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ABSTRACT. 1. The description and analysis of animal behaviour over long periods of time is one of the most important chal-

lenges in ecology. However, most of these studies are limited due to the time and cost required by human observers. The col-

lection of data via video recordings allows observation periods to be extended. However, their evaluation by human observers

is very time-consuming. Progress in automated evaluation, using suitable deep learning methods, seems to be a forward-

looking approach to analyse even large amounts of video data in an adequate time frame.

2. In this study we present a multi-step convolutional neural network system for detecting animal behaviour states, which

works with high accuracy. An important aspect of our approach is the introduction of model averaging and post-processing

rules to make the system robust to outliers.

3. Our trained system achieves an in-domain classification accuracy of >0.92, which is improved to >0.96 by a post-

processing step. In addition, the whole system performs even well in an out-of-domain classification task with two unknown

types, achieving an average accuracy of 0.93. We provide our system at

https://github.com/Klimroth/Video-Action-Classifier-for-African-Ungulates-in-Zoos/tree/main/mrcnn_based

so that interested users can train their own models to classify images and conduct behavioural studies of wildlife.

4. The use of a multi-step convolutional neural network for fast and accurate classification of wildlife behaviour facilitates

the evaluation of large amounts of image data in ecological studies and reduces the effort of manual analysis of images to a

high degree. Our system also shows that post-processing rules are a suitable way to make species-specific adjustments and

substantially increase the accuracy of the description of single behavioural phases (number, duration). The results in the

out-of-domain classification strongly suggest that our system is robust and achieves a high degree of accuracy even for new

species, so that other settings (e.g. field studies) can be considered.
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1. INTRODUCTION8

1.1. General. Describing and analysing animal behaviour is a central element in ecology, ethology and neurosciences.9

In order to characterise animal behaviour more closely and identify general behavioural patterns, it makes sense to in-10

clude longer periods of time, different habitats and many individuals (Burger et al., 2020). While this is often a highly11

demanding task in natural habitats, studies in zoos allow to develop, improve and evaluate methods helping to under-12

stand behaviour patterns of various species (Kögler et al., 2020; Ryder & Feistner, 1995). Advances in digital infrastruc-13

ture make it possible to collect and process observational data on a larger scale. However, the timely evaluation and14

extraction of meaningful information from the mass of recorded behavioural data represents a major challenge that15

can hardly be met by humans (Norouzzadeh et al., 2018). Consequently, to provide means of automatic evaluation of16

animal behaviour, computer vision and deep learning techniques emerged during the last years in behavioural biology17

and ecology (Chakravarty et al., 2020; Dell et al., 2014; Eikelboom et al., 2019; Valletta et al., 2017) .18

Over the last decade, deep learning techniques in computer vision applications have become a crucial factor (Li19

et al., 2019; Ng et al., 2015; Zha et al., 2015). Many state-of-the-art models that hold current benchmarks in computer20

vision tasks like object detection or semantic segmentation use convolutional neural networks (CNNs) (Russakovsky et21

al., 2015). Two deep learning approaches are common for inference tasks on video data. For video action classification,22

neural networks can be trained on sequences of consecutive frames to leverage temporal features like motion that can23

be strong cues to predict actions. These approaches work best with a medium to high frame-rate and high resolution.24

Unfortunately, gathering such data over a longer period of time can be costly and may not be suitable for every research25

application. Another common practice is to use a neural network for inference on single frames and inject temporal26

higher logic to combine these predictions. This is the approach we are taking in our research presented here.27

1.2. Our contribution. We present a deep learning approach to video action classification of four different behavioural28

states of various African ungulates: standing, lying – head up, lying – head down, being absent (cf. Section 1.5). The goal29

of our approach is to use a few manually annotated videos of individuals in a certain setting in order to subsequently30

automatically evaluate a large video data set of this individual. This will be tackled by a three stage deep learning based31

framework.32

The first phase is an object recognition phase that serves three purposes. Firstly, it reduces background information33

by localising the regions of interest that mostly consist of pixels filled by animals. It is thereby increasing the similarity34

of sample images taken from different enclosures, which dramatically increases the power of transfer learning across35

enclosures. Secondly, object detection can be used to distinguish between individuals within the same enclosure.36

Lastly, it provides a clean way of detecting whether an animal is present or absent.37

The second phase carries out a canonical classification task on the clean-cut images from phase 1. Our approach is38

governed by an ensemble of two EfficientNetB3 (Tan & Le, 2019) image classifiers. One network predicts actions based39

on single frame inputs and we accumulate the predictions to one prediction per time-interval (seven seconds). The40

second classifier includes temporal dimension of the video by predicting the shown behaviour of this time-interval41
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directly. Therefore, the consecutive frames of this interval are concatinated to a single input (so-called multi-frame42

encoding, (Ji et al., 2013; Karpathy et al., 2014)). Subsequently, the final prediction per interval is based on an average43

over the predictions by the ensemble of classifiers. Finally, to further smooth predictions, we apply carefully chosen44

rolling averages during this process.45

In the third phase, an application driven post-processing step takes place. After calculating predictions for each46

time-interval, we apply post-processing rules that, for instance, filter out very short activity phases of behaviours which47

are very unlikely to appear within the evaluated behavioural states or use information about the position of the animal48

in its enclosure.49

1.3. Related work.50

1.3.1. Video action classification using CNNs. Among the first appearances of CNNs for video action classification,51

Ji et al. (2013), Karpathy et al. (2014) discovered that encoding multiple frames performs marginally better than the52

frame-by-frame classification. The first milestone was reached by incorporating the temporal dimension of a video53

into the classification approach by different means of so-called optical flow calculations (Li et al., 2019; Ng et al., 2015;54

Simonyan & Zisserman, 2014; Zha et al., 2015). The current state of the art for video action classification is a two-55

stream approach (Feichtenhofer et al., 2016; Zhao et al., 2020) where each frame is fed into a CNN and gets predicted56

by a frame-by-frame classifier which gathers the spatial features of an image. In parallel, a sequence of consecutive57

frames is classified by a second CNN that captures the temporal dependencies of the video. The final prediction per58

frame is a fusion of the features given by this two streams.59

1.3.2. Deep learning approaches for action classification in behavioural studies. In recent years, the use of computer60

vision and deep learning techniques has emerged in behavioural biology tasks (Christin et al., 2019; Dell et al., 2014;61

Valletta et al., 2017). Papers of this kind should be clustered by the nature of the data used. One class of experiments62

was performed under laboratory conditions: high frame-rate videos with a high contrast. A prominent example is the63

