EXISTENCE AND UNIQUENESS WITH ULAM STABILITY
STUDY OF THE SOLUTION FOR A CLASS OF CAPUTO
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH
MIXED CONDITIONS

N. ABDELLOUAHAB

ABSTRACT. In this article we show the existence, uniqueness and Ulam stabil-
ity results of the solution for a class of a nonlinear Caputo fractional integro-
differential problem with mixed conditions. we use three fixed point theorems
to proof the existence and uniqueness results. By the results obtained, the
reasons for the Ulam stability are verified. An example proposed to illustrate
our main results.

1. INTRODUCTION

More than 300 years ago. Scientists have used incorrect random orders to gener-
alize Ordinary differential equations and integrals by means of fractional differential
equations. Where the origin of fractional calculus goes to Newton and Leibniz.
Fractional differential equations are known to many model: physical, biological,
genetic and even economic phenomena ... etc.

Several recent studies carried out by many researchers in proving the existence and
uniqueness of the solution for fractional differential equations with different condi-
tions ( boundary , initial , nonlocal and integral conditions ... etc), for more details
[12, @, [7, 10, 2, 1] and the references therein.

In ancient times, the study of the stability of solutions of fractional differential
equations was slow, but recently, many researchers have done it in different articles
in several ways ( asymptotically stable, Ulam stable and generalized Ulam stable...),
see [0l Bl [4, 10, 11].

In light of these studies we will prove the existence and uniqueness with the Ulam
stability of the following system:

D (3) = w(@, u* () + CDg (@, u* (7)) + /0 ’ N(&,s,u*(s))ds

5 (1.1)
u*(0) = ug, (w*) (0) =uj [ u*(s)ds, 0<y<1
/
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where uj,u] are real constants, 1 < a4+ 3 < 2, CDg+ is the Caputo fractional
derivative of order 8, and w, v, N defined as

w JxX—X
v JIxX—X (1.2)
N JxJxX—X,

are an appropriate functions, X here is a Banach space.

Our study based on three fixed point theorem to proof the results of existence
and uniqueness were we find it in section 3, the generalized stability is devoted
to show in Section 4. Note that this representation also allows us to generalize
the results obtained recently in the literature. The paper is ended by an example
illustrating our results.

2. SOME PRELIMINARY AND INTEGRAL EQUATION

Here, we present definitions of the fractional integral, fractional Caputo deriva-
tive , and some auxiliary Lemmas.

We refer [14, [I5] to see Some basic preliminary concepts of fractional calculus,
and fixed point theory.

Definition 2.1. [8, [13] Let p > 0 and h : Ry — R. The Riemann-Liouville
fractional integral of order p of a function h is defined by

1 /w 5 . .

— T —8)" " (s)h(s)ds, T eRy.

G L @) ;

Definition 2.2. [8 [I4] Let p > 0, the Caputo fractional derivative of order p of a
function h: Ry — R is defined by

1 z -
m/o (& —s)" P A (s)ds = [T PR™M (2),  F € Ry

where n = [p| + 1, provided the right side is pointwise defined on R .

I, h(F) =

“Db. h(E) =

Lemma 2.3. [8 [14] For real numbers p > 0 and appropriate function h(Z) €
C"710,00) and h(Z) ezists almost everywhere on any bounded interval of R.

n—1
. . R*)(0) _
(IP,“Df, h)(Z) = WZ) — Z Txk

k=0
Lemma 2.4. Let 1 < a+ 3 <2 and u # % Assume that w,v¥ and N are three

continuous functions. If u* € C(J,X) then u* is solution of if and only if u*
satisfies the integral equation

W) = /Oiw<w(s,u*(s))+/OSN(S,T,U*(T))dT)ds

FE=T o (e))ds M@ﬁ
) SRy e -

w2 [ oo [ onsors)e

g (’3/ - T)ﬂ * ¢(07U ) 1
) e e ”“0] =y
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Proof. Let u* € C(J, X) be a solution of (1.1]). Firstly, let show that u* is solution

of ([2.1).
By Lemma [2.3] we obtain

I0HPC Do (2) = w (&) — w*(0) — (u*)(0)Z. (2.2)
In addition, from equation in (L.1)) and Definition then use the lemma we
have

et @) = (s | NG, u ())ds + €D Ve @)

= Jgjﬁ( /Nxsu )d)

I () %xﬁ (23)

By substituting (2.3)) in (2.2]) with first condition in (1.1f), yields:

