References
1. Nicola, M. et al. The socio-economic implications of the
coronavirus pandemic (COVID-19): A review. International Journal
of Surgery vol. 78 185–193 (2020).
2. Poland, G. A., Ovsyannikova, I. G. & Kennedy, R. B. SARS-CoV-2
immunity: review and applications to phase 3 vaccine candidates.The Lancet vol. 396 1595–1606 (2020).
3. Vabret, N. et al. Immunology of COVID-19: Current State of the
Science. Immunity vol. 52 910–941 (2020).
4. Silva-Cayetano, A. et al. A booster dose enhances
immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged
mice. Med (2020) doi:10.1016/j.medj.2020.12.006.
5. Tillett, R. L. et al. Genomic evidence for reinfection with
SARS-CoV-2: a case study. Lancet Infect. Dis. 21 , 52–58
(2020).
6. Gudbjartsson, D. F. et al. Humoral Immune Response to
SARS-CoV-2 in Iceland. N. Engl. J. Med. 383 , 1724–1734
(2020).
7. Wajnberg, A. et al. Robust neutralizing antibodies to
SARS-CoV-2 infection persist for months. Science (80-. ).370 , eabd7728 (2020).
8. Seow, J. et al. Longitudinal observation and decline of
neutralizing antibody responses in the three months following SARS-CoV-2
infection in humans. Nat. Microbiol. 5 , 1598–1607
(2020).
9. Prévost, J. et al. Cross-Sectional Evaluation of Humoral
Responses against SARS-CoV-2 Spike. Cell Reports Med. 1 ,
100126 (2020).
10. Robbiani, D. F. et al. Convergent antibody responses to
SARS-CoV-2 in convalescent individuals. Nature 584 ,
437–442 (2020).
11. Solbach, W. et al. Antibody Profiling of COVID-19 Patients in
an Urban Low-Incidence Region in Northern Germany. Front. Public
Heal. 8 , 575 (2020).
12. Long, Q.-X. et al. Clinical and immunological assessment of
asymptomatic SARS-CoV-2 infections. Nat. Med. (2020)
doi:10.1038/s41591-020-0965-6.
13. Woloshin, S., Patel, N. & Kesselheim, A. S. False Negative Tests
for SARS-CoV-2 Infection — Challenges and Implications. N. Engl.
J. Med. 383 , e38 (2020).
14. Weiskopf, D. et al. Phenotype and kinetics of
SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory
distress syndrome. Sci. Immunol. 5 , (2020).
15. Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2
Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.Cell 181 , 1489-1501.e15 (2020).
16. Babel, N. et al. Immune monitoring facilitates the clinical
decision in multifocal COVID‐19 of a pancreas‐kidney transplant patient.Am. J. Transplant. 20 , 3210–3215 (2020).
17. Thieme, C. J. et al. Robust T Cell Response Toward Spike,
Membrane, and Nucleocapsid SARS-CoV-2 Proteins Is Not Associated with
Recovery in Critical COVID-19 Patients. Cell Reports Med.1 , 100092 (2020).
18. Anft, M. et al. COVID-19-induced ARDS is associated with
decreased frequency of activated memory/effector T cells expressing
tissue migration molecule CD11a++. Mol. Ther. 0 , (2020).
19. Cao, Y. et al. Potent neutralizing antibodies against
SARS-CoV-2 identified by high-throughput single-cell sequencing of
convalescent patients’ B cells. Cell (2020)
doi:10.1016/j.cell.2020.05.025.
20. Seydoux, E. et al. Analysis of a SARS-CoV-2-Infected
Individual Reveals Development of Potent Neutralizing Antibodies with
Limited Somatic Mutation. Immunity 53 , 98-105.e5 (2020).
21. Wec, A. Z. et al. Broad neutralization of SARS-related
viruses by human monoclonal antibodies. Science (80-. ).369 , 731–736 (2020).
22. Brouwer, P. J. M. et al. Potent neutralizing antibodies from
COVID-19 patients define multiple targets of vulnerability.Science (80-. ). 369 , 643–650 (2020).
23. Juno, J. A. et al. Humoral and circulating follicular helper
T cell responses in recovered patients with COVID-19. Nat. Med.26 , 1428–1434 (2020).
24. Ju, B. et al. Human neutralizing antibodies elicited by
SARS-CoV-2 infection. Nature 584 , 115–119 (2020).
25. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of
serological memory by polyclonal activation of human memory B cells.Science (80-. ). 298 , 2199–2202 (2002).
26. Seifert, M. & Küppers, R. Human memory B cells. Leukemiavol. 30 2283–2292 (2016).
27. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence
is independent of persisting immunizing antigen. Nature407 , 636–642 (2000).
28. Traggiai, E. et al. An efficient method to make human
monoclonal antibodies from memory B cells: Potent neutralization of SARS
coronavirus. Nat. Med. 10 , 871–875 (2004).
29. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed
for up to 8 months after infection. Science (80-. ). eabf4063
(2021) doi:10.1126/science.abf4063.
30. Hartley, G. E. et al. Rapid generation of durable B cell
memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and
convalescence. Sci. Immunol. 5 , eabf8891 (2020).
31. Townsend, S. E., Goodnow, C. C. & Cornall, R. J. Single epitope
multiple staining to detect ultralow frequency B cells. J.
Immunol. Methods 249 , 137–146 (2001).
32. Boonyaratanakornkit, J. & Taylor, J. J. Techniques to Study
Antigen-Specific B Cell Responses. Frontiers in immunology vol.
10 1694 (2019).
33. Cossarizza, A. et al. Guidelines for the use of flow
cytometry and cell sorting in immunological studies. Eur. J.
Immunol. 47 , 1584–1797 (2017).
34. Dunmire, S. K., Verghese, P. S. & Balfour, H. H. Primary
Epstein-Barr virus infection. J. Clin. Virol. 102 ,
84–92 (2018).
35. Gattinger, P. et al. Antibodies in serum of convalescent
patients following mild COVID-19 do not always prevent virus receptor
binding. Allergy (2020) doi:10.1111/all.14523.
36. Rodda, L. B. et al. Functional SARS-CoV-2-specific immune
memory persists after mild COVID-19. Cell 184 ,
169-183.e17 (2020).
37. Zhang, Y. et al. Protective humoral immunity in SARS-CoV-2
infected pediatric patients. Cellular and Molecular Immunologyvol. 17 768–770 (2020).
38. Deng, W. et al. Primary exposure to SARS-CoV-2 protects
against reinfection in rhesus macaques. Science (80-. ).369 , 818–823 (2020).