JAABA (Kabra et al., 2012) toolbox for video classification of behaviours of mice and Drosophila flies. Another exam-64

ple is DeepBehaviour (Graving et al., 2019) which is used to detect and track the trajectories of mice in a laboratory.65

Moreover, Stern et al. (2015) present a system for object detection and behaviour classification: they predict with great66

accuracy whether a Drosophila-fly is on some substrate or not.67

Other projects need to process data recorded in the wild where the recorded image or video material poses a much68

greater challenge as variations in background, brightness, weather, camera specifics and recording angle etc. lead to69

highly complex datasets. For instance, Porto et al. (2013) presents a computer vision-based classifier using the Viola70

Jones detection algorithm to distinguish lying behaviour of dairy cows in free-stall stables. Norouzzadeh et al. (2018)71

use camera traps in the Serengeti to answer research questions on numbers, types and behaviour of recorded (larger)72

African mammals. Their behaviour classification task is to distinguish between the five activities standing, resting,73

moving, eating and interacting, for each detected individual. They apply a deep learning system harnessing 1.4 million74

images from the Snapshot Serengeti Dataset (Swanson et al., 2015) available to them.75
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1.4. Our Objectives. Understanding the behaviour of animals is a key element of ecology. For example, behavioural76

studies can improve our understanding of the habitat requirements or migration patterns of species, which in turn77

have important implications for nature conservation issues (Melzheimer et al., 2020; Teitelbaum et al., 2015). How-78

ever, animal behaviour is complex, contextual and species-specific, so approach and analysis must differ depending79

on the thematic focus, the environmental variables or even the species themselves. In this context, videography is an80

inexpensive, non-invasive method for documenting animal behaviour. Although the manual methods of video eval-81

uation allow for differentiated behavioural analysis, they are also very time-consuming, so that longer quantitative82

analyses are limited. Under controlled laboratory conditions valid solutions based on computer vision algorithms are83

available today, which allow to perform behavioural analyses routinely (cf. Section 1.3.2). On the other hand, for data84

recorded in setups where the environment variables are much more complex or the available image material is of lower85

quality, automatizing the evaluation process posed a major challenge for researchers so far.86

A key objective of this work is to combine recent successes of deep learning with domain knowledge and expertise87

from behavioural biology. Our overall objective is to establish a pipeline that produces high-quality action classifi-88

cation with only little human labelling effort involved. In this study, the main objective is to build an accurate auto-89

matic pipeline to classify behaviours of animals recorded in zoo enclosures. We aim to achieve this using open-source90

software, low-budget technical equipment and make our code openly available on github, so that it may be easily re-91

producible by other research groups. We showcase a procedure that allows to significantly reduce manual labelling92

endeavours while maintaining high-quality labels in a controlled manner. The procedure goes as follows:93

• Let a researcher manually label a small set of nights of an unknown individual.94

• Split these into train and test set, i.e. reserve at least one night as hold-out test set.95

• Fine-tune the object detection and the classification networks on the train data and evaluate the performance96

on the test set.97

• Accuracy on the test set can further be improved by adding more labelled nights and tuning a post-processor.98

Given a pool of existing labelled data from 10 different species from the order of Cetartiodactyla, we aim to further99

predict unlabelled nights from the same or other individuals of that species. We therefore split nights into single-100

activity time-intervals (seven seconds long) and predict one out of four behavioural states: standing, lying – head up,101

lying – head down or being absent which are explained in Section 1.5. On the one hand, we are interested in the per-102

formance of neural networks on the task of inferring these states per interval. On the other hand, it is crucial that the103

entire system is also capable of predicting the behavioural phases of entire recording nights in such a way that typical104

biological parameters such as the number and duration of the phases are sufficiently accurate in order to use these105

predictions for behavioural research studies. Finally, we also investigate a slightly easier task: distinguishing standing106

from lying (independent from the head’s position), which is of great interest for the identification of rhythmic activity107

patterns in nocturnal behaviour. We will refer to this as the task of binary classification.108

109
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1.5. Background. In order to keep studies comparable, behavioural research works with standardised ethograms that110

allow comparisons within a species or a related systematic group (Stanton et al., 2015). Therefore, the definition of an-111

notated behavioural states is explained below. Our study focuses on the three basic behavioural categories: standing,112

lying – head up and lying – head down, which are defined in the following ethogram.113

• Standing: The animal stands in an upright position on all four hooves. It does not matter what the animal is114

doing in this position, so for example it could be feeding, resting, walking or ruminating.115

• Lying – head up (LHU): The animal’s body lies on the ground and the head is lifted. We do not distinguish be-116

tween being awake or being in the non-REM-sleep, furthermore, the animal could also be feeding, ruminating117

or resting.118

• Lying – head down (LHD): The animal is lying with its head rested. The resting head lies down on the ground119

and is placed beside the body or sometimes in front of it.120

A visualisation of each state can be found in Fig. 1. Additionally, if the animal cannot be seen in a frame, the desired121

label is being absent.122

FIGURE 1. For three different species (top to bottom): Common Eland (Taurotragus oryx), Common Wilde-
beest (Connochaetes taurinus) and Waterbuk (Kobus ellipsiprymnus), the three behavioural states (left to right)
standing, LHU and LHD are shown.
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At this point, we shortly want to stress that LHD is a valid indicator for recognizing REM sleep. Indeed, identifying123

REM-sleep by a characteristic posture is a common practice in behavioural studies based on image and video material124

(Ternman et al., 2014). This is due to postural atonia being a characteristic of REM sleep (Lima et al., 2005; Zepelin125

et al., 2005), therefore, due to the lack of muscle tone, any body part (including the animal’s head) needs to be laid126

down. Furthermore, at least for cows, it is well known that this kind of behavioural estimation for REM-sleep is highly127

sensitive (Ternman et al., 2014).128

2. METHODS AND MATERIAL129

2.1. The deep learning approach. Deep learning has three key drivers: algorithms, data and computational resources.130

For the first two stages of our prediction pipeline we apply deep learning algorithms from the last few years, whereby131

an ensemble of three neural networks has been established. However, we strongly belief that the specifics of their132

design are of less relevance and they could easily be exchanged with other neural networks deemed state-of-the-art for133

the respective tasks. In contrast, the data used for training the neural networks and evaluating their performance plays134

a crucial role for the experiments, hence we dedicated Subsection 2.2 to discuss it in great detail. Lastly, we were able135

to perform all experiments with just a single, mediocre GPU (RTX 2070). For all three models, the total training time136

amounted to 840 hours, and the entire pipeline now predicts behaviours for one hour of video material in 15 minutes.137

