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Abstract

This paper deals with a new description of the one sided operator matrix form, as a
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then the one provided in the works of [17, 33]. An example of di�erential equations is tested
to ensure the validity of the abstract results.
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1 Introduction

The theory of some linear operators acting in Banach space related to their corresponding essen-
tial spectra is a modern section of the spectral analysis in operator theory domain. Such kind of
theory provide an immense use in many branches such us: in the mathematical, control theory
and physical sense, when resolving a number of application that can be formulated in terms of
many linear operators. Recently, to the best of our knowledge up, a few results have been ap-
peared on the spectral analysis of unbounded block operators matrices theory with mixed order (
we refer the readers to look the papers [2, 3, 4, 8, 14, 17, 21, 22, 25, 26, 27, 29, 30, 33] and among
others). This work has its origin and motivation in the analysis of stability problem likewise: in
�uid mechanics, transport operators, ordinary di�erential equations and magnetohydrodynamics
([3, 5, 6, 8, 14, 17, 21, 22, 29, 30, 33]).

The theory of operator matrices, dates backs to 1985, was introduced in the papers of R.
Nagel [26, 27] in the context of unbounded operator matrix given by the following form that
acting in the product of Banach spaces X × Y

A :=

(
A B
C D

)
de�ned with diagonal domain
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D(A) = D(A)×D(D),

later by F. V. Atkinson et al. [2] in 1994, A. A. Shkalikov [30] in 1995, N. Moalla [21] in 2006 and
A. Jeribi [14] in 2009 for maximal domain case. However, such kind of domain fail not usually
conserved especially when dealing with the study of some physical phenomena. Such case occurs
in some examples such us in Delay di�erential equations, in Population equation with spatial
di�usion, a cell equation (see the paper of R. Nagel for more details [25]) and among others.
Keeping to this interest, A. Batkai et al. in [3] has spurred this case of non maximality domain
in the study of the unbounded operator matrix with non maximal domain. That is, in the case
when the domain of operator matrix contains one additional condition of the form ΦXx = ΨY y
between each components of its elements and for linear operators ΦX and ΨY from X and Y
into Banach space Z, respectively, expressed as the form:

D(A) :=

{(
x
y

)
∈ (D(A) ∩ D(C))× (D(B) ∩ D(D)) : ΦXx = ΨY y

}
. (1.1)

Since this study, the invention of the notion of the essential spectra is becoming increasingly
important in many applications especially in transport equations. Particularly, some progress on
the study of this kind of unbounded operator matrix form (1) having the domain (1.1) have been
introduced and developed by I. Walha et al. in numerous papers as [7, 8, 17, 33]. Our approach
allows us investigate a �ne description of some essential spectra of the closure of the matrix form
(1), denoted by A, de�ned in (1.1) as the form:

σek(A) := σek(A1) ∪ σek(D − C[−KµΨY + (µI −A1)−1B]),

where A1 := A|D(A)∩N (ΦX) and Kµ represents the inverse of the restriction of the operator ΦX

on N (µI −A).

Recently, S. Char� et al. in [8] have paid attention to the research of the description of the
essential spectra of the above de�ned operator matrix A. New approaches to old techniques of
computation have led to signi�cant advances in the spectral analysis from the theory of operators
matrices expressed as follows:

σek(A) := σek(A1) ∪ σek(D − C[−KµΨY + (µI −A1)−1B]),

for µ ∈ ρ(A1).We shall emphasize on the fact that the above spectral description should be uses
a full of assumptions and the Frobenuis-Schur factorization.

Among this direction, we had the idea to deal with general model of unbounded operator
matrix, so called the one sided operator matrix de�ned in the product of Banach spaces E × F
having the domain

D(A) =

{(
f
g

)
∈ D(Am)×D(D) : φ(f) = ψ(g)

}
,

for which

A
(
f
g

)
:=

(
Amf +Bg
Cf +Dg

)
,

(
f
g

)
∈ D(A).
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Based on this kind matrix form, we �nd a weaker assumptions then the one used by S. Char�
et al. in [8] on their entries assuring the analysis problem of its resolvent expression. In that
meaning, the obtain resolvent expression are used to describe the constraints of the eigenvalues
corresponding of to such kind of operator matrix that is studied. The procedure of the proof is
explained in details by the use of some stability criteria on the theory of Fredholm perturbations
techniques which allow us providing an amelioration in the characterization of some essential
spectra of this kind of model of operator matrix and in terms of his diagonal operators entries.
Thus, this result appears as natural in view of scienti�c progress in this �eld.

To this interest, we consider an illustrative example of integro-di�erential equation on X ×X-
space, where

X := L1((0, 1)×K, dxdξ), x ∈ (0, 1), ξ = (ξ1, ξ2, ξ3) ∈ K,

(K is the unit sphere of R3) as follows:

AH :=

(
T K12

K21 TH +K22

)
.

de�ned with non maximal domain as:

D(AH) :=

{(
f
g

)
∈ W ×W :

(
f
g

)i
= H

(
f
g

)o}
,

where:

∗
(
f
g

)o
and

(
f
g

)i
represent the outgoing and the incoming �uxes related by the bounded

boundaries operator H which is expressed as:


H : Xo ×Xo −→ Xi ×Xi

(
f
g

)
7−→

(
0 H
0 H

)(
f
g

)
,

where H ∈ L(X0, Xi) and the boundary spaces X0 and Xi are identi�ed as:

X0 := L1(D0, |ξ3|dξ) and Xi := L1(Di, |ξ3|dξ)
where the sets of the incoming Di and the outgoing D0 boundary of the phase space D :=
(0, 1)×K are given by:

Di = Di
1 ∪Di

2 = ({0} ×K1) ∪ ({1} ×K0) and D0 = D0
1 ∪D0

2 = ({0} ×K0) ∪ ({1} ×K1),

for

K0 = K ∩ {ξ3 < 0} and K1 = K ∩ {ξ3 > 0}.
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∗ each closed linear operator T is de�ned by:

