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Abstract

This paper deals with a new description of the one sided operator matrix form, as a
generalization of the case of the unbounded operator matrix with the non diagonal domain, to
investigate some advances in the analysis of some essential spectra under weaker hypotheses
then the one provided in the works of [17, 33]. An example of differential equations is tested
to ensure the validity of the abstract results.
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1 Introduction

The theory of some linear operators acting in Banach space related to their corresponding essen-
tial spectra is a modern section of the spectral analysis in operator theory domain. Such kind of
theory provide an immense use in many branches such us: in the mathematical, control theory
and physical sense, when resolving a number of application that can be formulated in terms of
many linear operators. Recently, to the best of our knowledge up, a few results have been ap-
peared on the spectral analysis of unbounded block operators matrices theory with mixed order (
we refer the readers to look the papers [2, 3, 4, 8, 14, 17, 21, 22, 25, 26, 27, 29, 30, 33| and among
others). This work has its origin and motivation in the analysis of stability problem likewise: in
fluid mechanics, transport operators, ordinary differential equations and magnetohydrodynamics
([3, 5, 6, 8, 14, 17, 21, 22, 29, 30, 33]).

The theory of operator matrices, dates backs to 1985, was introduced in the papers of R.
Nagel |26, 27] in the context of unbounded operator matrix given by the following form that
acting in the product of Banach spaces X x Y

(2 5)

defined with diagonal domain



D(A) = D(A) x D(D),

later by F. V. Atkinson et al. [2]in 1994, A. A. Shkalikov [30] in 1995, N. Moalla [21] in 2006 and
A. Jeribi [14] in 2009 for maximal domain case. However, such kind of domain fail not usually
conserved especially when dealing with the study of some physical phenomena. Such case occurs
in some examples such us in Delay differential equations, in Population equation with spatial
diffusion, a cell equation (see the paper of R. Nagel for more details [25]) and among others.
Keeping to this interest, A. Batkai et al. in [3] has spurred this case of non maximality domain
in the study of the unbounded operator matrix with non maximal domain. That is, in the case
when the domain of operator matrix contains one additional condition of the form ®xx = Vyy
between each components of its elements and for linear operators ®x and Wy from X and Y
into Banach space Z, respectively, expressed as the form:

D(A) = {< “;’ > € (D(A)ND(C)) x (D(B)ND(D)): ®xa = quy}. (1.1)

Since this study, the invention of the notion of the essential spectra is becoming increasingly
important in many applications especially in transport equations. Particularly, some progress on
the study of this kind of unbounded operator matrix form (1) having the domain (1.1) have been
introduced and developed by I. Walha et al. in numerous papers as [7, 8, 17, 33|. Our approach
allows us investigate a fine description of some essential spectra of the closure of the matrix form
(1), denoted by A, defined in (1.1) as the form:

Uek(z) = Uek(Al) U O’ek(D — C[—KM\IIY + (/LI — Al)_lB]),

where A; = A’D(A)m\/(éx) and K, represents the inverse of the restriction of the operator ®x
on N (ul — A).

Recently, S. Charfi et al. in [8] have paid attention to the research of the description of the
essential spectra of the above defined operator matrix A. New approaches to old techniques of
computation have led to significant advances in the spectral analysis from the theory of operators
matrices expressed as follows:

Oek(A) = 0er(A1) Uoer(D — C[-K, ¥y + (uI — A1)~1B)),

for € p(Ay). We shall emphasize on the fact that the above spectral description should be uses
a full of assumptions and the Frobenuis-Schur factorization.

Among this direction, we had the idea to deal with general model of unbounded operator
matrix, so called the one sided operator matrix defined in the product of Banach spaces ¥ x F
having the domain

)= {( 1) et x o) oth) = vin)}.
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Based on this kind matrix form, we find a weaker assumptions then the one used by S. Charfi
et al. in [8] on their entries assuring the analysis problem of its resolvent expression. In that
meaning, the obtain resolvent expression are used to describe the constraints of the eigenvalues
corresponding of to such kind of operator matrix that is studied. The procedure of the proof is
explained in details by the use of some stability criteria on the theory of Fredholm perturbations
techniques which allow us providing an amelioration in the characterization of some essential
spectra of this kind of model of operator matrix and in terms of his diagonal operators entries.
Thus, this result appears as natural in view of scientific progress in this field.

