution, and antioxidative effects of selected triterpenes in mice.Journal of agricultural and food chemistry 60 , 7697-7701, doi:10.1021/jf302529x (2012).
45 Sultana, N. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. Journal of enzyme inhibition and medicinal chemistry 26 , 616-642, doi:10.3109/14756366.2010.546793 (2011).
46 Mazumder, K., Tanaka, K. & Fukase, K. Cytotoxic activity of ursolic acid derivatives obtained by isolation and oxidative derivatization.Molecules (Basel, Switzerland) 18 , 8929-8944, doi:10.3390/molecules18088929 (2013).
47 Liu, M. C. et al. Synthesis and cytotoxicity of novel ursolic acid derivatives containing an acyl piperazine moiety. European journal of medicinal chemistry 58 , 128-135, doi:10.1016/j.ejmech.2012.08.048 (2012).
48 Bai, K. K. et al. Synthesis and evaluation of ursolic acid derivatives as potent cytotoxic agents. Bioorganic & medicinal chemistry letters 22 , 2488-2493, doi:10.1016/j.bmcl.2012.02.009 (2012).
49 Chadalapaka, G., Jutooru, I., McAlees, A., Stefanac, T. & Safe, S. Structure-dependent inhibition of bladder and pancreatic cancer cell growth by 2-substituted glycyrrhetinic and ursolic acid derivatives.Bioorganic & medicinal chemistry letters 18 , 2633-2639, doi:10.1016/j.bmcl.2008.03.031 (2008).
50 Shanmugam, M. K. et al. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer letters 346 , 206-216, doi:10.1016/j.canlet.2014.01.016 (2014).
51 Tu, H. Y. et al. Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species. Bioorganic & medicinal chemistry 17 , 7265-7274, doi:10.1016/j.bmc.2009.08.046 (2009).
52 Leal, A. S., Wang, R., Salvador, J. A. & Jing, Y. Synthesis of novel ursolic acid heterocyclic derivatives with improved abilities of antiproliferation and induction of p53, p21waf1 and NOXA in pancreatic cancer cells. Bioorganic & medicinal chemistry 20 , 5774-5786, doi:10.1016/j.bmc.2012.08.010 (2012).
53 Liu, X. T. et al. Cholestane and spirostane glycosides from the rhizomes of Dioscorea septemloba. Phytochemistry 69 , 1411-1418, doi:10.1016/j.phytochem.2007.12.014 (2008).
54 Tian, J. et al. Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, structure elucidation, and their antibacterial and antioxidant activities. Natural product research 31 , 387-396, doi:10.1080/14786419.2016.1205052 (2017).
55 Zhang, L. H., Wang, H. W., Xu, J. Y., Li, J. & Liu, L. A new Secondary metabolites of the crinoid (Comanthina schlegeli) associated fungus Alternaria brassicae 93. Natural product research30 , 2305-2310, doi:10.1080/14786419.2016.1166498 (2016).
56 Liu, D. L., Liu, Y., Qiu, F., Gao, Y. & Zhang, J. Z. Biotransformation of oleanolic acid by Alternaria longipes and Penicillium adametzi. Journal of Asian natural products research13 , 160-167, doi:10.1080/10286020.2010.547028 (2011).
57 Zhang, J., Cheng, Z. H., Yu, B. Y., Cordell, G. A. & Qiu, S. X. J. T. L. Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp. NRRL 5646. 46 , 2337-2340 (2005).
58 Leipold, D. et al. Biosynthesis of ursolic acid derivatives by microbial metabolism of ursolic acid with Nocardia sp. strains—Proposal of new biosynthetic pathways. 45 , 1043-1051 (2010).
59 Fu, S. B. et al. Multihydroxylation of ursolic acid by Pestalotiopsis microspora isolated from the medicinal plant Huperzia serrata. Fitoterapia 82 , 1057-1061, doi:10.1016/j.fitote.2011.06.009 (2011).
60 Ibrahim, A. et al. Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chemical & pharmaceutical bulletin 56 , 1253-1258, doi:10.1248/cpb.56.1253 (2008).