2.2. Data. The data for this project spans 209 nights (2926 hours) of recordings of 65 individuals out of 10 different138

species, see Table 1. The videos were taken over the last three years with either a Lupus LE139HD or Lupus LE338HD139

camera stemming from zoo enclosures of one Dutch and ten German zoos. They have a frame-rate of 1 fps and a140

resolution of either 1080p or 720p. The recording time mostly ranges from 5 p.m. to 7 a.m., i.e. the time where the141

animal keepers are mostly absent, with night vision using the build-in infrared emitters of the cameras.142

Compared to previous studies in behavioural biology (Graving et al., 2019; Kabra et al., 2012; Stern et al., 2015)143

recorded under laboratory conditions, our data is much more complex and noisy. Installing the cameras properly faces144

major issues as the enclosure structure and the husbandry is given by the zoos, i.e. the existing, limited installation op-145

tions must be used if available and the animals should not be disturbed by the cameras. This leads to huge differences146

from enclosure to enclosure regarding the position and the angle in which the cameras can be installed. Furthermore,147

the angle of the camera might change due to external influences, visibility might worsen because of dirt sticking on148

the lens and the animals should not be able to reach the camera leading to a high degree of occlusions (sometimes the149

installation needs to be outside of the enclosure box) or truncation effects (blind spots in the enclosures). Some edge150

cases are illustrated and further elaborated on in the Appendix A.151

152

For the task of object detection we have manually annotated bounding boxes for nearly 26k randomly sampled im-153

ages – a detailed per species listing is provided in Table 2. A subset of 10% of these images is used as a test set, the154

remaining 90% build the training set of the object detector. For the main task of classifying behaviour we have com-155

plete labels for all 209 nights. For one common wildebeest, one bongo and three common elands we keep a hold-out156
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set of some nights for testing (these are the same nights containing the test images for object detection). Out of all157

other nights we randomly select a training set of about 95k images such that the three classes standing, LHU and LHD158

are almost balanced in number. For further evaluation of the single frame and single interval performance of the neu-159

ral network predictors we proceed similarly with the test nights to obtain 6k images for the Common Elands and 4k160

images for each of the other two species, respectively (cf. Table 1). We refer to this subset of the test set as the validation161

set.162

163

species # zoos # individuals # labelled ∼ 14 hour videos

Training data

Common Wildebeest (Connochaetes taurinus) 3 11 22

Blesbok (Damaliscus pygargus) 2 4 8

Roan Antelope (Hippotragus equinus) 2 4 8

Sable Antelope (Hippotragus niger) 1 2 4

Waterbuck (Kobus ellipsiprymnus) 3 10 20

Bongo (Tragelaphus eurycerus) 2 9 18

Greater Kudu (Tragelaphus strepsiceros) 3 8 17

Common Eland (Tragelaphus oryx) 4 12 80

Sitatunga (Tragelaphus spekii) 1 1 2

Okapi (Okapia johnstoni) 1 2 4

Testing data

Common Wildebeest (Connochaetes taurinus) 1 1 2

Bongo (Tragelaphus eurycerus) 1 1 2

Common Eland (Tragelaphus oryx) 2 3 22

TABLE 1. The variety of data used for training and testing the deep learning classifier.

species # zoos # individuals # training images

Common Wildebeest (Connochaetes taurinus) 3 9 3772

Blesbok (Damaliscus pygargus) 1 2 808

Roan Antelope (Hippotragus equinus) 2 4 1726

Sable Antelope (Hippotragus niger) 1 2 1058

Waterbuck (Kobus ellipsiprymnus) 4 11 4751

Bongo (Tragelaphus eurycerus) 2 10 4472

Greater Kudu (Tragelaphus strepsiceros) 3 4 1756

Common Eland (Tragelaphus oryx) 4 14 6913

Sitatunga (Tragelaphus spekii) 1 1 542

TABLE 2. The training set for the object detector.

2.3. Phase 1: Object detection. The objective of phase 1 is to localise individuals by drawing a minimal rectangular164

bounding box around them, which can be cut-out and further classified into the action classes in phase 2. If no in-165

dividual is detected, we can already predict the class as being absent. For object detection on single image frames we166

fine-tune a Mask R-CNN with ResNet-101 backbone that was pre-trained on the MS COCO database (Lin et al., 2014),167

which has animal object classes like zebras, elephants, dogs etc. and is hence a good base for transfer learning to our168

dataset. More precisely, we use the Matterport implementation (Waleed, 2017) of Mask R-CNN and fine-tune on the169

training data described above for 50 epochs to detect animals out of the listed 9 species. Due to some tough truncation170
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occurring in our data, we further run one round of offline hard example mining (Felzenszwalb et al., 2010): For each171

animal we run the trained model on 400 images from the nights used for training and inspected the obtained predic-172

tions. Then, the model failures, i.e. the poorly predicted bounding boxes, were re-annotated by hand and finally the173

network was re-trained for 15 epochs including these additional annotations.174

After the per image prediction we apply the following post-processing steps that helped to make the overall pre-175

dictions more robust to edge cases in the data and erroneous localization predictions. We only keep bounding box176

predictions of which the net’s confidence is at least 97%. We also allow a maximum of one box per image. At a first177

glance, this approach looks tailored to enclosures with one individual, but can, in fact, be easily extended to detect and178

distinguish multiple individuals within the same enclosure.179

2.4. Phase 2: Action classification. In phase 2, we predict the action displayed in short sequences of cut-out frames.180

We follow a successful approach to video action classification (cf. Section 1.3.1) that is based on a two-stream system –181

the image frame is input in the first stream and motion cues from the temporal context are fed into the second stream.182

For this second input, optical flow is a common choice – which we tried as well, but found the performance to be infe-183

rior to the model we will describe below. A small ablation study and discussion on this can be found in the Appendix B184

and multi-frame encoding was chosen as an alternative way to input pixel motion information as a result thereof.185

186

The inputs to stream 1 are the cut-out boxes from phase 1, resized to a resolution of 300x300 pixels. A single input for187

the second stream consists of a four frame encoding of a 7s time-interval 1. The corresponding four cut-out boxes are188

resized to 150x150 pixels each and then combined to the same input size as stream 1. EfficientNet B3 (Tan & Le, 2019)189

was used for both classification tasks – a convolutional neural network which has proven itself to achieve state-of-the-190

art accuracy in vision classification tasks while being smaller and faster than comparable models. For both streams we191

use a network pre-trained on the ImageNet dataset (Xie et al., 2019; Yakubovskiy, 2019) with a customized classification192

head of three output units each. The networks were trained for 30 epochs with a batch size of 8, categorical cross-193

entropy loss and the Adam optimizer (Kingma & Ba, 2014) with initial learning rate 10−3 and exponential decay of194