(@) = Ig‘fﬁ<w(i,u*(:%))+ /jN(aE,s,u*(s))ds)

10 (7, ut (7)) — Iﬁ%iﬁ + uf + (u*)(0)Z. (2.4)

but, we have

WO [

Uy
¥
/ 167 (s / N(s, 7, u*(r))dr]
0

1P (s, u*(s)) + (u*) (0)s + ufy — Msﬂ} ds.

e r@e+1)
— ‘”‘B s, T, u” T s,u*(s s
_ /0[1 /N )dr] + If. (s, u(s)) |d
_;ﬁ(%)fo;) 7 v+ o)
— I w3 /N%Tu )dr] + I (5,0 (4))
- +“°2>) 57 1 30+ Ty o),
then, we find
u*) = 7@ °‘+B+1 T, u” T
@O = sl / NG, 7, u*()dr]
S () - li/’((g’fg)) 350 4.

therefore, we get

ut(F) = Igfﬁ(w(j,u*(i))Jr /O iN(f,s,u*(s))ds)
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(0, 45)

@ @) - pa

Tu} a o * /o o *
A L Gt (3) + [ NGt (n)dr]
(I - Fui) 0

IRt () = Trr ey

Finally, we get the integral equivalent equation ([2.1)).
Conversely, applying CDgfﬁ on both sides of |j we find

CDgfﬂu*(a}) = CngﬂIgfﬂw(s,u (s)) + CDOH'QIW'O‘/ N(s,m,u*(7))dr
DG s o) + D5 () + (u*)'(@)f).

= w(zZ,u"(Z)) +“ D (Z,u"(Z)) / N(Z,s,u*(s))ds (2.5)

because,
D (10 + @0 = P [ 0 + 0 0] =0

this means that u* satisfies the equation in problem (|1.1). Furthermore, by substi-
tuting & by 0 in integral equation (2.1)), we have clearly that the nonlocal condition
in (1.1) holds. Therefore, u* is solution of problem (1.1)), which completes the
proof. ([l

3. EXISTENCE RESULTS

Let transform the system (|1.1) into fixed point problem as u* = Fu*, where
F:C(J,X)— C(J,X) is an operator defined by following:

Fu'(3) = AW( /NSTu )dT)d

+/03Z @E(Sﬁ)f_lw(s,u*(s))ds +uf — ma?ﬁ

T —Ul’;ul) [Eyug - %’W]

g ey (s [ o)
+/07 mqp(m*m)m}

In order to simplify the computations, we offer the following notations:

A = lmllze +flusfre (1+ﬁ+a 2% |VC’+B+1)

2+ B +a 24 B+a  [1- Ly



2020 EXISTENCE AND UNIQUENESS WITH ULAM STABILITY OF FDES 5

el (248 Juily™ 51)
248 \B+1  |1-Lug|) '
T 25a+B8+1 2 B+1
JN— A { 2 7 } (3.2)
1-Tuj|[24+a+8  2+8
5 - 2 Lot
- T(a+p+1) T(B+1)
* 95 o+B+1 s B+1
[ ( 7 v > (3.3)
11— Ly \I(a+B+2)  T(B+2)
[%(0, ug)| |u (0, ug)| . .
f — * ] A+l ol ] 4
2 Y1
5 — 1 N 2 N 1
27 a4 B+1  a+pB+2 " B+l
|l ( fya+6+1 ﬁyﬁ-i-l N 2,°ya+6+2> (3.5)
- Zug|\a+B8+2 B+2 a+f+3) ’

3.1. Existence Result by using Leray-Schauder Nonlinear Alternative.

Theorem 3.1. Let w,v € C(J X R,R) and N € C(J x J x R,R) be continuous
functions. Assume that
(H1): There exist functions f1,fz € C(J,RT), f3 € C(J x J,RT), with f =
max{ f1, f2, f3} and nondecreasing functions
91,92,93 : RT = RT,

with g = max{g1, g2, g3} such that

w(@,w(2))| < fr(@)gr([[u]),

(&, u™(2))] < f2(Z)g2(l|u"[])
and

IN(Z, 5,u™(s))] < fa(s)ga([[u”]]),

for all € 10,1],s € [0,1],u* € R.
(H2): There exist a constant M > 0 such that ke > 1.

: I £1lg(M)d2+61
Then the problem admits at least one solution on J.