T : D(T ) ⊆ X −→ X

f 7−→ Tf : (x, ξ) 7−→ −ξ3
∂f

∂x
(x, ξ)− σ1(x, ξ)f(x, ξ)

D(T ) :=

{
f ∈ X : ξ3

∂f

∂x
∈ X

}
=W,

∗ the streaming operator TH is de�ned by:
TH : D(TH) ⊆ X −→ X

g 7−→ THg : (x, ξ) 7−→ −ξ3
∂g

∂x
(x, ξ)− σ2(x, ξ)g(x, ξ)

D(TH) :=
{
g ∈ W : gi = Hgo

}
,

∗ the bounded linear collision operators Kij , (i, j) = {(1, 2), (2, 1), (2, 2)}, are de�ned on X by: Kij : X −→ X

f 7−→ Kij f : (x, ξ) 7−→
∫
K
κij(x, ξ, ξ

′) f(x, ξ′) dξ′

where the frequency σj(., .) ∈ L∞(−1, 1), j = {1, 2}, is considered as a positive bounded function
on D.

Physically, the function (x, ξ) 7−→
(
f
g

)
(x, ξ) represents the number density of neutrons having

the position x and the direction cosine of propagation ξ.

Clearly, this model of transport operator may be written as one sided coupled operator matrix
as the following form:

A :=

(
T K12

K21 TH +K22

)
:=

(
Am B
C D

)
,

de�ned on:

D(A) :=

{(
f
g

)
∈ D(Am)×D(TH +K22) : φ(f) = ψ(g)

}
,

(for appropriate operators φ and ψ introduced in details in Section 4). Taking advantage of the
results of Section 3 with a speci�c choice of the boundary and collision operators, we guarantee
the stability of the essential spectra between the operators A and

TH :=

(
A0 0
0 TH +K22

)
,

in other terms, we �nd a weaker conditions based on the regularity de�nition of the collision
operator which introduced by B. Lods in [19] as a generalization of then de�ned by M. Moktar-
Karroubi in [23] to enrich a �ne description of the picture of the eigenvalues of this model of
transport operators as:

ρek(A) = ρek(A0) ∩ ρek(TH).

4



Physically, A0 corresponds to the transport operator with vacuum boundaries condition as A0 :=
T , D(A0) := {f ∈ D(T ) : f i = 0}.

Our paper is organized as follows:

− Section 2 is devoted to gather some basic de�nitions about theory of operators and presents
its fundamental properties.

− Section 3 is concentrated to describe our model of operator matrix A. Some general hypotheses
on the di�erent components of A are introduced in details in order to characterize its essential
spectra.

− Section 4 focuss on details description of the theoretical results to a physical model of transport
operators with speci�c boundaries condition on the nuclear space.

2 Preliminaries results

We start this section by giving some basic de�nitions and notations that we will need in the
sequel.

Let X and Y be two Banach spaces. We denote by L(X,Y ) (resp. C(X,Y )) the set of all
bounded (resp. closed, densely de�ned) linear operators from X into Y. The subset of all compact
operators of L(X,Y ) is designated by K(X,Y ). For A ∈ C(X,Y ), we write D(A) ⊂ X for the
domain, N(A) ⊂ X for the null space and R(A) ⊂ Y for the range of A. The nullity, α(A), of A
is de�ned as the dimension of N(A) and the de�ciency, β(A), of A is de�ned as the codimension
of R(A) in Y.

Now, we introduce the following important classes of Fredholm operators:

De�nition 2.1

(i) The set of upper semi-Fredholm operators from X into Y is de�ned by:

Φ+(X,Y ) := {A ∈ C(X,Y ) : α(A) <∞,R(A) is closed in Y }.

(ii) The set of lower semi-Fredholm operators from X into Y is de�ned by:

Φ−(X,Y ) := {A ∈ C(X,Y ) : β(A) <∞ }.

(iii) The set of Fredholm (resp. semi-Fredholm) operators from X into Y is de�ned by:

Φ(X,Y ) := Φ+(X,Y ) ∩ Φ−(X,Y ) (resp.Φ±(X,Y ) := Φ+(X,Y ) ∪ Φ−(X,Y )). ♦

The set of bounded upper (resp. lower) semi-Fredholm operators from X into Y is de�ned as:

Φb
+(X,Y ) = Φ+(X,Y ) ∩ L(X,Y ) (resp. Φb

−(X,Y ) = Φ−(X,Y ) ∩ L(X,Y ))

while the set of bounded Fredholm operators from X into Y is de�ned as:

Φb(X,Y ) = Φ(X,Y ) ∩ L(X,Y ).

It is should be noted that while X = Y, then the sets L(X,Y ), K(X,Y ), C(X,Y ), Φ(X,Y ),
Φ+(X,Y ), Φ−(X,Y ), Φb(X,Y ), Φb

+(X,Y ) and Φb
−(X,Y ) are replaced, respectively, by L(X),

K(X), C(X), Φ(X), Φ+(X), Φ−(X), Φb(X), Φb
+(X) and Φb

−(X). A complex number λ is in ΦA,
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Φ+A or Φ−A, that is, λ−A is in Φ(X), Φ+(X) or Φ−(X) respectively. The index of an operator
A ∈ Φ±(X) is de�ned by: i(A) := α(A)− β(A).

Sets of right and left Fredholm operators are de�ned as:

De�nition 2.2

(i) The set of right Fredholm operators from X into Y is de�ned by:

Φr(X,Y ) := {A ∈ C(X,Y ) : ∃Ar ∈ L(Y,XA) such that ÂAr − I ∈ K(Y )}

(ii) The set of left Fredholm operators from X into Y is de�ned by:

Φl(X,Y ) := {A ∈ C(X,Y ) : ∃Al ∈ L(Y,XA) such that AlÂ− I ∈ K(XA)}. ♦

Nothing that these sets of Fredholm operators satisfying the following inclusions:

Φ(X,Y ) ⊂ Φl(X,Y ) ⊂ Φ+(X,Y ) and Φ(X,Y ) ⊂ Φr(X,Y ) ⊂ Φ−(X,Y ).