To this interest, we consider an illustrative example of integro-differential equation on X x X-
space, where

X = L1((0,1) x K, dzdf), z€(0,1), &= (1,62,83) € K,

(K is the unit sphere of R?) as follows:

A ( T K9 >
e Koy Tg+ Koo )

defined with non maximal domain as:

aa={(f) wons (1) 1(1)}

where:

o 7
* ( g > and ( g ) represent the outgoing and the incoming fluxes related by the bounded

boundaries operator H which is expressed as:

H:X°x X° — XPx X!

f 0 H f
< g \ooH 9)
where H € £(X?, X*) and the boundary spaces X° and X' are identified as:

X0:=Ly(D% |&|dE)  and X' := Ly(D?, |€3]d€)
where the sets of the incoming D’ and the outgoing DY boundary of the phase space D :=
(0,1) x K are given by:

D'=DiuUDi = ({0} x KHu ({1} x KY) and D° = D{uU DY = ({0} x K°) U ({1} x K1),
for

K°=Kn{& <0} and K' = KN {& > 0}.



x each closed linear operator T is defined by:
T:DT)CX — X
0
Fro T (0,8) v 65 (5,6) ~ o1 (2, ) (2, 6)

D(T)::{fGXzéggieX}:W,

* the streaming operator Ty is defined by:

TH:’D(TH)QX—>X
g Tug : (1,6) — —& 52 (2,€) — 2(z, gl €

D(Ty):={geW:g' = Hg’},
* the bounded linear collision operators Kij, (i,7) = {(1,2),(2,1),(2,2)}, are defined on X by:
Kij: X —X
o Ky f e (@,6) /K ig (0, 6,€) f(o,€) d€’

where the frequency o;(.,.) € £°(—1,1),j = {1, 2}, is considered as a positive bounded function
on D.
f

Physically, the function (z,§) — ( p

the position = and the direction cosine of propagation &.

> (z, &) represents the number density of neutrons having

Clearly, this model of transport operator may be written as one sided coupled operator matrix

as the following form:
A T Ko (A, B
T Kor Ty + Koo T cC D)’

D(A) = { ( / ) € D(An) x D(Tyy + Ka) : 6(f) = w<g>} ,

defined on:

(for appropriate operators ¢ and v introduced in details in Section 4). Taking advantage of the
results of Section 3 with a specific choice of the boundary and collision operators, we guarantee
the stability of the essential spectra between the operators A and

(Ao 0
TH'_( 0 Tyg+ Ko >’

in other terms, we find a weaker conditions based on the regularity definition of the collision
operator which introduced by B. Lods in [19] as a generalization of then defined by M. Moktar-
Karroubi in [23] to enrich a fine description of the picture of the eigenvalues of this model of
transport operators as:

pek(A) = per(Ao) N per(Th)-



Physically, Ag corresponds to the transport operator with vacuum boundaries condition as Ag :=
T, D(Ap) :={feDT): f=0}.

Our paper is organized as follows:

— Section 2 is devoted to gather some bagic definitions about theory of operators and presents
its fundamental properties.

— Section 3 is concentrated to describe our model of operator matrix A. Some general hypotheses
on the different components of A are introduced in details in order to characterize its essential
spectra.

— Section 4 focuss on details description of the theoretical results to a physical model of transport
operators with specific boundaries condition on the nuclear space.

2 Preliminaries results

We start this section by giving some basic definitions and notations that we will need in the
sequel.

Let X and Y be two Banach spaces. We denote by £(X,Y) (resp. C(X,Y)) the set of all
bounded (resp. closed, densely defined) linear operators from X into Y. The subset of all compact
operators of £(X,Y) is designated by K(X,Y). For A € C(X,Y), we write D(A) C X for the
domain, N(A) C X for the null space and R(A) C Y for the range of A. The nullity, a(A), of A
is defined as the dimension of N(A) and the deficiency, 8(A), of A is defined as the codimension
of R(A) in Y.

Now, we introduce the following important classes of Fredholm operators:
Definition 2.1
(i) The set of upper semi-Fredholm operators from X into Y is defined by:
P (X,)Y):={AeC(X,Y):a(d) <oo,R(A) isclosedinY }.
(74) The set of lower semi-Fredholm operators from X into Y is defined by:
O_(X,)Y):={AeC(X,Y):B(A) < }.
(7i7) The set of Fredholm (resp. semi-Fredholm) operators from X into Y is defined by:
O(X,)Y) =2, (X, Y)NP_(X,Y) (resp.®+(X,Y) =P (X, Y)UP_(X,Y)). O
The set of bounded upper (resp. lower) semi-Fredholm operators from X into Y is defined as:
@i(X, V)=, (X,Y)NL(X,Y) (resp. ?* (X,Y)=0_(X,Y)NL(X,Y))
while the set of bounded Fredholm operators from X into Y is defined as:

PH(X,Y)=0(X,Y)NL(X,Y).
It is should be noted that while X = Y, then the sets £(X,Y), K(X,Y), C(X,Y), ®(X,Y),
P4 (X,Y), o_(X,Y), ®*(X,Y), ¥} (X,Y) and ®° (X,Y) are replaced, respectively, by L£(X),
K(X), C(X), ®(X), ®4+(X), ®_(X), ®°(X), ®%(X) and ®° (X). A complex number A is in P4,



D4 or D_y, that is, A\ — A isin &(X), &4 (X) or ®_(X) respectively. The index of an operator
A€ &, (X) is defined by: i(A) := a(A) — B(A).