0.9. We further applied the following input augmentation steps during training: random center cropping by 0-16px,195

random horizontal flipping, random Gaussian blurring, brightness and contrast augmentation, and finally, random196

rotation by -25 to +25 degree.197

2.5. Phase 3: Post-Processing. Finally, we apply a series of post-processing operations to make our prediction pipeline198

more robust and fitting to the task of predicting accurate time intervals of animal behaviour and leverage our knowl-199

edge on the temporal consistency of the data. To begin with, we average model predictions between the two streams200

of phase 2 and between consecutive intervals by applying a rolling average. An overview of the prediction pipeline up201

to this stage is illustrated in Fig. 2 and the details of the implementation can be found in Appendix C.202

203

1We take the first, third, fifth and seventh frame and arrange them as a square, cf. the image in Fig. 2
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Next, we incorporate application driven rules to smooth predictions over time and include our domain knowledge204

of the animal’s behaviours. As the steps before introduce only a weak temporal context we still observe flickering of the205

predictions due to small misclassifications or data edge cases. For example, in case an individual is heavily truncated206

or occluded, the predictions of consecutive intervals might jump between absent and other actions. Furthermore, we207

reject certain types of transitions that would lead to unrealistic short intervals of activity, such as a short sequence of208

standing between LHD events, and just keep the previous behaviour in such cases. To sum up, we obtain the final209

predictions by following the transition rules listed in Table 3.210

previous behaviour current behaviour next behaviour min. # time-intervals

standing / LHU LHD standing / LHU 3

LHD LHU LHD / standing 6

standing LHU LHD 6

standing LHU standing 25

LHD / LHU standing LHD / LHU 25

LHD / LHU / standing being absent LHD / LHU / standing 50

TABLE 3. Post-processing rules applied to the data of the elands and the bongo as well as the wildebeest. If
the system detects a sequence of (previous behaviour, current behaviour, next behaviour) where the current
behaviour is shorter than described, it will replace it by the previous behaviour.

2.6. Evaluation. Our objectives stated in Section 1.4 require to extend the usual testing ground for classification tasks:211

We are highly interested in the overall performance of the system on complete videos of known and unknown individu-212

als. Therefore, we designed our test sets with respect to three levels of knowledge: Pure in-domain classification, weak213

in-domain classification and out-of-domain classification – testing for different levels of generalisation capabilities of214

our pipeline.215

The easiest level – pure in-domain classification – describes the task of filling in missing behaviours for nights where216

some frames have already been labelled and used for training. This comes close to the usual test setup, only that the217

classes during training are balanced, while for this test set they are not.218

For the remaining two levels, we tackle a prediction task more challenging then usually performed in statistical219

learning. In the classical setup, the entire dataset is split randomly, i.e. train and test set consist of independent and220

identically distributed samples from one and the same data-generating distribution. Thus, in our case this translates221

to train and test images being taken from the same set of nights. If instead test images are from new unseen nights,222

then they come from a shifted data distribution – in these nights the arrangement of the enclosure and the light condi-223

tions may be quite different from those nights of the training set. We define the weak in-domain classification task as224

classifying videos of an individual present in the training data but on nights which were not used for training. Lastly,225

we take this one step further in the out-of-domain classification task, where the system is evaluated on videos from226

individuals that did not appear in the training set – a far more severe distribution shift. Deep Learning systems are227

known to be brittle to distribution shifts (Quionero-Candela et al., 2009; Recht et al., 2019), hence the latter is a quite228

intricate challenge.229
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FIGURE 2. A visualisation of the prediction pipeline applied to each time-interval starting from the original
video input of consecutive single frames. The circles represent predictions, thus probability measures on either
{standing, LHU, LHD} or on {standing, LHU, LHD, being absent}.

To evaluate our action classifiers on single frames and single intervals, we use four commonly used measures for230

predictive performance: accuracy, recall, precision and f-score, which are defined below for completeness. To this231
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regard let232

1 {E } =


1, if E is true

0, otherwise

233

234

denote the indicator function that takes the value 1 if (and only if) the expression E is true. For n test intervals denote235

by y = (y1, . . . , yn) their ground-truth label classes and by ŷ = (ŷ1, . . . , ŷn) the corresponding predictions by a model. The236

accuracy of the predictions ŷ is the proportion of correctly predicted labels, thus237

accuracy(ŷ) =
∑n

i=1 1
{

ŷi = yi
}

n
.238

239

Despite this general performance measure, we introduce the following metrics to further illuminate performance per240

classification class c241

recallc (ŷ) =
∑n

i=1 1
{

ŷi = c, yi = c
}∑n

i=1 1
{

yi = c
} and precisionc (ŷ) =

∑n
i=1 1

{
ŷi = c, yi = c

}∑n
i=1 1

{
ŷi = c

} .242

243

The recall (or sensitivity) for a class c is the proportion of correct predictions of that class among all occurrences of the244

class label in the ground-truth, i.e. how many of this target intervals are predicted correctly. Naturally, recall can be245

increased by predicting this class more often, but in this case the potential for false predictions of this class rises. Hence,246

the precision (or positive predictive value) describes the proportion of the correct predictions among all predictions of247

this class. As these two values stress complementary performance properties, the f-score is defined as the harmonic248

mean of these two249

f− score(x) = 2
recall(x)×precision(x)

recall(x)+precision(x)
250
251

and gives a good measure for the overall prediction performance per class.252

Furthermore, we evaluate how application specific key figures are predicted. More precisely, the two key figures253

amount of phases of a specific behaviour and total duration of a specific behaviour are examined. Clearly, a good ac-254

curacy implies that the latter will be estimated quite well. The amount of phases, however, might not be estimated255

reliably if there is a lot of flickering in the predictions.256

Finally, in order to evaluate the performance of the object detector, we apply the commonly used average precision257

(AP) metric with different Intersection over Union (IoU) thresholds. IoU is defined as the ratio of the area of intersection258

and area of union of the bounding box between the predicted and the ground-truth bounding box. As the object259

detection phase momentarily only distinguishes between the two classes individual and background, the AP@t value260

equals the percentage of predicted bounding boxes that exhibit an IoU of at least t% with the ground-truth bounding261

box.262
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3. RESULTS263

3.1. Evaluating the deep learning components. Before analysing and discussing the core target evaluation measures264

introduced in Section 2.6, let us first state the results for the single deep learning components. The results of the object265

detection component can be found in Fig. 3. It achieves an AP@75 of more than 0.95 on the whole testing set as well266

as on the class of elands in the testing set.

FIGURE 3. Average precision of the object detector (phase 1 of the deep learning pipeline). We report
the mean AP values over all classes, the AP on all images of elands as well as the AP on the images
presented during the human study.