We recall some basic de�nitions for bounded linear operators in Banach spaces that are
meaningful in the study of the stability problem of some essential spectra.

De�nition 2.3 Let X be a Banach space.
(i) An operator A ∈ L(X) is said to be weakly compact if A(B) is relatively weakly compact in
X for every bounded B ⊂ X.

The class of weakly compact operators on X, denoted by WC(X) is a closed two-sided ideal of
L(X) containing K(X) (see [11]).

(ii) An operator A ∈ L(X) is said to be strictly singular if the restriction of A to any in�nite-
dimensional subspace of X is not an homeomorphism.
Let S(X) denotes the set of strictly singular operators on X. ♦

Remark 2.1 (i) Note that the class of strictly singular operators is not compact in general (see
[11]), but in a separable Hilbert space X, we have:

S(X) = K(X),

we refer the readers to [11, 20, 31, 32], for more properties of this kind of class operators.

(ii) Let Xp denotes the space Lp(Ω, dµ) (1 ≤ p ≤ ∞), where (Ω,Σ, µ) stands for a positive
measure space.
Keeping into Theorem 1 in [28], for X1 = L1-space (res. C(Ω)-spaces, with Ω is a compact
Hausdor� space), we have:

WC(X1) = S(X1).

However, if 1 < p <∞, Xp is re�exive and then

L(Xp) =WC(Xp).

On the other hand, following Theorem 5.2 in [11], we infer that:

K(Xp) ⊂6= S(Xp) ⊂6= WC(Xp), for p 6= 2.

For p = 2, we have:
K(Xp) = S(Xp) =WC(Xp). ♦

6



As a generalization of the class of compact operators, we will introduce the class of polyno-
mially compact operators which denoted by PK(X) and de�ned as:

PK(X) = { A ∈ L(X) such that there exists a nonzero complex polynomial

P (z) =
n∑
k=0

akz
k satisfying P (A) ∈ K(X)}.

Remark 2.2 (i) Obviously, every compact operator belongs to the class of polynomially com-
pact operators, that is, we mainly have the following inclusion:

K(X) ⊂ PK(X).

(ii) Let (Ω, µ) be a σ-�nite measure space.
Since X = L1(Ω, dµ) (respectively X = C(Ω)-spaces with Ω is a compact Hausdor� space), then
we obtain:

W(X) ⊂ PK(X),

for more details, we infer the readers to Remark 2.3 in [6]. ♦

When dealing with closed, densely de�ned linear operator, A, on a Banach space, various
notions of essential spectra appear. We are concerned with some of them:

σek(A) := {µ ∈ C : µ−A /∈ Φ∗(X)} and σej(A) := C \ ρej(A),

where:

(σek(.),Φ∗(.)) ∈ {(σer(.),Φr(.)), (σel(.),Φl(.)), (σew(.),Φ(.))},

(σek(), ρek()) ∈ {(σess(), ρess()), (σeb(), ρeb())},

ρess(A) := {µ ∈ ΦA, i(µ−A) = 0}

and
ρeb(A) := {µ ∈ ρess(A) : all scalars near µ are in ρ(A)}.

Obviously, we can check the following inclusions for each notion of essential spectra:

σew(A) ⊆ σess(A) ⊆ σeb(A),

σeg(A) ⊂ σel(A) ⊂ σew(A), (2.1)

σed(A) ⊂ σer(A) ⊂ σew(A) (2.2)

where σeg(A) := {µ ∈ C : µ−A /∈ Φ+(X)} and σed(A) := {µ ∈ C : µ−A /∈ Φ−(X)}.

In this work, we are interested to characterize some essential spectra of unbounded one sided
coupled operator matrix involving the theory of Fredholm perturbations. For this purpose, the
following de�nition required.

De�nition 2.4

(i) The set of right Fredholm perturbation from X into Y is de�ned by:

P(Φr(X,Y )) = {F ∈ L(X,Y ) : A+ F ∈ Φr(X,Y ), ∀A ∈ Φr(X,Y )}.
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(ii) The set of left Fredholm perturbation from X into Y is de�ned by:

P(Φl(X,Y )) = {F ∈ L(X,Y ) : A+ F ∈ Φl(X,Y ), ∀A ∈ Φl(X,Y )}.

(iii) The set of upper semi-Fredholm perturbation from X into Y is de�ned by:

P(Φ+(X,Y )) = {F ∈ L(X,Y ) : A+ F ∈ Φ+(X,Y ), ∀A ∈ Φ+(X,Y )}.

(iv) The set of lower semi-Fredholm perturbation from X into Y is de�ned by:

P(Φ−(X,Y )) = {F ∈ L(X,Y ) : A+ F ∈ Φ−(X,Y ), ∀A ∈ Φ−(X,Y )}.

(v) The set of Fredholm perturbation from X into Y is de�ned by:

P(Φ(X,Y )) = {F ∈ L(X,Y ) : A+ F ∈ Φ(X,Y ), ∀A ∈ Φ(X,Y )}. ♦

Sets of Fredholm perturbations from X into Y can be ordered as:

P(Φ(X,Y )) ⊆ P(Φl(X,Y )) ⊆ P(Φ+(X,Y ))

and
P(Φ(X,Y )) ⊆ P(Φr(X,Y )) ⊆ P(Φ−(X,Y )).

Remark 2.3

(i) Sets of Fredholm perturbations P(Φb(X,Y )), P(Φb
+(X,Y )), P(Φb

−(X,Y )), P(Φb
l (X,Y )) and

P(Φb
r(X,Y )), respectively, may be de�ned in the same ways as De�nition 2.4 if we replace

Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ), Φl(X,Y ) and Φr(X,Y ) by Φb(X,Y ), Φb
+(X,Y ), Φb

−(X,Y ),
Φb
l (X,Y ) and Φb

r(X,Y ).