Sets of right and left Fredholm operators are defined as:

Definition 2.2
(i) The set of right Fredholm operators from X into Y is defined by:

®,.(X,Y):={A€CX,Y): 3A, € L(Y,X4) such that AA, —I e K(Y)}
(7i) The set of left Fredholm operators from X into Y is defined by:
(X,Y):={A€CX,Y): A, € L(Y,X,) such that AA—T e K(X4)}. o
Nothing that these sets of Fredholm operators satisfying the following inclusions:
P(X,Y)CP(X,Y)C P, (X,Y) and P(X,Y)C P (X,Y)CP_(X,Y).

We recall some basic definitions for bounded linear operators in Banach spaces that are
meaningful in the study of the stability problem of some essential spectra.

Definition 2.3 Let X be a Banach space.
(1) An operator A € £(X) is said to be weakly compact if A(B) is relatively weakly compact in
X for every bounded B C X.

The class of weakly compact operators on X, denoted by WC(X) is a closed two-sided ideal of
L(X) containing K(X) (see [11]).

(74) An operator A € L£(X) is said to be strictly singular if the restriction of A to any infinite-
dimensional subspace of X is not an homeomorphism.
Let S(X) denotes the set of strictly singular operators on X. &

Remark 2.1 (i) Note that the class of strictly singular operators is not compact in general (see
[11]), but in a separable Hilbert space X, we have:

S(X) = K(X),
we refer the readers to [11, 20, 31, 32|, for more properties of this kind of class operators.

(77) Let X, denotes the space L,(2,du) (1 < p < o0), where (2,3, ) stands for a positive
measure space.

Keeping into Theorem 1 in [28], for X1 = Lj-space (res. C()-spaces, with € is a compact
Hausdorff space), we have:

WC(X:) = S(Xy).
However, if 1 < p < 0o, X, is reflexive and then
L(Xp) = WC(Xp).
On the other hand, following Theorem 5.2 in [11], we infer that:
K(Xp) Cx S(Xp) Cx WC(Xp), for p#2.

For p = 2, we have:
K(X,) = §(X,) = WE(X,). o



As a generalization of the class of compact operators, we will introduce the class of polyno-
mially compact operators which denoted by PX(X) and defined as:

PK(X)={ A € L(X) such that there exists a nonzero complex polynomial
n

= Zakzk satisfying P(A) € K(X)}.
k=0

Remark 2.2 (i) Obviously, every compact operator belongs to the class of polynomially com-
pact operators, that is, we mainly have the following inclusion:

K(X) Cc PK(X).
(7i) Let (2, 1) be a o-finite measure space.

Since X = L1(, du) (respectively X = C(£2)-spaces with € is a compact Hausdorff space), then
we obtain:

W(X) € PK(X),

for more details, we infer the readers to Remark 2.3 in [6]. &

When dealing with closed, densely defined linear operator, A, on a Banach space, various
notions of essential spectra appear. We are concerned with some of them:

oek(A) ={peC: p—A¢ (X))} and o¢(A) :=C)\ pej(4),

where:
(e () Pi(.) € {(oer(-), @r (L)), (oar(.), Pi(.)), (Oew(.), R())},
(0ek (), pe () € {(Tess(), pess()): (Fen (), pen())
Pess(A) == {p € ®a, i(n—A)=0}
and

Peb(A) := {1 € pess(A) : all scalars near p are in p(A)}.
Obviously, we can check the following inclusions for each notion of essential spectra:

er( ) - Uess(A) C Ueb(A)v
eg(A) C oer(A) C oew(A), (2.1)
ed(A) C er(A) C oew(A) (2.2)

where oeg(A) ={peC:p—-A¢ o, (X)} and oq(A) ={peC:p—-A¢ P_(X)}.

In this work, we are interested to characterize some essential spectra of unbounded one sided
coupled operator matrix involving the theory of Fredholm perturbations. For this purpose, the
following definition required.

Definition 2.4
(i) The set of right Fredholm perturbation from X into Y is defined by:

P(®.(X,Y)) ={F € L(X,Y): A+ F € ®,(X,Y), VA € ®,(X,Y)}.



(74) The set of left Fredholm perturbation from X into Y is defined by:
P(®)(X,Y)) ={F € L(X,Y): A+ F € ®(X,Y), VA € &(X,Y)}.
(7i7) The set of upper semi-Fredholm perturbation from X into Y is defined by:
P(®4(X,Y))={F e L(X,Y): A+ Fe ®,(X,Y), VA€ b, (X,Y)}.
(iv) The set of lower semi-Fredholm perturbation from X into Y is defined by:
P(P_(X,Y))={FeLl(X,)Y): A+ Fed_(X,Y), VAc ®_(X,Y)}.
(v) The set of Fredholm perturbation from X into Y is defined by:
P@(X,)Y)) ={Fel(X,)Y): A+ Fe®(X,)Y), VAc ®(X,Y)}. O
Sets of Fredholm perturbations from X into Y can be ordered as:
P(B(X,Y)) C P(B,(X,Y)) C P(&4(X,Y))

and
P(2(X,Y)) € P(2,(X,Y)) S P(P_(X,Y)).