Proof. For r > 0, let

B, ={z € C([0,1,R) : ||[u*| < r},
be a bounded set in C([0,1],R). We will show that F' maps bounded sets into
bounded sets in C([0, 1],R). Then, by (H1), we have

(& — s)oth-1

iFe@l < [ 2 (neale @+ [ Aenie @)

|1(0, u5)|

TB+1) [ug]

T (5 _ g)B-1
+/o (Fug>f2<8>gz<lu*<s)||)ds+

|u |:|"/}(07u3)o,8+1 . ]
+ vlu
] I‘(ﬂ+2)’y Y]ug|

w* v s )8+
| [ S e @
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+A&WTV%H<ﬁ@MﬂMWﬂM+AﬁkﬁMdMW@W@)M}

I'a+6+2)
] [F @t (st
< Ul [ SR sas s [P O
L ([Gom e [PE )]
+\17§UT| /0 L(3+2) T+/0 F(a+5+2)(1+7) g
PO B[O ]
PRarn Tt T e Y T
x 1 2 1
< WD | s+ mras * 74
|| :’yoz+ﬁ+1 ,YB+1 2,_3/a+5+2
1_*?22u’{|<a+5+2+5+2 a+ﬁ+3>]
S0y (WO )
= ||f||9(HU )02 + 61 < +o00. (3.6)

Let #1,Z5 € [0,1] with Z; < %2 and u* € B,, where B, is a bounded set of
C(]0,1],R). Then we have
|

|[(Fu™)(@2) = (Fu®) (@)l

/Zz (& oo <||W(5,u*(8))|| +/OS ||N(S,T,u*(7))|d7—)d5
n

" 7@2 —9) S, U s
/1~ ot (s)la

+/0w1 (@1 — s)a+ﬁr(;—+(zj — g)atp-l (||¢ (s,u™ ()]l +/ N (s, 7, u* ))d7>ds

(Fy = 8)P T — (3 — )Pt . WO s
Jr/o r(8) [4(s,u™(s))llds + F(ﬂ+01) (& — &)

uil(@2 = 21) 100, 45| g | <y V(3 -1)f \
+1?ﬁ|[mﬁ+m7 wilugl+ [ s v ()

v (fy_T)a+B
+/O W( / N(r,0,u"( )da)dT}
o[22+ \W B 2 =)+ | - 5]
1A lg (Ul Ta+B+1) T(3+1)

a+p+1

IN

IN

~ ~ B+1
+(ZT2 — 71)

|ui] [ g L2

- ZylatB+27 B+2 a+B+3

+(~ﬁ7j5)\1/)(07u8)| - |ui] [|w<0,u3>|05+1
)

a+B+2 :|

DFEan e e [Ny + 4]

If (2o — Z1) — 0, then the RHS of the above inequality tends to zero indepen-
dently of u* € B,. That is implies: |Fu*(Z2) — Fu*(Z1)|| — 0, if Zo — 71 — 0
then F' maps bounded sets into equi-continuous sets of C.
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By Arzela-Ascoli theorem, we have F : C([0,1],R) — C([0,1],R) is completely
continuous.

We will apply the Leray-schauder nonlinear alternative once we establish the bound-
edness of the set of all solutions to equation

u* =eFu*  for some €€ (0,1).
Let u* be a solution of (1.1]), then, by (3.6 we have
@) < | fllgClu])éz2 + o1
which implies:

Wl
£ lg(llur{)d2 + 61 —
Then by (H2), there exist M > 0 such that M # ||u*||. Let us define a set

YV ={u" e C(0,1],R)/ [[u™| < M},

and then B
F:Y — C([0,1],R),
is completely continuous. From the choice of Y, there is no & € dY such that
u* = eFu” for €€ (0,1),

then by the nonlinear Leray-Schauder type, we conclude that the operator F has a
fixed point u* € Y which is solution of the BVP (1.1)). O

3.2. Existence result by Krasnoselskii’s Fixed Point.

Theorem 3.2. Let w,9 : [0,1] x X — X and N : [0,1] x [0,1] x X — X be
continuous functions satisfying

(1) (H1) The inequalities
lw(@, u*(2)) —w(@ o™ (2)|| < Liflu™(Z) —o*(@)], Ze€[0,1], v’ v"eX
[(%, u™ (7)) = (2,07 (@) < Lollu™(Z) —v* @), #[0,1], v’0v"eX
[IN(Z,s,u™(s)) = N(Z,5,0(s))|| < La[lu"(s) —v*(s)], (2,8) € G, u' 0" € X
hold where Ly, Lo, Ly > 0 with L = max{Ly, L, L3} and
G={(&s):0<s<x<1}.
(2) (H2) There exist three functions i, pe, us € L>([0,1],RT) such that

lw(Z, v (@) < pi @[ (@)], Z€[0,1], u"€X
(@ u™ (@) < p2(@)lu* (@), z€]0,1], v €X
ING, 5,0 ()] < pa(@) | ()], (&5) € G, € X,
If A <1 and LA, < 1, then the problem has at a least one solution on [0, 1].
Proof. For any function v* € C(J, X) we define the norm
[u*]ly = max{e™[lu*(2)[| : & €[0,1]}
and consider the closed ball
B, ={u" € C(J,X): ||u"l1 <r}.