(ii) Following [10], it is shown that P(Φb(X,Y )), P(Φb
+(X,Y )) and P(Φb

−(X,Y )) are closed
subset of L(X,Y ) and if X = Y, then P(Φb(X)) := P(Φb(X,X)), P(Φb(X)) := P(Φb

+(X,X))
and P(Φb

−(X)) := P(Φb
−(X,X)) are closed two-sided ideals of L(X).

In [16], it is shown that if X = Y, then P(Φb
l (X)) := P(Φb

l (X,X)), P(Φb
r(X)) := P(Φb

r(X,X))
are two-sided ideals of L(X), satisfying:

K(X,Y ) ⊆ W(X,Y ) ⊆ P(Φb
+(X,Y )) ⊆ P(Φb

l (X,Y )) ⊆ P(Φb(X,Y )) (2.3)

and
K(X,Y ) ⊆ W(X,Y ) ⊆ P(Φb

−(X,Y )) ⊆ P(Φb
r(X,Y )) ⊆ P(Φb(X,Y )). (2.4)

♦

The interaction between the study of the property of Fredholm perturbations of the block
operator matrix and their component entries provides a signi�cant subject of study in spectral
theory and developed by A. Jeribi et al. in [16].

Theorem 2.1 [16, Theorem 3.1-3.2] Let Xi, for i = {1, 2}, be a Banach space and P :=
(Pij)1≤i,j≤2, where Pij denote a bounded linear operator from Xj into Xi, for 1 ≤ i, j ≤ 2.
Then, we have

P ∈ E(X1 ×X2) ⇐⇒ Pij ∈ E(Xj , Xi), ∀i, j = 1, 2,

where (E(X1 ×X2), E(Xj , Xi)) ∈
{

(P(Φbl (X1×X2)),P(Φbl (Xj ,Xi))),(P(Φbr(X1×X2)),P(Φbr(Xj ,Xi))),

(P(Φb(X1×X2)),P(Φb(Xj ,Xi)))

}
.
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Before owing to formulate our aim, we state the following theorem who is focuss on the
stability analysis of some essential spectra of unbounded operator originated by S. Char� et al.
in [8].

Theorem 2.2 [8] Let X be a Banach space, A and B are two closed densely de�ned linear
operators on X. Then, we get:

(i) For some µ ∈ ρ(A) ∩ ρ(B), we obtain:

(µI −A)−1 − (µI −B)−1 ∈ P(Φb
l (X)) implies that σel(A) = σel(B).

(ii) For some µ ∈ ρ(A) ∩ ρ(B), we obtain:

(µI −A)−1 − (µI −B)−1 ∈ P(Φb
r(X)) implies that σer(A) = σer(B). ♦

3 Main results

The main purpose of this section is to discuss the essential spectra of one sided coupled
operator matrix A, that is for one sided operator matrix (with domain consisting of one condition
between their components entries).

Let X, E and F be Banach spaces. We consider linear operators:

Am in E, D in F, C from D(Am) into F, B from D(D) into E

and the continuous linear operators:

φ from D(Am) ⊂ E into X,

ψ from D(D) ⊂ F into X

with the following properties:

(H1) The operator Am (resp. D) is densely de�ned and closed linear operator.

(H2) The operator φ is surjective.

(H3) The operator B (resp. C) is bounded as a mapping from D(D) (resp. D(Am)) into E (resp.
F ).

These assumptions allow to collect some results established by G. Greiner in [12].

Lemma 3.1 (i) The operator A0 := Am|kerφ is closed.

(ii) For µ ∈ ρ(A0) the following decomposition holds:

D(Am) = D(A0)⊕ ker(µ−Am)

(iii) Let µ ∈ ρ(A0). Then,
φµ := φ|ker(µ−Am)

is continuous bijection from ker(µ−Am) onto X. ♦
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As a direct consequence of the above Lemma, for µ ∈ ρ(A0) ∩ ρ(D), the inverse of φµ will
play an important role to de�ne the bounded operators Kµ as follows:

Kµ : D(D) −→ D(Am)

g 7−→ Kµ(g) = φ−1
µ ◦ ψ(g).

4 Description of the one sided coupled operator

Throughout this hypotheses (H1)-(H3), we de�ne in the product of Banach spaces E×F, the
one sided coupled operator matrix A as follows:

D(A) =

{(
f
g

)
∈ D(Am)×D(D) : φ(f) = ψ(g)

}
,

A
(
f
g

)
:=

(
Amf +Bg
Cf +Dg

)
,

(
f
g

)
∈ D(A).

Our aim is to describe some essential spectra of this kind of operator matrix. For this purpose,
we need to decompose it into the following form:

Lemma 4.1 [5] For µ ∈ ρ(A0) ∩ ρ(D), we have on D(A):

µ−A :=

(
µ−A0 0

0 µ−D

)(
I −ΞB(µ)

−ΞC(µ) I

)
,

where:

ΞC(µ) := (µ−D)−1C and ΞB(µ) := Kµ + (µ−A0)−1B. ♦

The following obtained results will be essential to prove the main theorem of the present
paper.

Theorem 4.1 Let µ ∈ ρ(A0) ∩ ρ(D).

(i) If the operator ∆µ(C,B) := I − ΞC(µ)ΞB(µ) is invertible in D(D), then µ−A is invertible.

Moreover,

1 ∈ ρ(ΞC(µ)ΞB(µ)) =⇒ µ ∈ ρ(A),

with inverse given by:

(µ−A)−1 := Qµ(A0, D)−1 + Γ(B,C),

where:

• Qµ(A0, D) :=

(
µ−A0 0

0 µ−D

)
10



• Γ(B,C) :=

 ΞB(µ)(∆µ(C,B))−1ΞC(µ)(µ−A0)−1 ΞB(µ)(µ−D)−1

ΞB(µ)(∆µ(C,B))−1ΞC(µ)ΞB(µ)(µ−D)−1

(∆µ(C,B))−1ΞC(µ)(µ−A0)−1 (∆µ(C,B))−1ΞC(µ)ΞB(µ)(µ−D)−1


(ii) If the operator ∆µ(B,C) := I−ΞB(µ)ΞC(µ) is invertible in D(Am), then µ−A is invertible.

