References
1.Albert, G.I., Hoeller, U., Schierle, J., Neuringer, M., Johnson, E.J.
& Schalch, W. (2008). Metabolism of lutein and zeaxanthin in rhesus
monkeys: Identification of (3R,6 ’ R)- and (3R,6 ’ S)-3 ’-dehydro-lutein
as common metabolites and comparison to humans. Comparative
Biochemistry and Physiology B-Biochemistry & Molecular Biology , 151,
70-78.
2.Amdekar, M.S. & Thaker, M. (2019). Risk of social colours in an
agamid lizard: implications for the evolution of dynamic signals.Biol. Lett. , 15, 20190207.
3.Andrade, P., Pinho, C., Pérez i de Lanuza, G., Afonso, S., Brejcha,
J., Rubin, C.-J. et al. (2019). Regulatory changes in pterin and
carotenoid genes underlie balanced color polymorphisms in the wall
lizard. Proc. Natl. Acad. Sci. U. S. A. , 116, 5633–5642.
4.Bagnara, J.T. & Hadley, M.E. (1973). Chromatophores and color
change: The Comparative Physiology of Animal Pigmentation .
Prentice-Hall, Englewood Cliffs, NJ.
5.Bagnara, J.T. & Matsumoto, J. (2006). Comparative anatomy and
physiology of pigment cells in nonmammalian tissues. In: The
Pigmentary System: Physiology and Pathophysiology (eds. Nordlund, JJ,
Boissy, RE, Hearing, VJ, King, RA & Ortonne, J-P). Oxford University
Press New York.
6.Belbin, L. (2011). The Atlas of Livings Australia’s Spatial Portal.
(eds. Jones, MB & Gries, C) Santa Barbara, CA, pp. 39-43.
7.Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchene, S.,
Fourment, M., Gavryushkina, A. et al. (2019). BEAST 2.5: An
advanced software platform for Bayesian evolutionary analysis.PLoS Comput. Biol. , 15.
8.Braasch, I., Schartl, M. & Volff, J.-N. (2007). Evolution of pigment
synthesis pathways by gene and genome duplication in fish. BMC
Evol. Biol. , 7, 74.
9.Bracher, A., Eisenreich, W., Schramek, N., Ritz, H., Götze, E.,
Herrmann, A. et al. (1998). Biosynthesis of pteridines. J.
Biol, Chem. , 273, 28132–28141.
10.Chen, I.P., Stuart-Fox, D., Hugall, A.F. & Symonds, M.R.E. (2012).
Sexual selection and the evolution of complex color patterns in dragon
lizards. Evolution , 66, 3605–3614.
11.Chen, I.P., Symonds, M.R.E., Melville, J. & Stuart-Fox, D. (2013).
Factors shaping the evolution of colour patterns in Australian agamid
lizards (Agamidae): a comparative study. Biol. J. Linn. Soc.
Lond. , 109, 101–112.
12.Cogger, H.G. (2018). Reptiles and Amphibians of Australia . 7th
edition edn. CSIRO Publishing.
13.Craig, J.K. & Foote, C.J. (2001). Countergradient variation and
secondary sexual color: phenotypic convergence promotes genetic
divergence in carotenoid use between sympatric anadromous and
nananadromous morphs of sockeye salmon (Oncorhynchus nerka ).Evolution , 55, 380–391.
14.Deere, K.A., Grether, G.F., Sun, A.D. & Sinsheimer, J.S. (2012).
Female mate preference explains countergradient variation in the sexual
coloration of guppies (Poecilia reticulata). Proc. R. Soc. Lond. B
Biol. Sci. , 279, 1684–1690.
15.Friedman, N.R., McGraw, K.J. & Omland, K.E. (2014a). Evolution of
carotenoid pigmentation in caciques and meadowlarks (Icteridae):
repeated gains of red plumage coloration by carotenoid C4-oxygentation.Evolution , 68, 791–801.
16.Friedman, N.R., McGraw, K.J. & Omland, K.E. (2014b). History and
mechanisms of carotenoid plumage evolution in the New World orioles
(Icterus). Comp. Biochem. Physiol. B , 172, 1-8.