Next, let us define the operators Fi, 2 on B, as follows

Fut(@) = /Ojm(w(s,u*(s))+/OSN(5,T,U*(T))dT)ds
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* (‘i‘ - S)ﬁ_l * ®
+/0 7“&) P(s,u*(s))ds + u

UT'T ou* . w(O,ug) °,B+1:|
o= 2 {” TTEry )

and

Far() = (1@“;){ [ et g (4

¥ (&_T)ﬁ *
+/O 7F(B+1)¢(T’u (T))dT].

For u,v* € B,, & € [0,1], by fixed r > 1i1A

AR @ Fr@lh < [ St

7 (3 —s5)P
+/o T(g)

(8 +2)

($)llw*(s)llds + Frz=—7

|ut {|¢(07US)|05+1
u

(= )"

|u g
+1_f -
| 7 Uy 0

L(B+1)

2020
1/)(07%) .iﬁ
rpg+1)
(3.7)
/ N(r,o,u” )do) dr
(3.8)

and by the assumption (H2) we find:

T (3 —s)otht s
()(m<s>|u*<s>n+ / us(S)IIU*(T)IdT>d8

|w< )|

+%IUS]

pa ()|l (7)|d7

+f %w(mmnv*mn + [l @)l ) ar

IN

F (7 - s)otB1
/0 Ila+5)

i NB—1
Hall ol [ E T

|ui [Iiﬁ(o US)IWaH

(8 +2)

+|1—|u%u{| Uv (ZBJr)l)

<||u1||L°° o e + sl 0" ls(e” — 1>>dr]

(§ — 1)~ *P
D(a+B8+1)

vy
/
0

Therefore,

||f1u + fgv*Hl

~ a4

< 7(” Il oo [lu™ || |23l o= || *||)
U + U +
= B+l HiflL 1 H3|lL 1

+ |ug| +

100, u)]
e {rmol)

\1——u1|

\UTI

aall e e + s llooe s (e — 1>)ds

%0, ug)|

Sds + T+ 1)

+ |ug]

+&|uz;]

| ee[lv*|2e7dr

T
511
il (0.0

o (e bl )

2 zoe flu*la

AP Rot+1
+ v + — . 7}* + - U*
= *|[ﬂ+2u2||L o+ s (sl + sl s )]
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||/~L1|L°c+||/~t3||L°o<1+5+a |U1|7“+B“> ||M2||L°°(2+ﬂ |uf 37t ﬂ
24+ 0+« 2+ 08+« |1—7u’1‘| 24+8 \B+1 |1_%2u’1f|

(0, ug)| | |U1‘| <|¢(0au(’§)| B+l | el )
O fug| + AR Y
tprn T g (e kel
= rA+46 <r.
This implies that (Fiu + Fav) € B,.. We use the estimations:
oy Loy gl
er e* e* e*

Now, we establish that F5 is a contraction mapping. For u*,v* € X and = €
[0, 1], we have:

T AN * [~ |U>{| g (’?_T)OH_B UJT’LL*T —OJT’U*T
@) - Far @l < | [T (e ) et

/ |IN(r,0,u"(c)) — N (7, o,v*(a))da)dT

(v —7)° — (T, v*(7))||dT
+ [ G ot )~ vt el

|uf|L {/7 (§ — T)oth ( . i} )
- uw —v*|le” + ||lut —vF|li(e =1

g (,ny,]—)ﬁ * * T
+A m”ﬂ — v Hle d7_:|

Thus,

||.7:2u — .7:21)*”1

IN

|u’1k|L [27a+[3+1 ,°76+1
I1-3 u1| 24a+pB 2+
= LA1||u —v"|1.