Remark 2.3

(i) Sets of Fredholm perturbations P(®°(X,Y)), P(®%(X,Y)), P(®° (X,Y)), P(®}(X,Y)) and
P(®4(X,Y)), respectively, may be defined in the same ways as Definition 2.4 if we replace
P(X,Y), ®4(X,Y), _(X,Y), &/(X,Y) and ®,.(X,Y) by ®*(X,Y), ®%(X,Y), ®* (X,Y),
®Y(X,Y) and ®2(X,Y).

(ii) Following [10], it is shown that P(®°(X,Y)), P(®4(X,Y)) and P(®’ (X,Y)) are closed
subset of £(X,Y) and if X = Y, then P(D*(X)) := P(D*(X, X)), P(B*(X)) := P(®% (X, X))
and P(®° (X)) := P(®° (X, X)) are closed two-sided ideals of £L(X).

In [16], it is shown that if X =Y, then P(®}(X)) := P(®}(X, X)), P(P2(X)) := P(P2X, X))
are two-sided ideals of £(X), satisfying:

K(X,Y) CW(X,Y) CP(®(X,Y)) CP(®!(X,Y)) C P((X,Y)) (2.3)

and
K(X,Y) CW(X,Y)CP(® (X,Y)) CP®(X,Y)) CP@(X,Y)). (2.4)
¢

The interaction between the study of the property of Fredholm perturbations of the block
operator matrix and their component entries provides a significant subject of study in spectral
theory and developed by A. Jeribi et al. in [16].

Theorem 2.1 [16, Theorem 3.1-3.2] Let X;, for i« = {1,2}, be a Banach space and P :=
(Pij)1<ij<2, where Pj; denote a bounded linear operator from X; into Xj, for 1 < 4,5 < 2.
Then, we have

Pe g(Xl X XQ) <~ Pij S S(Xj,Xi), Vi,j=1,2,

) P(2)(X;,X4))),(P(P2(X1 XX2)),7’(<1>3(X3'7X¢)))1} )

PO (X1 x X
where (£(X1 x X2),E(X;, X;)) € {( ) (P(@b(xlxX2))),7D(<1>b(Xj,Xi)))

8



Before owing to formulate our aim, we state the following theorem who is focuss on the
stability analysis of some essential spectra of unbounded operator originated by S. Charfi et al.
in [8].

Theorem 2.2 [8] Let X be a Banach space, A and B are two closed densely defined linear
operators on X. Then, we get:

(7) For some pu € p(A) N p(B), we obtain:
(ul — A7 — (uI — B)™t € P(®Y(X))  implies that o¢(A) = oe(B).
(7i) For some p € p(A) N p(B), we obtain:

(ul — AL — (uI — B)™t € P(®%(X))  implies that oc.(A) = gr(B). O

3 Main results

The main purpose of this section is to discuss the essential spectra of one sided coupled
operator matrix A, that is for one sided operator matrix (with domain consisting of one condition
between their components entries).

Let X, F and F be Banach spaces. We consider linear operators:

Apin E, Din F, C from D(A,,) into F, B from D(D) into E
and the continuous linear operators:

¢ from D(A,,) C E into X,

¢ from D(D) C F into X
with the following properties:
(H1) The operator A, (resp. D) is densely defined and closed linear operator.
(Hz2) The operator ¢ is surjective.

(H3) The operator B (resp. C) is bounded as a mapping from D(D) (resp. D(A,,)) into E (resp.

These assumptions allow to collect some results established by G. Greiner in [12].

Lemma 3.1 (i) The operator Ay := Ay |kero @5 closed.
(73) For p € p(Ag) the following decomposition holds:
D(An) = D(Ag) @ ker(u — Ap)

(1ii) Let p € p(Ap). Then,
Qbu = ¢‘ker(;L—Am)

is continuous bijection from ker(u — Ay,,) onto X. O



As a direct consequence of the above Lemma, for p € p(Ag) N p(D), the inverse of ¢, will
play an important role to define the bounded operators K, as follows:

K, :D(D) — D(Ap)

g — Kulg) =, ov(g)

4 Description of the one sided coupled operator

Throughout this hypotheses (H1)-(Hs), we define in the product of Banach spaces E x F, the
one sided coupled operator matrix A as follows:

)= {( 1) eptan xpw): o) =vio)}.

()= (2l (1o

Our aim is to describe some essential spectra of this kind of operator matrix. For this purpose,
we need to decompose it into the following form:

Lemma 4.1 |5] For p € p(Aop) N p(D), we have on D(A):

”_“4::<M_0A0 MED)<—E£(,U) _E?(H)>’

Ec(p) = (p—D)"'C and Ep(p) =K, + (p— A)"'B. &

where:

The following obtained results will be essential to prove the main theorem of the present
paper.

