Malte Jochum

and 6 more

Global change alters ecological communities with consequences for ecosystem processes. Such processes and functions are a central aspect of ecological research and vital to understanding and mitigating the consequences of global change, but also those of other drivers of change in organism communities. In this context, the concept of energy flux through trophic networks integrates food-web theory and biodiversity-ecosystem functioning theory and connects biodiversity to multitrophic ecosystem functioning. As such, the energy flux approach is a strikingly effective tool to answer central questions in ecology and global-change research. This might seem straight forward, given that the theoretical background and software to efficiently calculate energy flux are readily available. However, the implementation of such calculations is not always straight forward, especially for those who are new to the topic and not familiar with concepts central to this line of research, such as food-web theory or metabolic theory. To facilitate wider use of energy flux in ecological research, we thus provide a guide to adopting energy-flux calculations for people new to the method, struggling with its implementation, or simply looking for background reading, important resources, and standard solutions to the problems everyone faces when starting to quantify energy fluxes for their community data. First, we introduce energy flux and its use in community and ecosystem ecology. Then, we provide a comprehensive explanation of the single steps towards calculating energy flux for community data. Finally, we discuss remaining challenges and exciting research frontiers for future energy-flux research.

Jori Marx

and 3 more

Global change drivers like warming and changing nutrient cycles have a substantial impact on ecosystem functioning. In most modelling studies, organism responses to warming are described through the temperature dependence of their biological rates. In nature, however, organisms are more than their biological rates. Plants are flexible in their elemental composition (stoichiometry) and respond to variance in nutrient availability and temperature. An increase in plant carbon-to-nutrient content means a decrease in food quality for herbivores. Herbivores can react to this decrease by compensatory feeding, which implies higher feeding rates and higher carbon excretion to optimize nutrient acquisition. In a novel model of a nutrient-plant-herbivore system, we explored the consequences of flexible stoichiometry and compensatory feeding for plant and herbivore biomass production and survival across gradients in temperature and nutrient availability. We found that flexible stoichiometry increases plant and herbivore biomasses, which results from increased food availability due to higher plant growth. Surprisingly, compensatory feeding decreased plant and herbivore biomasses as overfeeding by the herbivore reduced plants to low densities and depleted their resource. Across a temperature gradient, compensatory feeding caused herbivore extinction at a lower temperature, while flexible stoichiometry increased its extinction threshold. Our results suggest that compensatory feeding can become critical under warm conditions. In contrast, flexible stoichiometry is beneficial for plants up to a certain temperature threshold. These findings demonstrate the importance of accounting for adaptive and behavioural organismal responses to nutrient and temperature gradients when predicting the consequences of warming and eutrophication for population dynamics and survival.