267

For the action classification task, we first report performance on the balanced validation set, so that this leads to a268

testing environment compatible with common practices in deep learning. We achieve a testing accuracy of 0.881 for269

stream 1 and 0.954 for stream 2. Due to the specifics of the classification task and the data these numbers can hardly270

be set into comparison with typical benchmark classification tasks like the ImageNet Large Scale Visual Recognition271

Challenge. Consequently, to better assess the performance of our models, we conducted a human study where experts272

(E, n = 11) and novices (N, n = 11) received 100 randomly chosen single frames from the validation set. Both groups273

were given the same images, but once cut-out and later as the original entire frame. The result of the participants vs.274

stream 1 and 2 are listed in Table 4.275

accuracy f-score

predictor standing LHU LHD

enclosure (E) 0.83±0.03 0.93±0.01 0.83±0.03 0.75±0.05

enclosure (N) 0.74±0.03 0.87±0.02 0.75±0.03 0.57±0.09

cut-out (E) 0.77±0.03 0.87±0.02 0.76±0.02 0.70±0.08

cut-out (N) 0.63±0.04 0.77±0.03 0.63±0.04 0.56±0.08

steam 1 0.84 0.95 0.81 0.68

stream 2 0.93 0.90 0.93 0.92

TABLE 4. Showing the results of the study comparing the accuracy and the f-score on all 100 images (mean ±
SEM), once presented as an image of the whole enclosure and once cut-out by the object detector. Those values
are reported for the group of experts (E, n = 11) as well as the group of novices (N, n = 11) and for the two
streams of the deep learning system.
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The standalone performance of stream 1 can be easily compared with the cut-out performance of the human pre-276

dictors. We see that it clearly outperforms the novices and slightly outperforms the expert, except for the LHD class,277

where some experts perform better. Comparing with the human predictors on enclosure level, stream 1 still outper-278

forms the novices, while it performs on par with the experts. As the humans lose around 5-10% in performance through279

the cut-out process, stream 1 has to compensate for this imprecision of the object detection phase and still achieves280

human expert performance. Moreover, we add stream 2 in this table as well, knowing that its input spans 7s time-281

intervals which gives it a clear advantage over both humans and stream 1. Nevertheless, it is remarkably that this is282

enough to clearly outperform stream 1 and even the experts’ predictions on the entire frame in all but the standing283

class. This underlines the benefits of including temporal information into the model. Still, stream 1 yields a useful ad-284

dition as it has different strong points than stream 2, such as classifying standing, and hence, we see below that model285

averaging improves the overall prediction quality of the pipeline significantly. To conclude, the validation accuracy of286

both streams can be considered quite high and verify that the model generalises quite well, even more so, considering287

the data quality and possible label ambiguities cf. Appendix A.288

3.2. Performance of the overall pipeline. In the following we present test results for time-interval predictions of289

stream 1, stream 2, the fusion step and after post-processing for three levels of generalisation performance as out-290

lined in Section 2.6. The results are presented in Table 5 subdivided into the performance for individual animals. We291

furthermore report average recall, precision and f-score for the overall predictions and the accuracy for the binary292

classification task.293

Classifying standing, LHU and LHD Binary classification

# nights avg. accuracy
stream 1

avg. accuracy
stream 2

avg. accuracy
fused streams

avg. accuracy
post-processed

avg. accuracy
post-processed

Pure in-domain classification

Eland 1 6 0.986±0.004 0.969±0.009 0.974±0.007 0.978±0.006 0.992±0.003

Eland 2 2 0.989±0.001 0.985±0.000 0.989±0.001 0.994±0.001 0.998±0.000

Eland 3 2 0.921±0.046 0.887±0.062 0.921±0.040 0.963±0.018 0.9973±0.018

Weak in-domain classification

Eland 1 8 0.936±0.027 0.914±0.030 0.924±0.028 0.976±0.007 0.982±0.007

Eland 2 2 0.971±0.012 0.960±0.011 0.967±0.013 0.977±0.012 0.980±0.013

Eland 3 2 0.960±0.007 0.956±0.006 0.970±0.005 0.986±0.001 0.997±0.001

Out-of-domain classification

Bongo 2 0.930±0.023 0.945±0.015 0.945±0.015 0.944±0.010 0.990±0.002

Wildebeest 2 0.888±0.020 0.867±0.018 0.896±0.011 0.913±0.011 0.995±0.002

TABLE 5. The accuracy reached by the different streams of the deep learning system. We report the accuracy as
well as the SEM for both classification tasks.

The final results show an accuracy of at least 0.96 in all in-domain classification tasks for each of the three Elands294

tested. As for Eland 1 we have tested on the most data, these results should be considered the ones with highest295

statistical significance, where we achieve consistently above 0.97. In total, all components perform well above 0.90296

with the single exception of stream 2 for Eland 3 in in-domain classification. However, this and other weak performing297

instances are well accounted for by the post-processor. The low performances could be due to longer phases of difficult298
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FIGURE 4. Overview on recall, precision and f-score for each behavioural class and each individual (EL–Eland,
B–Bongo, W–Wildebeest) produced by the classification system on the testing dataset.

data, e.g. the animal spending much time in parts of the enclosure which are not fully visible (cf. Appendix A), or from299

a different distribution of actions, favouring actions like LHD where the model’s performance is slightly worse as we300

see in Fig. 4, Column A. When comparing the f-scores for the three action classes we see for all three elands that301

performance is weakest for LHD. In contrast, the f-scores for the binary task are much higher (Fig. 4, Column B), hence302

most mistakes made by the model stem from confusing the classes LHU and LHD.303

Overall, the system performs well in the weak in-domain and the pure in-domain classification task, which shows304

that the deep learning models learn predictive features from characteristic postures of the behavioural states instead305

of memorising the training data. This is a good indication of robustness and generalisation capabilities of our model.306

This indistinguishability is found with respect to the accuracy score as well as with respect to recall, precision and f-307

score. In addition, the out-of-domain result for the classification of the behaviour of bongos and wildebeests with 0.94308

and 0.91, respectively, also shows good testing accuracy. As expected, performance is slightly worse here, but given the309

system has not seen any data of these individuals, the values are quite high.310

In the task of binary classification, our model succeeds with an accuracy of above 0.99 for pure in-domain clas-311

sification, above 0.98 for weak in-domain classification and above 0.99 even for out-of-domain classification. This312

showcases the model’s strong ability to reliably distinguish the features of standing and lying.313
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Finally, while the accuracy between the fused streams and the post-processed prediction does not vary that much,314

a suitable choice of post-processing rules effects the precision of the prediction of the average number of phases per315

video. Corresponding results will be stated in the next section.316

3.3. On behavioural biological key figures. Finally, we turn to our last objective, namely predicting the number of317

activity phases per night and their total duration. Table 6 reports the average key figures over all predicted nights in318

comparison to the real quantities, again for three levels of generalisation.319

standing LHU LHD

real w/o pp pp real w/o pp pp real w/o pp pp

Pure in-domain classification

Eland 1

Avg. # phases 8.2±0.3 26.5±5.3 8.3±0.4 17.2±1.8 50.7±4.4 17.5±1.6 9.0±1.6 26.2±3.3 9.3±1.4