Theorem 4.1 Let p € p(Ag) N p(D).
(i) If the operator A, (C, B) := 1 — ZE¢(p)Ep(p) is invertible in D(D), then u — A is invertible.
Moreover,
1€ p(Ec(p)Zp(n) = wnep(A),
with inverse given by:
(n=A)7" = Qu(A0, D)™ +T'(B,C),

where:

—A 0
.Q#(A(MD)::(MO 0 ,U—D>
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Ep(1)(AL(C,B)) "Ec(u)(n — Ao) ™" Ep(u)(p— D)~

—

e I'(B,C) := Ep()(Au(C, B)) " Ec(W)Ep(1)(n — D)~

(Au(C,B)) ' Ec (1) (1 — Aog) ™ (Au(C, B) ' Ec(w)Ep () (n— D)~

(27) If the operator A, (B, C) := I —Ep(u)=Ec(p) is invertible in D(A,,), then p— A is invertible.
Moreover,

LepEp(w)Ec(p) = pepA),

with inverse given by:

(b —A) "= Q,(Ag, D) + (B, C),

where:

Proof. Let p € p(Ap) N p(D).
Based on the Fobenuis-Schur factorization of the matrix operator form M, := < -

we infer its decomposition as follows:

Moo= (et 1) (0 1omommee ) (0 ) @

M, = < é —E?(M) ) < I—EB(SL)Ec(u) ? ) < _Eé(ﬂ) ? ) (12)

for which, the first and last factors of Egs. (4.1)-(4.2) are bounded and bounded invertible. Hence,
we deduce from the fact that A,(C, B) := I —Ec(p)Zp(p) (resp. Au(B,C) :=1—-=2p(n)Ec(1))
is invertible that it is too for the operator matrix M,,. Consequently, u — A become invertible
m— AO 0

0 w—2D
Moreover, assumption 1 € p(Ec(u)Ep(n)) (resp. 1 € p(Ep(pn)=c(n))) asserts that I —Zc(u)Ep(1)
(resp. I —E=p(u)Ec (1)) has bounded inverse. From what proceed, we can deduce that p — A is
bounded with bounded inverse.
Therefore, the explicit resolvent of A follows from the computation of the product between

or

while the operator < ) is invertible too for p € p(Ag) N p(D).

ML < I+ Ep(p)(I = Zc(wEp(W)"Ec(n) Ep(p)I -
T\ T =Zc(wEs() ' Ec(p) (I -

11



eso. M1 e (T = EB(WEc(m)™ (I = Zp(w)Zc(m) ™ Ep(n)
(resp. 15 = ( Ec()(I = Ep(WEZc(m) ™ Ec()I —Ep(w)Zc(n) "Ep(n) + 1 >)
and Q,(Ag, D)1 = < (1 _640)_1 ” _OD)l ) , respectively. Q.E.D.

Now, we are in the position to express the first main results of this section. In the following,
we will denote by € the complement of a subset Q C C.

Theorem 4.2 Let p € p(Ag) Np(D) and 1 € p(Ec(p)ZEp(1)).
Then, we have:

(i) 1F Zp(u)(u — D)~! € P(BY(F, D(An))) and Zo(u)(n — Ag)~! € P(8Y(E, D(D))), then:

(11— A" = Qu(Ao, D) € P(@U(E x F)),
in particular,
Ger(A) = Ger(Ag) U ger (D).
(id) T Zp(u) (1 — D)1 € P(@}(F, D(An))) and Ec(p) (i — Ag)~* € P(®,(E, D(D))), then:

(1 — -’4)71 - Q;L(A07D)71 € P((I)?(E x F)),
in particular,
oel(A) = 0e(Ag) U o (D).
(iii) If Zp(u — D)™ € P(®°(F,D(A))) and Ec(u — Ag)~! € P(®(E, D(D))), then:

(N - -’4)71 - Q;L(A07D)71 € P((I)b(E X F))7
with
i(p—A) =i(p— Ao) +i(p — D)
in particular,
Oew(A) = ew(Ag) Udew (D) and Tess(A) C ess(Ag) U gess(D).

Moreover,
(iv) If Coew(Ap) is connected, then

Oess(A) = Tess(Ao) U aess(D).
(v) If ©0es5(A) and Cogs(D) are connected with p(A) # 0, then

ep(A) = oep(Ag) Uaep(D). O

Proof: (i) Following the assumptions for p € p(Ag) N p(D) with the fact that I — Zc(p)Z2p (1)
is invertible with bounded inverse, we derive from the use of Theorem 2.1 and Theorem 4.1 that:

['(B,C) € P(®L(E x F)).

12



Consequently, Theorem 2.2 asserts that:
p—AcdEXF) <« p—Agcd®(E) and u— D e d°(F).