61 Huang, F. X. et al. Microbial transformation of ursolic acid by Syncephalastrum racemosum (Cohn) Schroter AS 3.264.Phytochemistry 82 , 56-60, doi:10.1016/j.phytochem.2012.06.020 (2012).
62 Zhang, C. X., Ma, W. J., Liu, D. L., Jia, X. J. & Zhao, Y. M. Biotransformation of ursolic acid by Alternaria longipes AS3.2875.Natural product research 32 , 536-543, doi:10.1080/14786419.2017.1327860 (2018).
63 Zhang, S.-S. et al. Three new triterpenoids transformed from ursolic acid by Mucor spinosus AS3.3450 and their cytotoxicity.Phytochemistry Letters 32 , 33-37, doi:https://doi.org/10.1016/j.phytol.2019.04.019(2019).
64 Dai, Z., Liu, Y., Huang, L. & Zhang, X. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae.Biotechnology and bioengineering 109 , 2845-2853, doi:10.1002/bit.24547 (2012).
65 Liu, H., Fan, J., Wang, C., Li, C. & Zhou, X. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway. Journal of agricultural and food chemistry67 , 3723-3732, doi:10.1021/acs.jafc.9b00653 (2019).
66 Katabami, A. et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. Journal of bioscience and bioengineering 119 , 165-171, doi:10.1016/j.jbiosc.2014.07.013 (2015).
67 Leonard, E. et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proceedings of the National Academy of Sciences of the United States of America 107 , 13654-13659, doi:10.1073/pnas.1006138107 (2010).
68 Trikka, F. A. et al. Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production.Microbial cell factories 14 , 60, doi:10.1186/s12934-015-0246-0 (2015).
69 Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences of the United States of America 109 , E111-118, doi:10.1073/pnas.1110740109 (2012).
70 Zhao, J. et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.Microbial cell factories 16 , 17, doi:10.1186/s12934-017-0641-9 (2017).
71 Kushiro, T., Shibuya, M. & Ebizuka, Y. Beta-amyrin synthase–cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants.European journal of biochemistry 256 , 238-244, doi:10.1046/j.1432-1327.1998.2560238.x (1998).
72 Hu, Y. et al. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene.Journal of industrial microbiology & biotechnology 44 , 1065-1072, doi:10.1007/s10295-017-1934-z (2017).
73 Czarnotta, E. et al. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae. Biotechnology and bioengineering114 , 2528-2538, doi:10.1002/bit.26377 (2017).
74 Klingenberg, M. Pigments of rat liver microsomes. Archives of biochemistry and biophysics 75 , 376-386, doi:10.1016/0003-9861(58)90436-3 (1958).
75 Dai, Z. et al. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories.Metabolic engineering 51 , 70-78, doi:10.1016/j.ymben.2018.10.001 (2019).
76 Lamb, D. C. & Waterman, M. R. Unusual properties of the cytochrome P450 superfamily. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368 , 20120434, doi:10.1098/rstb.2012.0434 (2013).
77 Chang, C. H. et al. The cysteine 703 to isoleucine or histidine mutation of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae generates an iridal-type triterpenoid.Biochimie 94 , 2376-2381, doi:10.1016/j.biochi.2012.06.014 (2012).
78 Wu, P. et al. Synthesis and Evaluation of Novel Triterpene Analogues of Ursolic Acid as Potential Antidiabetic Agent. PloS one 10 , e0138767, doi:10.1371/journal.pone.0138767 (2015).
79 Lu, C., Zhang, C., Zhao, F., Li, D. & Lu, W. Biosynthesis of Ursolic Acid and Oleanolic Acid in Saccharomyces cerevisiae. Aiche Journal 64 , 3794-3802, doi:10.1002/aic.16370 (2018).
80 Sun, W. et al. Novel trends for producing plant triterpenoids in yeast. Critical reviews in biotechnology 39 , 618-632, doi:10.1080/07388551.2019.1608503 (2019).
81 Zheng, X. et al. Characterisation of two oxidosqualene cyclases responsible for triterpenoid biosynthesis in Ilex asprella.International journal of molecular sciences 16 , 3564-3578, doi:10.3390/ijms16023564 (2015).