Avg. duration [min] 195.2±9.6 197.6±11.0 197.8±8.8 589.5±10.0 575.9±15.8 582.4±12.4 51.5±9.8 63.3±15.0 58.7±12.5

Eland 2

Avg. # phases 6.0±0.0 16.5±1.5 6.0±0.0 18.0±1.4 32.5±4.5 17.0±1.4 11.0±1.4 21.5±4.5 11.5±1.8

Avg. duration [min] 249.2±0.5 247.7±0.0 251.5±0.4 543.3±4.3 16.5±1.5 544.1±3.3 42.7±1.8 46.2±4.0 44.4±2.9

Eland 3

Avg. # phases 7.0±0.0 66.0±34.0 7.5±0.4 22.0±2.1 129.5±70.5 24.0±0.0 14.5±1.8 37.5±5.5 16.5±0.4

Avg. duration [min] 222.5±2.2 232.9±1.1 239.2±8.6 532.5±1.7 468.1±48.9 502.6±16.8 85.1±3.9 94.4±5.4 92.4±4.1

Weak in-domain classification

Eland 1

Avg. # phases 7.0±0.3 88.2±25.4 7.4±0.2 14.5±1.1 97.7±24.3 15.1±1.1 7.9±1.0 24.8±5.3 8.5±1.2

Avg. duration [min] 211.9±10.1 275.2±24.6 220.0±12.4 580.2±7.6 516.8±22.0 571.8±9.9 38.4±4.5 37.6±5.2 37.0±4.9

Eland 2

Avg. # phases 6.5±0.4 40.0±11.0 8.5±1.8 22.5±0.4 53.5±13.5 24.0±2.8 15.5±0.4 26.5±4.5 16.0±1.4

Avg. duration [min] 216.4±10.8 230.9±3.7 230.2±1.6 563.6±9.4 542.6±5.0 548.7±1.3 59.6±1.7 63.1±4.0 61.1±2.9

Eland 3

Avg. # phases 7.0±0.7 23.5±2.5 6.5±0.4 21.0±0.7 65.5±8.5 22.0±0.0 13.0±1.4 35.0±6.0 14.5±0.4

Avg. duration [min] 234.3±6.9 236.0±9.4 233.8±8.1 517.8±11.5 498.6±6.0 513.7±10.5 87.4±4.2 90.5±1.4 92.5±2.4

Out-of-domain classification

Bongo

Avg. # phases 10.5±1.1 18.5±2.5 7.0±0.0 41.0±2.8 150.5±63.5 40.5±4.6 29.5±3.9 135.5±63.5 33.0±4.9

Avg. duration [min] 105.0±42.7 102.2±58.9 99.3±44.5 631.0±60.1 593.8±100.5 655.2±53.2 104.1±17.4 140.8±39.7 85.5±8.7

Wildebeest

Avg. # phases 8.5±0.4 10.0±0.0 9.0±0.7 31.5±3.9 32.0±4 27.5±1.8 23.0±4.2 25.5±3.5 22.0±0.7

Avg. duration [min] 114.2±14.7 118.8±23.0 118.6±16.1 597.2±0.0 530.25±10.6 529.1±7.0 128.7±14.6 191.0±33.6 192.3±23.1

TABLE 6. Overview on the accuracy of the deep learning system predicting the amount of phases and the aver-
age duration per night for the three behavioural states. The value in w/o pp is the output after fusing steams 1
and 2 while row pp lists the prediction after post-processing was applied. We report those quantities and their
SEM for the pure in-domain, the weak in-domain and out-of-domain classification.

The results of the in-domain classification show that all predicted values generally agree well with the real values.320

This success had not been expected in advance, as deep learning pipelines like ours are generally prune to produce321

flickering. We were, however, able to smooth these out sufficiently by broadening the input data distribution through322

extensive augmentations and by the post-processing rules. For the average number of phases the errors made by our323

model are mostly below 10% and for average duration the overlap with the ground-truth is even higher. We stress at324

this point, that the decent performance of our deep learning pipeline is influenced by the post-processor heavily. For325

instance, even if the accuracy and the f-score between the fused streams and the post-processed prediction do not vary326
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much, the amount of phases per night is drastically overshot for all individuals and over all classification tasks without327

post-processing.328

Again, we point out the very reliant prediction of our pipeline for Eland 1. The quantities for out-of-domain ap-329

plication are mostly predicted with only small errors as well, even though they are of very different scale. The larger330

errors like LHU and LHD average duration for the Wildebeest are likely to be reduced through transfer-learning on a331

small amount of data containing videos from this individual. Furthermore, the post-processing rules might need to332

be adapted to the species. Other than this, the system only systematically overshoots the amount of LHU and LHD333

phases of Eland 3. Investigating this error we found the reason being short periods of LHU being misclassified as LHD.334

Remarkably, in almost all these falsely classified phases, the eland shows a grooming behaviour (at his hind leg) which335

cannot be distinguished from the LHD on a single image – nevertheless, identification of grooming phases given a336

video sequence is possible due to the head’s slight movement. Such kind of errors vanish, of course, in the binary337

classification task what can, for completeness, be seen in Table 7 of Appendix D.338

4. DISCUSSION339

The first part of our model pipeline succeeds strikingly in detecting individuals in their enclosures. As object detec-340

tion is one showcase task for deep learning this was to be expected, but still our results are notably high for such a task.341

State-of-the-art performance on the COCO dataset (Lin et al., 2014) by very recent models like YOLOv4 (Bochkovskiy342

et al., 2020) or EfficientDet (Tan et al., 2020) achieve an AP@75 of less then 60, however this across many object classes343

and in very diverse scenes. Moreover, phase 2 of our deep-learning pipeline may still predict actions correctly even if344

phase 1 performs slightly erroneous localisation, i.e. failures with respect to the AP metric may still produce cut-out345

images with which actions can be predicted reliable, e.g. if the bounding box is slightly to big or part of the animal is346

truncated, which also occurs naturally due to truncation at the image borders. We conclude that our model performs347

the detection phase with great accuracy and robustness.348

349

To put our action classification results into context, it is crucial to compare data variety and complexity. The data for350

our deep learning system consists of low frame-rate videos recorded under challenging conditions: various enclosures,351

zoos, species and individuals are to be dealt with. Furthermore, the installation of the cameras was subject to restrictive352

conditions – the videos were recorded at night with the use of infrared emitters, from different camera angles and353

sometimes with parts of the enclosure missing or obscured. To sum up, our data-distribution is much more intricate354

than the laboratory conditions of most previous approaches (Graving et al., 2019; Kabra et al., 2012; Stern et al., 2015;355