Moreover,

1 ∈ ρ(ΞB(µ)ΞC(µ)) =⇒ µ ∈ ρ(A),

with inverse given by:

(µ−A)−1 := Qµ(A0, D)−1 + Γ̃(B,C),

where:

Γ̃(B,C) := (∆µ(B,C))−1ΞB(µ)ΞC(µ)(µ−A0)−1 (∆µ(B,C))−1ΞB(µ)(µ−D)−1

ΞC(µ)(µ−A0)−1 ΞC(µ)(∆µ(B,C))−1ΞB(µ)(µ−D)−1

ΞC(µ)(∆µ(B,C))−1ΞB(µ)ΞC(µ)(µ−A0)−1

 .

♦

Proof. Let µ ∈ ρ(A0) ∩ ρ(D).

Based on the Fobenuis-Schur factorization of the matrix operator formMµ :=

(
I ΞB(µ)

−ΞC(µ) I

)
,

we infer its decomposition as follows:

Mµ :=

(
I 0

−ΞC(µ) I

)(
I 0
0 I − ΞC(µ)ΞB(µ)

)(
I −ΞB(µ)
0 I

)
(4.1)

or

Mµ :=

(
I −ΞB(µ)
0 I

)(
I − ΞB(µ)ΞC(µ) 0

0 I

)(
I 0

−ΞC(µ) I

)
(4.2)

for which, the �rst and last factors of Eqs. (4.1)-(4.2) are bounded and bounded invertible. Hence,
we deduce from the fact that ∆µ(C,B) := I−ΞC(µ)ΞB(µ) (resp. ∆µ(B,C) := I−ΞB(µ)ΞC(µ))
is invertible that it is too for the operator matrix Mµ. Consequently, µ − A become invertible

while the operator

(
µ−A0 0

0 µ−D

)
is invertible too for µ ∈ ρ(A0) ∩ ρ(D).

Moreover, assumption 1 ∈ ρ(ΞC(µ)ΞB(µ)) (resp. 1 ∈ ρ(ΞB(µ)ΞC(µ))) asserts that I−ΞC(µ)ΞB(µ)
(resp. I − ΞB(µ)ΞC(µ)) has bounded inverse. From what proceed, we can deduce that µ−A is
bounded with bounded inverse.

Therefore, the explicit resolvent of A follows from the computation of the product between

M−1
µ :=

(
I + ΞB(µ)(I − ΞC(µ)ΞB(µ))−1ΞC(µ) ΞB(µ)(I − ΞC(µ)ΞB(µ))−1

(I − ΞC(µ)ΞB(µ))−1ΞC(µ) (I − ΞC(µ)ΞB(µ))−1

)
11



(
resp. M−1

µ :=

(
(I − ΞB(µ)ΞC(µ))−1 (I − ΞB(µ)ΞC(µ))−1ΞB(µ)
ΞC(µ)(I − ΞB(µ)ΞC(µ))−1 ΞC(µ)(I − ΞB(µ)ΞC(µ))−1ΞB(µ) + I

))
and Qµ(A0, D)−1 :=

(
(µ−A0)−1 0

0 (µ−D)−1

)
, respectively. Q.E.D.

Now, we are in the position to express the �rst main results of this section. In the following,
we will denote by CΩ the complement of a subset Ω ⊂ C.

Theorem 4.2 Let µ ∈ ρ(A0) ∩ ρ(D) and 1 ∈ ρ(ΞC(µ)ΞB(µ)).
Then, we have:

(i) If ΞB(µ)(µ−D)−1 ∈ P(Φb
r(F,D(Am))) and ΞC(µ)(µ−A0)−1 ∈ P(Φb

r(E,D(D))), then:

(µ−A)−1 −Qµ(A0, D)−1 ∈ P(Φb
r(E × F )),

in particular,

σer(A) = σer(A0) ∪ σer(D).

(ii) If ΞB(µ)(µ−D)−1 ∈ P(Φb
l (F,D(Am))) and ΞC(µ)(µ−A0)−1 ∈ P(Φl(E,D(D))), then:

(µ−A)−1 −Qµ(A0, D)−1 ∈ P(Φb
l (E × F )),

in particular,

σel(A) = σel(A0) ∪ σel(D).

(iii) If ΞB(µ−D)−1 ∈ P(Φb(F,D(Am))) and ΞC(µ−A0)−1 ∈ P(Φb(E,D(D))), then:

(µ−A)−1 −Qµ(A0, D)−1 ∈ P(Φb(E × F )),

with
i(µ−A) = i(µ−A0) + i(µ−D)

in particular,

σew(A) = σew(A0) ∪ σew(D) and σess(A) ⊆ σess(A0) ∪ σess(D).

Moreover,

(iv) If Cσew(A0) is connected, then

σess(A) = σess(A0) ∪ σess(D).

(v) If Cσess(A) and Cσess(D) are connected with ρ(A) 6= ∅, then
σeb(A) = σeb(A0) ∪ σeb(D). ♦

Proof: (i) Following the assumptions for µ ∈ ρ(A0) ∩ ρ(D) with the fact that I − ΞC(µ)ΞB(µ)
is invertible with bounded inverse, we derive from the use of Theorem 2.1 and Theorem 4.1 that:

Γ(B,C) ∈ P(Φb
r(E × F )).

12



Consequently, Theorem 2.2 asserts that:

µ−A ∈ Φb
r(E × F ) ⇐⇒ µ−A0 ∈ Φb

r(E) and µ−D ∈ Φb
r(F ).