(7i) Obviously, the result of the right Fredholm perturbation and its relative essential spectrum
follows in a similar ways as in the item ().
(7i7) A derivative consequence from assertions (i) and (i) revels that:

(1= A = Qu(do, D)1 € P(BJ(E x F)) NP(BUE x F)) = P(&"(E x F)),
with
i(p—A) =i(Qu(Ao, D)) = i(p — Ao) + i(u — D),
as Q,(Ap, D) is diagonal operator matrix.

Hence, we obtain:
[ € pess(Ao) M pess(D) = 1 € pess(A).

(iv) The derive the equality result between the Schechter essential spectrum of A and the union
of the Schechter essential spectrum of Ag and D, we add to the previous inclusion the fact that
Coew(Ap) is connected. Which yields:

JUAS pew(AO) — pE pess(AO)'

Therefore, 11 € pess(D) and this shows that:

pess(A) - pess(AO) N pess(D>-

(v) The Browder essential spectrum of A may be computed in terms of the Browder essential
spectrum of Ag and D, since we apply Lemma 2.1 in [15] under some connected arguments.

Q.E.D.

The theory of Fredholmness perturbations play a crucial role in spectral theory. The impor-
tance of this kind of theory is tested for two-group of transport equations and it is applicable to
propose an abstract framework for the computation in easier manner of some essential spectra
of a problem of transport operator.

5 Transport equations in slab geometry

To apply the present results to an example of two-group of transport equations with specific
boundaries condition in order to validate the developed methods, we state the Banach space X
as:

X :=L:((0,1) x K,dzdg), =€ (0,1) {=(£1,82,83) €K
where K is the unit sphere of R3.

We consider the following operator matrix with entries of integro-differential equation form:

T Kio
A= , 5.1
< Ko Ty + Ko ) (5:1)
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defined with non diagonal domain as:
o= {( 1) epmyxomm: 5-g}.

where we denote by f* (resp. ¢') as the incoming fluxes on the boundaries space X*
X' = Ly(D, |€|d€) = Ly(D}, |&5]d€) @ Ly (D}, |&]d€) == Xi & X}
associate to this physical model of transport and defined as:
fip == fre X%, (resp. gjpi :=g' € X*)
where the set D? represents the incoming boundaries of the phase space D as:
D' :=DiuD, = ({0} x KY) U ({1} x K9,
for
K°=Kn{¢{& <0} and K!'=KnN{& >0}
On the sobolev space W defined as:

W::{¢6X: fggieX},

we consider the closed linear operator 1" as:
T:DT)CX —X
{ fo T (08 (PH)(06) = ~E 02 (5,€) — 01,67 (5,6)
The streaming operator T is defined as:

TH:D(TH)QX—>X
g Tug, (@,6) — (Tug)(@,€) = ~& 32 (2,)  0a(r, )9(2,)

D(Ty)={9eW: ¢ =H(¢")}

where:
* the incoming and the outgoing fluxes ¢* and ¢° := g|po, respectively, are related with the
boundary operator H from the boundaries space X° into X?, defined as a off-diagonal operator

as the form:
o 0 Hjs
H = ( Hyy O )

with entries are given by:

{ Hig: X9 — X1 { Ha : X{ — Xj
f(1,.) — Hiaf(§) = £(0,§) f(0,.) = Ha1 f(§) = f(1,€)

14



* the outgoing boundaries of the phase space D, denoted by D" and given by:
DY :=DYuU DY = ({0} x K°)U ({1} x K),
* the boundaries space X is defined by the following ways:

X0 = Ly(D° [&3]d€) := Li(DY, |€3]d€) @ L1 (D3, |&]d€) := X7 & X3

* the collision frequency o;(.,.), for j = {1, 2}, is considered as a positive bounded function on
D.

The bounded collision operator matrix IC with bounded linear collision operators Kj;;, for (4, j) €
{(1,2),(2,1),(2,2)}, is considered as well:

0 K
k= ( Ko K;z > ’
where each collision linear operators Kjj, (4,5) € {(1,2),(2,1),(2,2)} are bounded on X and
defined by:
Kij: X —X
v Ky (00— (K 0.8 = [ (68 vle€) de

with measurable kernels x;; : (0,1) x K x K — R.

Obviously, keeping with the above indication, this kind of operator matrix A with integro-
differential operators may be regard as one sided operator matrix form of the theoretical result

A, B
a= ()

as:

with non maximal domain

o= {( 1) ewxpn: o= via}.