17.Grether, G.F., Cummings, M.E. & Hudon, J. (2005). Countergradient
variation in the sexual coloration of guppies (Poecilia reticulata):
Drosopterin synthesis balances carotenoid availability.Evolution , 59, 175–188.
18.Grether, G.F., Hudon, J. & Endler, J.A. (2001). Carotenoid scarcity,
synthetic pteridine pigments and the evolution of sexual coloration in
guppies (Poecilia reticulata). Proc. R. Soc. Lond. B Biol. Sci. ,
268, 1245–1253.
19.Grether, G.F., Hudon, J. & Millie, D.F. (1999). Carotenoid
limitation of sexual coloration along an environmental gradient in
guppies. Proc. R. Soc. Lond. B Biol. Sci. , 266, 1317–1322.
20.Grether, G.F., Kolluru, G.R. & Nersissian, K. (2004). Individual
colour patches as multicomponent signals. Biol. Rev. , 79,
583–610.
21.Hadfield, J.D. (2010). MCMC methods for multi-response Generalized
Linear Mixed Models: the MCMCglmm R package. J. Stat. Softw. , 33,
1–22.
22.Hadfield, J.D. & Owens, I.P.F. (2006). Strong environmental
determination of a carotenoid-based plumage trait is not mediated by
carotenoid availability. J. Evol. Biol. , 19, 1104–1114.
23.Haisten, D.C., Paranjpe, D., Loveridge, S. & Sinervo, B. (2015). The
cellular basis of polymorphic coloration in common side-blotched
lizards, Uta stansburiana . Herpetologica , 71, 125–135.
24.Heath, J.J., Cipollini, D.F. & Stireman, J.O. (2013). The role of
carotenoids and their derivatives in mediating interactions between
insects and their environment. Arthropod Plant Interact. , 7,
1–20.
25.Kemp, D.J., Herberstein, M.E. & Grether, G.F. (2012). Unraveling the
true complexity of costly color signaling. Behav. Ecol. , 23,
233–236.
26.Koch, R.E. & Hill, G.E. (2018). Do carotenoid-based ornaments entail
resource trade-offs? An evaluation of theory and data. Funct.
Ecol. , 1–13.
27.Koch, R.E., Josefson, C.C. & Hill, G.E. (2017). Mitochondrial
function, ornamentation, and immunocompetence. Biol. Rev. , 92,
1459-1474.
28.Ligon, R.A. & McCartney, K.L. (2016). Biochemical regulation of
pigment motility in vertebrate chromatophores: a review of physiological
color change mechanisms. Curr. Zool. , 62, 237-252.
29.Ligon, R.A., Simpson, R.K., Mason, N.A., Hill, G.E. & McGraw, K.J.
(2016). Evolutionary innovation and diversification of carotenoid-based
pigmentation in finches. Evolution , 70, 2839-2852.
30.Lopes, R.J., Johnson, J.D., Toomey, M.B., Ferreira, M.S., Araujo,
P.M., J., M.-F. et al. (2016). Genetic basis for red coloration
in birds. Curr. Biol. , 26, 1–8.
31.Lovich, J.E. & Gibbons, J.W. (1992). A review of techniques for
quantifying sexual size dimorphism. Growth Develop. Aging , 56,
269–281.
32.Macedonia, J.M., James, S., Wittle, L.W. & Clark, D.L. (2000). Skin
pigments and coloration in the Jamaican radiation of Anolislizards. J. Herpetol. , 34, 99–109.
33.Mahler, B., Araujo, L.S. & Tubaro, P.L. (2003). Dietary and sexual
correlates of carotenoid pigment expression in dove plumage.Condor , 105, 258–267.
34.McGraw, K.J. (2005). The antioxidant function of many animal
pigments: are there consistent health benefits of sexually selected
colourants? Anim. Behav. , 69, 757–764.
35.McGraw, K.J., Gregory, A.J., Parker, R.S. & Adkins-Regan, E. (2003).