Weygandt & Mathis, 2020) and is in its complexity on par with Porto et al. (2013).356

Porto et al. (2013) create a system that works for a specific enclosure (in-domain classification) and they achieve357

a classification accuracy of 0.92 on a binary classification task distinguishing between standing and lying behaviours.358

Data-wise Porto et al. (2013) were able to capture enclosures from a bird’s-eye view without occlusions or truncation,359

arguably leading to a better starting point for classification than our data. Despite this, our models perform notably360
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better by achieving an average weak in-domain accuracy of 0.979 for classifying three action classes and performance361

even improves to 0.986 accuracy when reducing to only standing and lying behaviour classes.362

Our data is less complex than the data used by Norouzzadeh et al. (2018) who have single images taken as snapshots363

in the wild under various light and weather conditions. They achieve an in-domain accuracy of 0.762 with respect to364

classifying six (non-exclusive) behaviour classes of over 26 species. This situation could rather be compared to the365

out-of-domain performance of stream 1 (so without leveraging temporal context), where we achieved an accuracy of366

0.93 for the Bongo and 0.888 for the Wildebeest.367

368

Finally, for the biological key figures our model recognises most sequences correctly. More precisely, the few errors369

occurring during prediction seem to average out very well over multiple videos, also in the weak in-domain classifi-370

cation task. On this basis, our model can be used to automatically label raw data recordings from Elands 1-3 without371

further human supervision. With the application presented here, the bottleneck of many behavioural biological stud-372

ies could be overcome – manually evaluating a huge stock of recorded raw data. We are confident that our methods373

transfer well to different studies, our high out-of-domain accuracy is a good indication for this. Hence, our approach374

may be used in black box fashion by only adapting the post-processing rules to the specialties of the animal’s be-375

haviour. Even more though, when having already established a well-performing system, as usual in transfer learning,376

the amount of labelled data needed for fine-tuning is likely to decrease significantly.377

Machine learning applications have the potential to greatly expand the scope of ecological behavioural studies in378

this area (Christin et al., 2019), as large amounts of data can be analysed in a reasonable time frame and the effort for379

manual analysis is drastically reduced (Tabak et al., 2018). For the investigation of complex behaviour and movement380

patterns in the wild, for example, sensors are used that record acceleration data in addition to GPS data. For instance,381

Rast et al. (2020) present a framework for recording the behaviour of wild red foxes based on an artificial neural net-382

work (ANN) trained on captive red foxes. The latter aspect shows that captive animals can play an important role in383

methodological developments. However, this method is limited in its breadth by the number of individuals equipped384

with transmitters and, although within a moderate range, is an invasive research method. A non-invasive approach to385

behavioural research in the wild is the analysis of image or video material using convolutional neural networks (Fer-386

reira et al., 2020; Tabak et al., 2018; Weinstein, 2018). This approach is still at the beginning of its development. Current387

studies discuss factors that influence the accuracy of the analyses. Apart from purely methodological aspects, such as388

the size of image classes needed for model training, the variability of the image material (e.g. diversity of backgrounds,389

lighting conditions) or the object detection methods make the analyses difficult. Therefore, the targeted adaptation of390

a system is particularly necessary for the evaluation of behaviour. Our study shows that the developed system achieves391

a very high accuracy with a manageable amount of training data, both in the pure in-domain and the weak in-domain392

classification. Furthermore, the results of the out-of-domain classification show that the network can be reliably ap-393

plied to other species, which are similar in their behaviour to the species from the training.394
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We thereby conclude that with this line of research we have opened the door to scale up studies of behavioural395

biology by reducing human resources needed for manual and repetitive labeling tasks, and this way researchers have396

the opportunity to focus instead on the core tasks of setting up interesting experiments and interpreting distilled in-397

formation. To further extend the scope of applications, a next step would be to include enclosures with multiple in-398

dividuals. This sets a stronger focus on the object detection phase, where a distinction of the individuals needs to399

be performed. This can be a challenging task if resemblance between individuals is strong, and possibly requires a400

tracker post-processing single detections. On the other hand, our system could be applied to other ungulates like401

Perissodactyla, who have a different REM sleep posture (Pedersen et al., 2004) which requires to adjust the definition402

of LHD with modified post-processing rules or fine-tuned networks.403
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APPENDIX A. DATA QUALITY536

This section contains examples of images frames that are challenging to the deep learning pipeline. I.e., Fig. 5 shows537

a blind spot in the enclosure of Eland 1 which is compensated by the post-processor – if the Eland is staying below the538

red line for at least 70 seconds, the behavioural state is assumed to be lying.539

FIGURE 5. Example of an event of high truncation. The image is likely to be misclassified as standing
without post-processing. The l.h.s. shows the recorded image and on the r.h.s. the result of the object
detection phase is shown.

Different hard examples are given in Fig. 6. Even if the object detector predicted the bounding box accurately, the540

high amount of truncation resulting from a poor installment of the camera (due to a lack of better installment options)541

makes the images challenging to classify.542

FIGURE 6. Example of hard to classify images due to the camera’s position.

APPENDIX B. ON THE USE OF OPTICAL FLOW AS SECOND STREAM INPUT543

The current state-of-the-art approach towards video action classification would use optical flow calculations in544

stream 2 of the system to explicitly input motion cues to the classifier. In the following we report our results when545

applying this approach to the setting at hand. For calculating the optical flow we used OpenCV’s implementation546

of the Farneback-algorithm for dense optical flow (Bradski, 2000; Farnebäck, 2003) with different types of parameter547

settings, i.e. using various window-sizes (blurring vs. robustness) and Gaussian filters. The classification task was548
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FIGURE 7. Optical flow of a lying eland of five consecutive frames. While the spatial dimension does
not change notably, the optical flow is very sensitive to the high amount of background noise.

governed by a ResNet-101 CNN trained on the same training set as the system at hand. The validation accuracy only549

reached 0.57 and even the training accuracy did not pass 0.84.550

At first glance, it is surprising that the optical flow stream was outperformed significantly by the multi-frame en-551

coded setting as the different postures we try to classify clearly deviate in the amount of motion the individual is show-552

ing. However, we found that in the large temporal difference of one second between two consecutive frames, back-553

ground motion such as floating dust, hay or straw, crossing insects and brightness changes due to infrared-emitters,554

lead to plenty of spurious motion cues. See for example Fig. 7 which shows the optical flow of five consecutive frames.555