Precisely, we identify the Banach spaces X, E and F by Lq(D,dzdf), the closed operators A,,
and D by T and Ty + Ko, defined on D(A,,) = W and D(D) = D(Ty) the operators B and C
by the collision operators K12 and Ko7, respectively. The domain of this kind of operator matrix
considered non diagonal or non maximal, that is, with domain consists with one additional
condition modeled by the boundaries condition f* = g’ which satisfies the following diagram:

X 5 D(Ap) =W ¢ X
/@Z’

X O D(D) :=D(Ty)

where the functions ¢ and 1 are identified as well:
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{¢;W—>Xi and {w:x—uﬁ
f—=o(f)=1r g —(g) = Hg".
Physically, the example of integro-differential operator A considered as Eq. (5.1) modeled the

case of two group of transport operator with general boundaries condition. This means that is
considered on D(A) as follows:

’D(A)::{ﬁ::(ﬁ)eWxW: q9i=m90},

for specific bounded operator H given by the form:
H:X°— X'

()=o) =00 ) (h)

Remark 5.1 (i) The operator T satisfies the assumption (#;), due to Remark 4.1 in [17].

(i) Obviously, the hypothesis (Hz) is fulfilled one has the trace mapping ¢ and v are continuous
and surjective due to Theorem 1 p. 252 in [9].

(#4i) The hypothesis (H3) still valid since K;; is a bounded operator on X, for (7, 5) € {(1,2),(2,1)}.$

Since we deals with the case of operator matrix with non diagonal domain or non maximal
domain, to formulate our significant advances on this theory, we define an associate operator Ag
as follows:

of

{%ﬂ%@:Tﬂ%@:_&%
D(Ap) = {f € D(T) : f* = 0},

(x>£) - 01($7£)f($7£)

which corresponds in mathematical physics to the model of transport operator with vacuum
boundaries condition.
Consider the real number 47, for j = {1,2}, defined in terms of the frequency of the collision by:

iy = ess-inf {0 (2, €), (2,€) € D).

Before moving the picture of the eigenvalues of this physical model of transport operator, we
start to express the bounded operator K, corresponding to the theoretical part of this paper.
To do this, the following terminology will be required.

Lemma 5.1 Let p € p(Ao) N p(D).
K, is a bounded operator which is expressed as the mapping:

K,:W-—W
_flmds
g Kug, (@,6) — (Kug)(@,8) = xxo(§) Hrag(1,E)e” =~ 3
_ rz o1(s, “w s
+x k1 (§)H219(0,8) e Esl 45

Proof: Let p € p(Ag) N p(D). Note that the expression of K, may be checked by steps:
* We start firstly to revels the expression of ker(u — Ay,).
For this, we consider ¢ € D(A,,). A short computation revels that:
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_ rz o1(s,6)+p ds
Y] 1
¢ € ker(A — A,;,) means that ¢(z,§) := p(0,8)e L ”1(57:)% p , SEK
p(1,)e = Tl B ¢ e KO

* Secondly, taking into account from the boundaries condition ¢(f) = 1(g), for f € D(A4,,) and
g € D(D), a short computation revels the expansion of ¢(.,&) as follows:

{ 90(0”5) = H129(17§)7 §€ Klv
p(1,8) = Ha19(0,¢), €€ K°

which makes an explicit formula of K, as:

L o1(s:0+k g4 xz 01(s,6)+nm

(Kug) (,€) 1= X0 () Ha1g(0, )¢ 8l ® 4 1 (€) Hyng(1, €)™ Jo & * QED.

Before moving to the picture of the eigenvalues of this kind of transport operator model, we
will proof the weak compactness arguments of some operators expressed in terms of the collision
operators based on the regularity definition explained by B. Lods in [19].

Definition 5.1 Each collision operator Kj;; is said to be regular if
{rij(z,.,€), (2,8) € (0,1) x K} € W(L1(K, df)),
for (i,7) € {(1,2),(2,1),(2,2)}. ¢

Lemma 5.2 Assume that the collision operators Ko and K19 are non-negative, the boundary
operators Hyy and Ha; are weakly compact on X. Then, for u € p(Ag) N p(Ty) with spectral
raduis 7, (Kaoo(u — Ty) ') < 1, we have:

!
(i) The relative weak compact subset {M, (x,€) € (0,1) x K} of L1 (K, d¢) implies that :

19y
Ec(p)(p—Ao) ™! == (p— T — Koo)' Kaon(u— T) ™' e W(X),
for Rep > —pj.

!
(7) If the subset {M, (x,€) € (0,1) x K} is relatively weakly compact of Lj(K,d§),

€3]

then we obtain:
Ep()(p— T — Ka2) ™' i= [Ku+ (u—T) ' Kuia] (n— Ty — K22)™' € W(X),
for Rep > —ps3. %

Proof: (i) The result may be obvious derived from the use of Lemma 4.2 in [17] with the fact
that the subset W(X) is two sided closed ideal of £(X).

(ii) Let p € p(Ty) such that r,(Koo(pu — Th)™!) < 1 and Rep > —pi. For such pu, the operator
Ep(p)(p — Ty — Ka2) ™! may be written as:

Ep(p)(n— T — Koo)'= [Ku+ (= T) ' K] (= Trr) ™" (Kaa(p— Tu) ™)™
n>0
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Therefore, following Lemma 4.4-(i) in [1], one has K12(u — T) ™! is a weakly compact operator
on X. Hence, we deduce from the weak compactness argument of H and the fact that the set
W(X) is a closed two sided-ideal of £(X), that:

(K, + (0 —T) " Kia] (0 — Tr) 7 (Ko2(p — Try) ™)™ € W(X), VneN.