Then since LA; < 1, F5 is a contraction mapping. The continuity of the func-
tions h, f and K implies that the operator F; is continuous. Also, F1 B, C B,., for
each u* € B,., i.e. F; is uniformly bounded on B, as

v (‘i - s)a+671 * s * s
/0 E 2 (oo e® + sl zoe e = 1) ) ds

} ot = oo

e[ Fru® (@)

= b Tarh |\
it 5 _/3>) o+ g aya +
a u”Tum T )
Therefore,
|Frly < r[”mléi Hui|Loo+||§L2+|L;]
i el _u%lu; (T +hi)

= rA+6 <.
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Finally, we will show that (F;B,) is equicontinuous. For this end, we define

= sw ool i= s e, N=  sup / IN (&, 5, u) | dr.
(s,u)€[0,1]X B, (s,u)€[0,1] X B, (s,7,u)€EGX B, J0

Let for any u* € B, and for each &1, %5 € [0,1] with #; < Z9, we have:

[(Fru)(Z2) — (Fru) (@)

BN [ - “a+B _ zath v
222 - ] ] &l
Tat 51 D) [|x2 :c1} +| e +F(B+1 |7 — ] + |77 — 5|
8 _ o [Ouw) o |u [¢(0 ug)| 551
+(z 5 t (T2 —7T -
@ =) ey TP T Ty [Ty
The right hand side of the last inequality is independent of u* and tends to zero
when |Zo — Z1| — 0, this means that |Fiu*(Z2) — Fiu*(Z1)| — 0, which implies
that F; B, is equicontinuous, then F is relatively compact on B,.. Hence by Arzela-
Ascoli theorem, Fi is compact on B,. Now, all hypothesis of Theorem3.2] hold,
therefore the operator F; + F3 has a fixed point on B,. So the problem (1.1]) has
at least one solution on [0, 1]. This proves the theorem. (]

+ Ylug ]

3.3. Existence and Uniqueness Result.

Theorem 3.3. Assume that (H1) holds. If LA < 1, then the BVP has a
unique solution on [0,1].

Proof. Define M = max{M;, Mo, M3}, where My, Mo, M5 are positive numbers
such that:

M, = sup |w(Z,0), My = sup |¢(Z,0)], Mz = sup ||/ N(z,s,0)ds|.
#€[0,1) #€(0,1) (%,5)€G

We fix r; > Aﬁz‘;l and we consider
D, ={ze€C([0,1],X): |u"| <ri}.
where Then, in view of the assumption (H1), we have

lw(@, u*(2))] = llw(@ v (7)) = w(@,0) + (@ 0)|| << Luflu”(| + M,

[(Z, u™(@))]| < Loflu™|| + My, and II/ N(Z,s,u™(s))|| < Lallu”|| + Ms.

First step: We show that T'D,. C D,.. For each t € [0, 1] and for any u* € D,.,
Foy@) < [ Eo N dr)d
IF@ < /0<a+5><”‘”“ ||+/H sy () ) ds
R LT 90, u3)]

s [ st o las + 0

- { _T)aw <||w7u |\+/ IN (7, A ( ))||d>\>dr

11—y a+B+1)

0,up)| . -
e )l)wvu(>>||d¢+';”(;fg))'w“ﬂw]
1 2 1

= (LT+M){a+ﬁ+1+a+6+2+,8+1
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|UT‘ fyaJrﬁJrl :’),BJrl 2}}/a+5+2
+
1-2 uﬂ(a+ﬁ+2 B+2 a+5+3ﬂ

[4(0, uo)l A [ui] (Iw(o,ué)l IS )
Ty T lugl + > e el
r(6+1) [ 11— L \L(B+2) g
= (Lri+M)o+6 <ri.
Hence, FD,, C D,,.

Second step: We shall show that F : D,, — D, is a contraction. From the
assumption (H1), we have for any u,v* € D,, and for each z € [0, 1]

[(Fu™) (@) = (Fo)@)|

</ w [nw(s,u*(s» —als o @)+ [ ING () - N v*m)dT] ds
v ' I s (5) = 06
: uilw | [ (et 7)) - st
+/O IN(r,0,u*(0)) — N(r,0, v*(o))lld0>dT+/:Y (0(5+)1)”‘/’(T w(n) - w(T’v*(T))”dT] o
< = :

L + -
{a+ﬂ+1 at+B+2 B+1

| fa+B+l ZEHL gzatf+2
+ + u* —v*
u—uﬂ<a+ﬂ+2 B+2 a+5+3ﬂ” ”

= Lo|lu" —v*|.