As a result, the training signal stemming from the optical flow tended to be very brittle, which we think is the reason556

for the bad performance, especially the bad validation performance. One might be able to improve on this by outlier557

rejection and other pre-processing steps, but such a tuning likely leads to a strong bias towards specifics of environ-558

mental variables like the enclosure and the camera etc., hence might generalize poorly to nights of new individuals.559

Therefore, we choose to continue with the multi-frame encoding as second stream instead which proved to be more560

flexible and robust.561

APPENDIX C. MODEL AVERAGING562

This section gives the implementation details of the model averaging described in Fig. 2.563

C.1. Single frame classification. After the object detection phase, we are left with up to four images per 7s time-564

interval. Each of those images p is predicted by the first EfficientNet B3 yielding a distribution xp = (xp,0, xp,1, xp,2),565

where xp,0 is the probability that the animal is standing in the image, xp,1 that it shows LHU and xp,2 that it shows566

LHD. Let x ′
p = (xp,0, xp,2, xp,3,0) be the adjusted distribution such that the probability of being absent is set to zero. If567

in frame i the animal is detected in phase 1, we generate x ′
i as described, otherwise we set x ′

i = (0,0,0,1).568

Next, a rolling average of order 16 is applied to x ′ which covers local temporal dependencies. Formally, the rolling569

average of order k generates a sequence of distributions x̃ such that x̃i = (x̃i ,0, x̃i ,1, x̃i ,2, x̃i ,3) is given by570

x̃i , j ∝
i−1∑

`=max{0,i−k}
x̃`, j +x ′

i , j ,571

572
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where ∝ stands for being proportional up to normalising x̃i back to a probability distribution. Finally, the prediction573

for time interval j is given as the average over the predictions on its contained images. Thus, if interval j consists of574

frames i , i +2, i +4, i +6, we set575

y j = x̃i + x̃i+2 + x̃i+4 + x̃i+6

4
.576

577

Now, stream 1 outputs a sequence y1, . . . , ym such that y j describes predicted probabilities for each behaviour in time-578

interval j .579

C.2. Four frame classification. For the second stream a second EfficientNet B3 produces a distribution580

ω′
j = (ω j ,0,ω j ,1,ω j ,2,0)581

per time-interval j by predicting behaviours on four-frame encoded input images, and ω′
j = (0,0,0,1) if and only if582

the animal is not detected during phase 1 on any of the four images. As above, we then apply a rolling average, but583

now of order 4 such that in total it accounts for a similar time-period as the rolling average in stream 1, processing584

ω′ =ω′
1, . . .ω′

m to the stream’s outcome y ′ = y ′
1, . . . , y ′

m .585

C.3. Post-processing details. Beside the post-processing rules listed in Table 3, enclosure specific settings were incor-586

porated into the post-processor of Eland 1 (cf. Section 3.1). As the installed camera left a blind spot, the animal can be587

highly truncated (see Fig. 5). As one would expect, the corresponding images were prune to misclassification. As the588

object detection phase gives access to the coordinates of the drawn bounding box, it is possible to mark any frame in589

which the bounding box starts below a certain line (sketched as a red line in Fig. 5), as truncated. Now, if a sequence of590

truncation is shorter than 10 time-intervals, the sequence was labelled as the previously shown behaviour. Otherwise,591

the assigned label was set to be LHU, as it is very unlikely due to the enclosure’s design that the animal was standing in592

the blind spot for a longer period of time.593

APPENDIX D. FURTHER EVALUATION RESULTS594

Finally, we report the statistical key quantities of interest in the binary classification task in Table 7.595
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standing lying
real prediction real prediction

Pure in-domain classification
Eland 1

Avg. # phases 8.2±0.3 8.3±0.4 8.2±0.3 8.3±0.4
Avg. duration [min] 195.2±9.6 197.8±8.8 640.9±8.9 641.1±8.6

Eland 2
Avg. # phases 6.0±0.0 6.0±0.0 7.0±0.0 6.5±0.4
Avg. duration [min] 249.2±0.5 251.1±0.1 590.9±0.5 588.9±0.1

Eland 3
Avg. # phases 7.0±0.0 7.5±0.4 7.5±0.4 8.5±0.4
Avg. duration [min] 222.5±2.2 238.6±8.6 617.6±2.2 595.6±12.7

Weak in-domain classification
Eland 1

Avg. # phases 7.0±0.3 7.5±0.3 6.9±0.3 7.5±0.3
Avg. duration [min] 211.9±10.1 220.8±12.0 622.1±11.6 614.3±13.0

Eland 2
Avg. # phases 6.5±0.4 8.5±1.8 7.0±0.0 9.0±1.4
Avg. duration [min] 216.4±10.8 233.0±0.4 623.2±11.2 607.0±0.4

Eland 3
Avg. # phases 7.0±0.7 6.5±0.4 8.0±0.7 7.5±0.4
Avg. duration [min] 234.3±6.9 233.8±8.1 605.2±7.3 606.2±8.1

Out-of-domain classification
Bongo

Avg. # phases 10.5±1.1 7.0±0.0 11.5±1.1 8.0±0.0
Avg. duration [min] 105.0±42.7 99.3±44.5 735.1±42.7 740.7±44.5

Wildebeest
Avg. # phases 8.5±0.4 9.0±0.7 9.0±0.0 9.5±0.4
Avg. duration [min] 114.2±14.7 118.2±16.4 725.9±14.7 721.8±16.4

TABLE 7. Overview on the accuracy of the deep learning system predicting the amount of phases as well as the
average duration of each behavioural state in the binary classification task.


	1. Introduction
	1.1. General
	1.2. Our contribution
	1.3. Related work
	1.4. Our Objectives
	1.5. Background

	2. Methods and Material
	2.1. The deep learning approach
	2.2. Data
	2.3. Phase 1: Object detection
	2.4. Phase 2: Action classification
	2.5. Phase 3: Post-Processing
	2.6. Evaluation

	3. Results
	3.1. Evaluating the deep learning components
	3.2. Performance of the overall pipeline
	3.3. On behavioural biological key figures

	4. Discussion
	Acknowledgement
	Authors' contributions
	Data Accessibility
	References
	Appendix A. Data quality
	Appendix B. On the use of optical flow as second stream input
	Appendix C. Model averaging
	C.1. Single frame classification
	C.2. Four frame classification
	C.3. Post-processing details

	Appendix D. Further Evaluation Results