Thus, allows us conclude the desired results. Q.E.D.

The following lemma may be essential to derive our advances.

Lemma 5.3 For p € p(Ag) N p(Tx) such that 7o ((u — Trr) "' Ka2) < 1, we suppose that:
(i) K;j is a non negative and regular collision operator, for (4, j) € {(1,2),(2,1)}.

(7i) the boundary operators Hqio and Ho; are weakly compact on X.

Then, we have:

Ec(mEp(p) € PK(X).

Consequently, the operator I — Z¢(p)Ep(1) is invertible with bounded inverse on X. &

Proof: Consider u € p(Ao) N p(Tx) with r5((n — Ty) "t Kaz) < 1. Thus, the following equation
(=T —Kn)f=g, forgeX
may be solved as:

(4 —Tu — Koo)'= (= Tr) " Kop)* (= Tur) ™. (5.2)
k>0

That is means that the fact that u € p(Ag) N p(Ty) satisfying 7, ((u — Ty) 1 Ka2) < 1, asserts
that u € p(Ty + Ka2).

Therefore, the weak compactness argument of (u — Tp) ' K2, on X derived from Lemma 4.4 in
[1] yields:

Ec(p) = (u— Ty — Kaz) "' Ko € W(X).

On the other hand, keeping with the fact that Kio defines a non-negative collision operator, we
infer from Lemma 4.8 in [17], that (u — Ag) ' K12 is weakly compact operator on X. Thus, we
conclude that is also for the operator Zg (), while His and Ha are weakly compact operators
on X.

Consequently, Remark 2.2 revels that:
=o(1)Es (k) € PK(X).
From that proceed, for p € p(Ag) N p(Ty) with r,((u — Ty) ' Ka) < 1, we deduce that:
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w € p(Ao) Np(Tw) N p(TH + Ka2). Then, we get:

{#: (I-Zc(wzp(w)= =0}

{z t (1= T — Kog) Koy [Kpu + (1 — Ag) ' K1a) 2 = z}

= {Z t (n—Tg — Ko)(p — Ty — Ko2) ™' Kon [Ky + (n— Ao) ' Kia] 2 = (= Ty — K22)Z}
{z L Koy (1 — Ao) (A — A0) K, + K]z = (1 — Ty — ng)z}

{z © Kor(ju— Ag) 'Kz = (1 — Ty — Kaz)z, while K, € ker(s — Am)}

{z s (= Ty — Kos — Kot(p — Ag) " K10]z = 0}.

Following Remark in [14], we infer for u € p(Ao) N p(Ty + Ka2), that there exist u € p(Ap) N
p(Ty + Ka2) N p(Ty + Koo + Kot (p — Ag) "' K12). In what follows, we deduce that pu — Ty —
Koy — Ko1(pt — Ag) ' K12 is invertible. Thus, asserts that:

N(u — T — Koy — KQl(u — Ao)_lKlg) = {0}
Consequently,
NI~ Zc(u)Es() = {0},

Therefore, according with the fact that E¢(u)=p(1) is polynomially compact on X, we derive
from Theorem 2.2 in [13], that I — E¢(u)=p(n) is invertible with bounded inverse on X.Q.E.D.

We are now in the position to express the description of the essential spectra of this physical
model of transport.
Theorem 5.1 Assume that:
() the operator H;; is weakly compact for (i,7) € {(1,2),(2,1)},
(79) Koo defines a regular operator.

(#4i) the collision operator K;; is non negative and regular, for (4, j) € {(1,2),(2,1)},

! /
(iv) the subset {M, (x,€) € (0,1) x K} (resp. {w, (x,&) € (0,1) x K}) is
€5 €5
relatively weakly compact of L (K, df).
Then, we get:
0ei(A) = 0ei(Ao) Uoei(Th + Ka2)
= {neC: Rep<—min(uy,p3)},

for Uh(') € {O-er(~)aUel(')’o'ew(')aO'ess(-),o'eb(')-} %
Proof: The Theorem follows from Theorem 4.2, Lemmas 5.2 and 5.3 and the use of Egs. (2.1),
(2.2) and (4.13) in [17]. Q.E.D.
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Conclusion: This paper deals with a new model of unbounded block 2 x 2 operator matrix,
called the one sided operator matrix. Therefore, this kind of operator matrix plays a really strong
and fruitful role in computation of their essential spectra. Precisely, we develop innovative ways
leading to a rigorous study of spectral properties of matrix operator with non diagonal domain
(see Theorem 4.2) independently of its Schur complement and under less hypotheses of many
earlier works of |2, 3, 8, 17, 21, 22, 33]. Furthermore, to clarify better contribution, we consider
an example of transport operator with specific boundaries condition.
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