Diet, plasma carotenoids, and sexual coloration in the zebra finch
(Taeniopygia guttata). Auk , 120, 400–410.
36.McLean, C.A., Lutz, A., Rankin, K., Stuart-Fox, D. & Moussalli, A.
(2017). Revealing the Biochemical and Genetic Basis of Color Variation
in a Polymorphic Lizard. Mol. Biol. Evol. , 34, 1924–1935.
37.McLean, C.A., Lutz, A., Rankin, K.J., Elliott, A., Moussalli, A. &
Stuart-Fox, D. (2019). Red carotenoids and associated gene expression
explain colour variation in frillneck lizards. Proc. R. Soc. Lond.
B Biol. Sci. , 286, 20191172.
38.Melville, J., and Wilson, S. K (2019). Dragon Lizards of
Australia: Evolution, Ecology and a Comprehensive Field Guide . Museums
Victoria Publishing.
39.Mundy, N.I., Stapley, J., Bennison, C., Tucker, R., Twyman, H., Kim,
K.-W. et al. (2016). Red carotenoid coloration in the zebra finch
is controlled by a cytochrome P450 gene cluster. Curr. Biol. , 26,
1435–1440.
40.Nagao, A., Maoka, T., Ono, H., Kotake-Nara, E., Kobayashi, M. &
Tomita, M. (2015). A 3-hydroxy beta-end group in xanthophylls is
preferentially oxidized to a 3-oxo epsilon-end group in mammals.J. Lipid Res. , 56, 449-462.
41.Newman, P., Raymond, B., VanDerWal, J., Belbin, L. & Stevenson, M.
(2020). ALA4R: Atlas of Living Australia (ALA) Data and Resources in R.
R package version 1.9.0, pp. URL:
https://CRAN.R-project.org/package=ALA4R.
42.Ohmiya, A. (2011). Diversity of carotenoid composition in flower
petals. Jarq-Japan Agricultural Research Quarterly , 45, 163-171.
43.Oliphant, L.W. & Hudon, J. (1993). Pteridines as reflecting pigments
and components of reflecting organelles in vertebrates. Pigment
Cell Res. , 6, 205-208.
44.Olson, V.A. & Owens, I.P.F. (2005). Interspecific variation in the
use of carotenoid-based coloration in birds: diet, life history and
phylogeny. J. Evol. Biol. , 18, 1534–1546.
45.Olsson, M., Stuart-Fox, D. & Ballen, C. (2013). Genetics and
evolution of colour patterns in reptiles. Semin. Cell Dev. Biol. ,
24, 529–541.
46.Ortiz, E., Bächli, E., Price, D. & Williams-Ashman, H.G. (1963). Red
pteridine pigments in the dewlaps of some anoles. Physiol. Zool. ,
36, 97–103.
47.Ortiz, E. & Maldonado, A.A. (1966). Pteridine accumulation in
lizards of the genus Anolis. Caribb. J. Sci. , 6, 9–13.
48.Ostman, O. & Stuart-Fox, D. (2011). Sexual selection is positively
associated with ecological generalism among agamid lizards. J.
Evol. Biol. , 24, 733–740.
49.Palmer, B.A., Hirsch, A., Brumfeld, V., Aflalo, E.D., Pinkas, I.,
Sagi, A. et al. (2018). Optically functional isoxanthopterin
crystals in the mirrored eyes of decapod crustaceans. Proc. Natl.
Acad. Sci. U. S. A. , 115, 2299–2304.
50.Palmer, B.A., Yallapragada, V.J., Schiffmann, N., Wormser, E.M.,
Elad, N., Aflalo, E.D. et al. (2020). A highly reflective
biogenic photonic material from core-shell birefringent nanoparticles.Nature Nanotechnology , 15, 138-+.
51.Prum, R.O., LaFountain, A.M., Berro, J., Stoddard, M.C. & Frank,
H.A. (2012). Molecular diversity, metabolic transformation, and
evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae).J. Comp. Physiol. [B] , 182, 1095–1116.