(ii) Obviously, the result of the right Fredholm perturbation and its relative essential spectrum
follows in a similar ways as in the item (i).
(iii) A derivative consequence from assertions (i) and (ii) revels that:

(µ−A)−1 −Qµ(A0, D)−1 ∈ P(Φb
l (E × F )) ∩ P(Φb

r(E × F )) = P(Φb(E × F )),

with
i(µ−A) = i(Qµ(A0, D)) = i(µ−A0) + i(µ−D),

as Qµ(A0, D) is diagonal operator matrix.

Hence, we obtain:
µ ∈ ρess(A0) ∩ ρess(D) =⇒ µ ∈ ρess(A).

(iv) The derive the equality result between the Schechter essential spectrum of A and the union
of the Schechter essential spectrum of A0 and D, we add to the previous inclusion the fact that
Cσew(A0) is connected. Which yields:

µ ∈ ρew(A0) ⇐⇒ µ ∈ ρess(A0).

Therefore, µ ∈ ρess(D) and this shows that:

ρess(A) ⊂ ρess(A0) ∩ ρess(D).

(v) The Browder essential spectrum of A may be computed in terms of the Browder essential
spectrum of A0 and D, since we apply Lemma 2.1 in [15] under some connected arguments.

Q.E.D.

The theory of Fredholmness perturbations play a crucial role in spectral theory. The impor-
tance of this kind of theory is tested for two-group of transport equations and it is applicable to
propose an abstract framework for the computation in easier manner of some essential spectra
of a problem of transport operator.

5 Transport equations in slab geometry

To apply the present results to an example of two-group of transport equations with speci�c
boundaries condition in order to validate the developed methods, we state the Banach space X
as:

X := L1((0, 1)×K, dxdξ), x ∈ (0, 1) ξ = (ξ1, ξ2, ξ3) ∈ K

where K is the unit sphere of R3.

We consider the following operator matrix with entries of integro-di�erential equation form:

A :=

(
T K12

K21 TH +K22

)
, (5.1)
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de�ned with non diagonal domain as:

D(A) :=

{(
f
g

)
∈ D(T )×D(TH) : f i = gi

}
,

where we denote by f i (resp. gi) as the incoming �uxes on the boundaries space Xi

Xi := L1(Di, |ξ3|dξ) := L1(Di
1, |ξ3|dξ)⊕ L1(Di

2, |ξ3|dξ) := Xi
1 ⊕Xi

2

associate to this physical model of transport and de�ned as:

f|Di := f i ∈ Xi, (resp. g|Di := gi ∈ Xi)

where the set Di represents the incoming boundaries of the phase space D as:

Di := Di
1 ∪Di

2 = ({0} ×K1) ∪ ({1} ×K0),

for

K0 = K ∩ {ξ3 < 0} and K1 = K ∩ {ξ3 > 0}.

On the sobolev space W de�ned as:

W :=

{
ψ ∈ X : ξ3

∂ψ

∂x
∈ X

}
,

we consider the closed linear operator T as:{
T : D(T ) ⊆ X −→ X

f −→ Tf, (x, ξ) 7−→ (Tf)(x, ξ) := −ξ3
∂f

∂x
(x, ξ)− σ1(x, ξ)f(x, ξ)

The streaming operator TH is de�ned as:
TH : D(TH) ⊆ X −→ X

g −→ THg, (x, ξ) 7−→ (THg)(x, ξ) := −ξ3
∂g

∂x
(x, ξ)− σ2(x, ξ)g(x, ξ)

D(TH) =
{
g ∈ W : gi = H(go)

}
where:
∗ the incoming and the outgoing �uxes gi and go := g|D0 , respectively, are related with the
boundary operator H from the boundaries space X0 into Xi, de�ned as a o�-diagonal operator
as the form:

H :=

(
0 H12

H21 0

)
with entries are given by:{

H12 : X0
2 −→ Xi

1

f(1, .) 7−→ H12f(ξ) = f(0, ξ)

{
H21 : X0

1 −→ Xi
2

f(0, .) 7−→ H21f(ξ) = f(1, ξ)

14



∗ the outgoing boundaries of the phase space D, denoted by D0 and given by:

D0 := D0
1 ∪D0

2 := ({0} ×K0) ∪ ({1} ×K1),

∗ the boundaries space X0 is de�ned by the following ways:

X0 := L1(D0, |ξ3|dξ) := L1(D0
1, |ξ3|dξ)⊕ L1(D0

2, |ξ3|dξ) := X0
1 ⊕X0

2

∗ the collision frequency σj(., .), for j = {1, 2}, is considered as a positive bounded function on
D.

The bounded collision operator matrix K with bounded linear collision operators Kij , for (i, j) ∈
{(1, 2), (2, 1), (2, 2)}, is considered as well:

K =

(
0 K12

K21 K22

)
,

where each collision linear operators Kij , (i, j) ∈ {(1, 2), (2, 1), (2, 2)} are bounded on X and
de�ned by: Kij : X −→ X

ψ −→ Kij ψ, (x, ξ) 7−→ (Kij ψ)(x, ξ) :=

∫
K
κij(x, ξ, ξ

′) ψ(x, ξ′) dξ′,

with measurable kernels κij : (0, 1)×K ×K −→ R.

Obviously, keeping with the above indication, this kind of operator matrix A with integro-
di�erential operators may be regard as one sided operator matrix form of the theoretical result
as:

A :=

(
Am B
C D

)
with non maximal domain

D(A) :=

{(
f
g

)
∈ W ×D(TH) : φ(f) = ψ(g)

}
.

Precisely, we identify the Banach spaces X,E and F by L1(D, dxdξ), the closed operators Am
and D by T and TH +K22, de�ned on D(Am) =W and D(D) = D(TH) the operators B and C
by the collision operators K12 and K21, respectively. The domain of this kind of operator matrix
considered non diagonal or non maximal, that is, with domain consists with one additional
condition modeled by the boundaries condition f i = gi which satis�es the following diagram:

X ⊃ D(Am) :=W φ // Xi

X ⊃ D(D) := D(TH)

ψ
44jjjjjjjjjjjjjjjjjjj

where the functions φ and ψ are identi�ed as well:
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{
φ :W −→ Xi

f 7−→ φ(f) = f i
and

{
ψ : X −→ Xi

g 7−→ ψ(g) = Hgo.