Since Lé < 1, it follows that F is a contraction. All assumptions of Banach fixed
point theorem are satisfied, then there exists u* € C(J,X) such that Fu* = u*
which is the unique solution of the problem (1.1 in C(J, X). O

4. GENERALIZED ULAM STABILITIES

To discus the Ulam stability for (L.I]), using the integration v*(&) = Fv*(%).
Let define the nonlinear continuous operator

Q: C([Ov 1LX — C([Ov 1},X),

as follows
Qv () =C D**+Pv*(#) O Dgyw(@, v’ (&) — (@, v* (7)) — / "N, 5,0 (5))ds.

Definition 4.1. For each € > 0 and for each solution v of , such that
[Qu*|| <, (4.1)

the problem , is said to be Ulam-Hyers stable if we can find a positive real
number v and a solution u € C([0,1],X) of , satisfying the inequality:

lu* — v*|| < ve, (4.2)

where €* is a positive real number depending on €.
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Definition 4.2. Let m € C’(RJr RT) such that for each solution v of , we can
find a solution u € C([0,1],X) of (1.4) such that

[[u® ( ) — v ()| < m(e), x € [0,1]. (4.3)
Then the problem , s said to be generalized Ulam-Hyers stable

Definition 4.3. For each € > 0 and for each solution v of , the problem
is called Ulam-Hyers-Rassias stable with respect to 0 € C([0,1],RT) if

[|Qu*(2)]| < eb(Z),x € ]0,1], (4.4)
and there exist a real number v > 0 and a solution v € C(|0,1], X) of (l) such
that

0 (@) — v (@) < ve.b(@), @< 0.1], (4.5)

where €, 1s a positive real number depending on €.

Theorem 4.4. Under assumption (H1) in Theorem|3.1, with L§ < 1. The problem
, 1s both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let u* € C(]0,1], X) be a solution of (1.1)), satisfying (2.1)) in the sense of
Theorem and any solution v* satisfying (4.1). Then, we obtain:

[0°(2) — v (@)|| = [[v*(F) — Fo™(2) + Fo* () — u* (2)||
= [[v*(@) — Fo* (@) + Fo*(z) — Fu"(2)||
< || Fvt(@ ) *( I+ [[Fo(2) — Id(v™(2))[]  (4.6)
< |Fo™(@) — Fu(@)] + (| Qv
< Lé|ju* —wv ||—i—~s7

because Ld < 1 and € > 0, we find
€
1-L§
Fixing €, = =75 and v = 1, we obtain the Ulam-Hyers stability condition. In
addition, the generalized Ulam-Hyers stability follows by taking m(¢) = =55. O

[l =™ <

Theorem 4.5. Assume that (H1) holds with L < 5=, and there exists a function
0 € C([0,1],R") satisfying the condition . Then the problem , 18 Ulam-

Hyers-Rassias stable with respect to 6.
Proof. We have from the proof of Theorem [£.4]
[u*(2) —v* (2] <e.0(z), T €l0,1],

where €, = 1fL5. O

Example 4.6. Consider the following fractional integro-differential problem
CDO+u (2) = w(@,u*(Z)) + CDO7+’(/J (Z,u* (%)) / N(&,s,u"(s))ds

(4.7)
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To illustrate our results: Theorem[3.1], and Theorem[].]}, we take for u*,v* € X =

R* and 7 € [0, 1] the following continuous functions:
(VT — 2
w(Z,u*(z)) = YW (x)2(45 r )7
L 2 - n@z+1) ,,
@ @) = D)
86
9 —(s24a?)
N(E,s,u"(s) = ”Tu*(s).
8 24 1In(2 1 1
Thus, L1 = 225’ Ly, = _'—876?()’ L3 = 3 P(0,us) =(0,1) = 35 Moreover,
e T—a? . 2—In(Z+1) 24 e+
M1(@—W, H2(~’L’)—T, #3(95)—T-

) 1
Obviously, |pillo. = 5z, lp2llo. =

and

L sl =
355 435 U3 Lo — 315

1
L= maX{Ll,LQ,Lg} = 3*1

Using the above data, we get :

(1) - A=0.2285 A; =7.6401, LA;=0.2465<1, 4; =13.1677.

fixing r > 151A = 17.0673 then, there exists at least one solution for the

problem on [0,1] by application of Theorem [3.]]

(2) : §=90338, L& =04248 <1, fizing ry > M8 = 18.5826.

then, by Theorem there exists a unique solution of on [0,1].

(3): L=2 L&, = 0.0.2914.

31>

then, the solution of is generalized Ulam-Hyers stable. .
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