82 Zhang, G. et al. Refactoring -amyrin synthesis in Saccharomyces cerevisiae. Aiche Journal 61 , 3172-3179, doi:10.1002/aic.14950 (2015).
83 Yu, Y. et al. Productive Amyrin Synthases for Efficient α-Amyrin Synthesis in Engineered Saccharomyces cerevisiae. ACS synthetic biology 7 , 2391-2402, doi:10.1021/acssynbio.8b00176 (2018).
84 Yu, Y. et al. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metabolic engineering , doi:10.1016/j.ymben.2020.08.010 (2020).
85 Yasumoto, S., Fukushima, E. O., Seki, H. & Muranaka, T. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes. FEBS letters 590 , 533-540, doi:10.1002/1873-3468.12074 (2016).
86 Fukushima, E. O. et al. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant & cell physiology 52 , 2050-2061, doi:10.1093/pcp/pcr146 (2011).
87 Moses, T. et al. OSC2 and CYP716A14v2 catalyze the biosynthesis of triterpenoids for the cuticle of aerial organs of Artemisia annua. The Plant cell 27 , 286-301, doi:10.1105/tpc.114.134486 (2015).
88 Yasumoto, S., Seki, H., Shimizu, Y., Fukushima, E. O. & Muranaka, T. Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato. Frontiers in plant science8 , 21, doi:10.3389/fpls.2017.00021 (2017).
89 Suzuki, H. et al. Comparative analysis of CYP716A subfamily enzymes for the heterologous production of C-28 oxidized triterpenoids in transgenic yeast. Plant biotechnology (Tokyo, Japan)35 , 131-139, doi:10.5511/plantbiotechnology.18.0416a (2018).
90 Han, J. Y., Kim, M. J., Ban, Y. W., Hwang, H. S. & Choi, Y. E. The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant & cell physiology 54 , 2034-2046, doi:10.1093/pcp/pct141 (2013).
91 Khakimov, B. et al. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. The Plant journal : for cell and molecular biology 84 , 478-490, doi:10.1111/tpj.13012 (2015).
92 Miettinen, K. et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis.Nature communications 8 , 14153, doi:10.1038/ncomms14153 (2017).
93 Andre, C. M. et al. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. The New phytologist 211 , 1279-1294, doi:10.1111/nph.13996 (2016).
94 Tamura, K. et al. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis. Plant cell reports 36 , 437-445, doi:10.1007/s00299-016-2092-x (2017).
95 Misra, R. C. et al. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. The New phytologist 214 , 706-720, doi:10.1111/nph.14412 (2017).
96 Sandeep, Misra, R. C., Chanotiya, C. S., Mukhopadhyay, P. & Ghosh, S. Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba. The New phytologist 222 , 408-424, doi:10.1111/nph.15606 (2019).
97 Huang, L. et al. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta236 , 1571-1581, doi:10.1007/s00425-012-1712-0 (2012).
98 Farhi, M. et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic engineering13 , 474-481, doi:10.1016/j.ymben.2011.05.001 (2011).
99 Arendt, P. et al. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metabolic engineering 40 , 165-175, doi:10.1016/j.ymben.2017.02.007 (2017).
100 Nakamura, M. et al. Transcriptome sequencing and identification of cytochrome P450 monooxygenases involved in the biosynthesis of maslinic acid and corosolic acid in Avicennia marina.Plant biotechnology (Tokyo, Japan) 35 , 341-348, doi:10.5511/plantbiotechnology.18.0810a (2018).
101 Xu, Y. et al. Blocking inhibition to YAP by ActinomycinD enhances anti-tumor efficacy of Corosolic acid in treating liver cancer.Cellular signalling 29 , 209-217, doi:10.1016/j.cellsig.2016.11.001 (2017).
102 Ji, X. et al. Identification of α-Amyrin 28-Carboxylase and Glycosyltransferase From Ilex asprella and Production of Ursolic Acid 28-O-β-D-Glucopyranoside in Engineered Yeast. Frontiers in plant science 11 , 612, doi:10.3389/fpls.2020.00612 (2020).