Physically, the example of integro-di�erential operator A considered as Eq. (5.1) modeled the
case of two group of transport operator with general boundaries condition. This means that is
considered on D(A) as follows:

D(A) :=

{
ϑ :=

(
f
g

)
∈ W ×W : ϑi = Hϑo

}
,

for speci�c bounded operator H given by the form:
H : Xo −→ Xi(
ν1

ν2

)
7−→ H

(
ν1

ν2

)
:=

(
0 H
0 H

)(
ν1

ν2

)
Remark 5.1 (i) The operator TH satis�es the assumption (H1), due to Remark 4.1 in [17].

(ii) Obviously, the hypothesis (H2) is ful�lled one has the trace mapping φ and ψ are continuous
and surjective due to Theorem 1 p. 252 in [9].

(iii) The hypothesis (H3) still valid sinceKij is a bounded operator onX, for (i, j) ∈ {(1, 2), (2, 1)}.♦

Since we deals with the case of operator matrix with non diagonal domain or non maximal
domain, to formulate our signi�cant advances on this theory, we de�ne an associate operator A0

as follows: {
A0f(x, ξ) := Tf(x, ξ) := −ξ3

∂f

∂x
(x, ξ)− σ1(x, ξ)f(x, ξ)

D(A0) = {f ∈ D(T ) : f i = 0},

which corresponds in mathematical physics to the model of transport operator with vacuum
boundaries condition.
Consider the real number µ∗j , for j = {1, 2}, de�ned in terms of the frequency of the collision by:

µ∗j := ess- inf{σj(x, ξ), (x, ξ) ∈ D}.

Before moving the picture of the eigenvalues of this physical model of transport operator, we
start to express the bounded operator Kµ corresponding to the theoretical part of this paper.
To do this, the following terminology will be required.

Lemma 5.1 Let µ ∈ ρ(A0) ∩ ρ(D).
Kµ is a bounded operator which is expressed as the mapping:

Kµ :W −→W

g 7−→ Kµg, (x, ξ) 7−→ (Kµg)(x, ξ) = χK0(ξ)H12g(1, ξ)e
−

∫ 1
x
σ1(s,ξ)+µ

|ξ3|
ds

+χK1(ξ)H21g(0, ξ) e
−

∫ x
0
σ1(s,ξ)+µ

|ξ3|
ds
.

♦

Proof: Let µ ∈ ρ(A0) ∩ ρ(D). Note that the expression of Kµ may be checked by steps:
∗ We start �rstly to revels the expression of ker(µ−Am).
For this, we consider ϕ ∈ D(Am). A short computation revels that:
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ϕ ∈ ker(λ−Am) means that ϕ(x, ξ) :=

 ϕ(0, ξ) e
−

∫ x
0
σ1(s,ξ)+µ

|ξ3|
ds
, ξ ∈ K1

ϕ(1, ξ)e
−

∫ 1
x
σ1(s,ξ)+µ

|µ3|
ds
, ξ ∈ K0

∗ Secondly, taking into account from the boundaries condition φ(f) = ψ(g), for f ∈ D(Am) and
g ∈ D(D), a short computation revels the expansion of ϕ(., ξ) as follows:

{
ϕ(0, ξ) = H12g(1, ξ), ξ ∈ K1,
ϕ(1, ξ) = H21g(0, ξ), ξ ∈ K0

which makes an explicit formula of Kµ as:

(Kµg)(x, ξ) := χK0(ξ)H21g(0, ξ)e
−

∫ 1
x
σ1(s,ξ)+µ

|ξ3|
ds

+ χK1(ξ)H12g(1, ξ)e
−

∫ x
0
σ1(s,ξ)+µ

|ξ3|
ds
. Q.E.D.

Before moving to the picture of the eigenvalues of this kind of transport operator model, we
will proof the weak compactness arguments of some operators expressed in terms of the collision
operators based on the regularity de�nition explained by B. Lods in [19].

De�nition 5.1 Each collision operator Kij is said to be regular if

{κij(x, ., ξ′), (x, ξ′) ∈ (0, 1)×K} ∈ W(L1(K, dξ)),

for (i, j) ∈ {(1, 2), (2, 1), (2, 2)}. ♦

Lemma 5.2 Assume that the collision operators K21 and K12 are non-negative, the boundary
operators H12 and H21 are weakly compact on X. Then, for µ ∈ ρ(A0) ∩ ρ(TH) with spectral
raduis rσ(K22(µ− TH)−1) < 1, we have:

(i)The relative weak compact subset
{κ21(x, ., ξ′)

|ξ′3|
, (x, ξ′) ∈ (0, 1)×K

}
of L1(K, dξ) implies that :

ΞC(µ)(µ−A0)−1 := (µ− TH −K22)−1K21(µ− T )−1 ∈ W(X),

for Reµ > −µ∗1.

(i) If the subset
{κ12(x, ., ξ′)

|ξ′3|
, (x, ξ′) ∈ (0, 1)×K

}
is relatively weakly compact of L1(K, dξ),

then we obtain:

ΞB(µ)(µ− TH −K22)−1 :=
[
Kµ + (µ− T )−1K12

]
(µ− TH −K22)−1 ∈ W(X),

for Reµ > −µ∗2. ♦

Proof: (i) The result may be obvious derived from the use of Lemma 4.2 in [17] with the fact
that the subset W(X) is two sided closed ideal of L(X).