52.Pyron, R.A., Burbrink, F.T. & Wiens, J.J. (2013). A phylogeny and
revised classification of Squamata, including 4161 species of lizards
and snakes. BMC Evol. Biol. , 13.
53.Revell, L.J. (2012). phytools: an R package for phylogenetic
comparative biology (and other things). Methods Ecol. Evol. , 3,
217–223.
54.Ross, L., Gardner, A., Hardy, N. & West, S.A. (2013). Ecology, not
the genetics of sex determination, determines who helps in eusocial
populations. Curr. Biol. , 23, 2383–2387.
55.Simons, M.J.P., Maia, R., Leenknegt, B. & Verhulst, S. (2014).
Carotenoid-Dependent Signals and the Evolution of Plasma Carotenoid
Levels in Birds. Am. Nat. , 184, 741–751.
56.Smith, K.R., Cadena, V., Endler, J.A., Kearney, M.R., Porter, W.P. &
Stuart-Fox, D. (2016). Color change for thermoregulation versus
camouflage in free-ranging lizards. Am. Nat. , 188, 668–678.
57.Steffen, J.E., Hill, G.E. & Guyer, C. (2010). Carotenoid access,
nutritional stress, and the dewlap color of male brown anoles.Copeia , 2010, 239–246.
58.Steffen, J.E. & McGraw, K.J. (2009). How dewlap color reflects its
carotenoid and pterin content in male and female brown anoles
(Norops sagrei ). Comp. Biochem. Physiol. Biochem. Mol.
Biol. , 154, 334–340.
59.Stuart-Fox, D.M., Moussalli, A., Marshall, N.J. & Owens, I.P.F.
(2003). Conspicuous males suffer higher predation risk: visual modelling
and experimental evidence from lizards. Anim. Behav. , 66,
541-550.
60.Svensson, P.A. & Wong, B.B.M. (2011). Carotenoid-based signals in
behavioural ecology: a review. Behaviour , 148, 131–189.
61.Twomey, E., Johnson, J.D., Castroviejo-Fisher, S. & Van Bocxlaer, I.
(2020a). A ketocarotenoid-based colour polymorphism in the Sira poison
frog Ranitomeya sirensis indicates novel gene interactions underlying
aposematic signal variation. Mol. Ecol. , 29, 2004–2015.
62.Twomey, E., Kain, M., Claeys, M., Summers, K., Castroviejo-Fisher, S.
& Van Bocxlaer, I. (2020b). Mechanisms for Color Convergence in a
Mimetic Radiation of Poison Frogs. Am. Nat. , 195, E132–E149.
63.Twyman, H., Valenzuela, N., Literman, R., Andersson, S. & Mundy,
N.I. (2016). Seeing red to being red: conserved genetic mechanism for
red cone oil droplets and co-option for red coloration in birds and
turtles. Proc. R. Soc. Lond. B Biol. Sci. , 283.
64.Weaver, R.J., Santos, E.S.A., Tucker, A.M., Wilson, A., E. & Hill,
G.E. (2018). Carotenoid metabolism strengthens the link between feather
coloration and individual quality. Nat. Commun. , 9, 73.
65.Weiss, S.L., Foerster, K. & Hudon, J. (2012). Pteridine, not
carotenoid, pigments underlie the female-specific orange ornament of
striped plateau lizards (Sceloporus virgatus ). Comp.
Biochem. Physiol. , 161, 117–123.
66.Wilson, T.G. & Jacobson, K.B. (1977). Isolation and characterization
of pteridines from heads of Drosophila melanogaster by a modified
thin-layer chromatography procedure. Biochem. Genet. , 15,
307–319.
67.Zheng, Y.C. & Wiens, J.J. (2016). Combining phylogenomic and
supermatrix approaches, and a time-calibrated phylogeny for squamate
reptiles (lizards and snakes) based on 52 genes and 4162 species.Mol. Phylogenet. Evol. , 94, 537–547.
68.Ziegler, I. (2003). The pteridine pathway in zebrafish: regulation
and specification during the determination of neural crest cell-fate.Pigment Cell Res. , 16, 172–182.