(ii) Let µ ∈ ρ(TH) such that rσ(K22(µ− TH)−1) < 1 and Reµ > −µ∗2. For such µ, the operator
ΞB(µ)(µ− TH −K22)−1 may be written as:

ΞB(µ)(µ− TH −K22)−1 :=
[
Kµ + (µ− T )−1K12

]
(µ− TH)−1

∑
n≥0

(K22(µ− TH)−1)n.
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Therefore, following Lemma 4.4-(i) in [1], one has K12(µ− TH)−1 is a weakly compact operator
on X. Hence, we deduce from the weak compactness argument of H and the fact that the set
W(X) is a closed two sided-ideal of L(X), that:[

Kµ + (µ− T )−1K12

]
(µ− TH)−1(K22(µ− TH)−1)n ∈ W(X), ∀n ∈ N.

Thus, allows us conclude the desired results. Q.E.D.

The following lemma may be essential to derive our advances.

Lemma 5.3 For µ ∈ ρ(A0) ∩ ρ(TH) such that rσ((µ− TH)−1K22) < 1, we suppose that:

(i) Kij is a non negative and regular collision operator, for (i, j) ∈ {(1, 2), (2, 1)}.

(ii) the boundary operators H12 and H21 are weakly compact on X.

Then, we have:

ΞC(µ)ΞB(µ) ∈ PK(X).

Consequently, the operator I − ΞC(µ)ΞB(µ) is invertible with bounded inverse on X. ♦

Proof: Consider µ ∈ ρ(A0) ∩ ρ(TH) with rσ((µ− TH)−1K22) < 1. Thus, the following equation

(µ− TH −K22)f = g, for g ∈ X

may be solved as:

(µ− TH −K22)−1 :=
∑
k≥0

((µ− TH)−1K22)k(µ− TH)−1. (5.2)

That is means that the fact that µ ∈ ρ(A0) ∩ ρ(TH) satisfying rσ((µ − TH)−1K22) < 1, asserts
that µ ∈ ρ(TH +K22).

Therefore, the weak compactness argument of (µ− TH)−1K21 on X derived from Lemma 4.4 in
[1] yields:

ΞC(µ) := (µ− TH −K22)−1K21 ∈ W(X).

On the other hand, keeping with the fact that K12 de�nes a non-negative collision operator, we
infer from Lemma 4.8 in [17], that (µ − A0)−1K12 is weakly compact operator on X. Thus, we
conclude that is also for the operator ΞB(µ), while H12 and H21 are weakly compact operators
on X.

Consequently, Remark 2.2 revels that:

ΞC(µ)ΞB(µ) ∈ PK(X).

From that proceed, for µ ∈ ρ(A0) ∩ ρ(TH) with rσ((µ − TH)−1K22) < 1, we deduce that:
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µ ∈ ρ(A0) ∩ ρ(TH) ∩ ρ(TH +K22).Then, we get:

N(I − ΞC(µ)ΞB(µ))

=
{
z : (I − ΞC(µ)ΞB(µ))z = 0

}
=

{
z : (µ− TH −K22)−1K21

[
Kµ + (µ−A0)−1K12

]
z = z

}
=

{
z : (µ− TH −K22)(µ− TH −K22)−1K21

[
Kµ + (µ−A0)−1K12

]
z = (µ− TH −K22)z

}
=

{
z : K21(µ−A0)−1[(λ−A0)Kµ +K12]z = (µ− TH −K22)z

}
=

{
z : K21(µ−A0)−1K12z = (µ− TH −K22)z, while Kµ ∈ ker(µ−Am)

}
=

{
z : [µ− TH −K22 −K21(µ−A0)−1K12]z = 0

}
.

Following Remark in [14], we infer for µ ∈ ρ(A0) ∩ ρ(TH + K22), that there exist µ ∈ ρ(A0) ∩
ρ(TH + K22) ∩ ρ(TH + K22 + K21(µ − A0)−1K12). In what follows, we deduce that µ − TH −
K22 −K21(µ−A0)−1K12 is invertible. Thus, asserts that:

N(µ− TH −K22 −K21(µ−A0)−1K12) = {0}.

Consequently,
N(I − ΞC(µ)ΞB(µ)) = {0}.

Therefore, according with the fact that ΞC(µ)ΞB(µ) is polynomially compact on X, we derive
from Theorem 2.2 in [13], that I − ΞC(µ)ΞB(µ) is invertible with bounded inverse on X.Q.E.D.

We are now in the position to express the description of the essential spectra of this physical
model of transport.

Theorem 5.1 Assume that:

(i) the operator Hij is weakly compact for (i, j) ∈ {(1, 2), (2, 1)},

(ii) K22 de�nes a regular operator.

(iii) the collision operator Kij is non negative and regular, for (i, j) ∈ {(1, 2), (2, 1)},

(iv) the subset
{κ12(x, ., ξ′)

|ξ′3|
, (x, ξ′) ∈ (0, 1)×K

}
(resp.

{κ21(x, ., ξ′)

|ξ′3|
, (x, ξ′) ∈ (0, 1)×K

}
) is

relatively weakly compact of L1(K, dξ).
Then, we get:

σei(A) = σei(A0) ∪ σei(TH +K22)

= {µ ∈ C : Reµ ≤ −min(µ∗1, µ
∗
2)} ,

for σh(.) ∈ {σer(.), σel(.), σew(.), σess(.), σeb(.).} ♦

Proof: The Theorem follows from Theorem 4.2, Lemmas 5.2 and 5.3 and the use of Eqs. (2.1),
(2.2) and (4.13) in [17]. Q.E.D.
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Conclusion: This paper deals with a new model of unbounded block 2 × 2 operator matrix,
called the one sided operator matrix. Therefore, this kind of operator matrix plays a really strong
and fruitful role in computation of their essential spectra. Precisely, we develop innovative ways
leading to a rigorous study of spectral properties of matrix operator with non diagonal domain
(see Theorem 4.2) independently of its Schur complement and under less hypotheses of many
earlier works of [2, 3, 8, 17, 21, 22, 33]. Furthermore, to clarify better contribution, we consider
an example of transport operator with speci�c boundaries condition.
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