References
Bailey, S. F., and R. Kassen. 2012. Spatial structure of ecological opportunity drives adaptation in a bacterium. Am Nat. 180: 270–283.
Baird , L., B. L. Steinsiek, S. Raina, and C. Georgopoulos. 1991. Identification of the Escherichia coli sohB gene, a multicopy suppressor of the HtrA (DegP) null phenotype. J Bacteriol. 173: 5763-70.
Bennett, A. F., and R. E. Lenski. 2007. An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci USA. 104: S8649–8654.
Blank, D., L. Wolf, M. Ackermann and O. K. Silander. 2014. The predictability of molecular evolution during functional innovation. Proc Natl Acad Sci USA. 111: 3044–3049.
Björkman, J., D. Hughes and D. I. Andersson. 1998. Virulence of antibiotic-resistant Salmonella typhimurium . Proc Natl Acad Sci USA. 95: 3949–3953.
Björkman, J., I. Nagaev, O. G. Berg, D. Hughes and D. I. Andersson. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science. 287: 1479–1482.
Blount, Z. D., C. Z. Borland and R. E. Lenski. 2008. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli . Proc Natl Acad Sci USA. 105: 7899–7906.
Blount, Z. D., J. E. Barrick, C. J. Davidson, and R. E. Lenski. 2012. Genomic analysis of a key innovation in an experimentalEscherichia coli population. Nature. 489: 513–518.
Bono, L. M., L. B. Smith, D. W. Pfennig, and C. L. Burch. 2017. The emergence of performance trade‐offs during local adaptation: insights from experimental evolution. Molecular Ecology. 26: 1720–1733.
Brandis, G., M. Wrande, L. Liljas and D. Hughes. 2012. Fitness‐compensatory mutations in rifampicin‐resistant RNA polymerase. Mol Micro. 85: 142–151.
Buckling, A., R. Kassen, G. Bell, and P. B. Rainey. 2000. Disturbance and diversity in experimental microcosms. Nature. 408: 961–964.
Buckling, A., M. A. Brockhurst, M. Travisano and P. B. Rainey. 2007. Experimental adaptation to high and low quality environments under different scales of temporal variation. J Evol Biol. 20: 296–300.
Choi, K.-H., J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio, R. R. Karkhoff-Schweizer and H. P. Schweizer. 2005. A Tn7 -based broad-range bacterial cloning and expression system. Nature Meth. 2: 443–448.
Cooper, T. F. and R. E. Lenski. 2010. Experimental evolution withE. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations. BMC Evol Biol. 10: 11–10.
Cooper, T. F., D. E. Rozen and R. E. Lenski. 2003. Parallel changes in gene expression after 20,000 generations of evolution inEscherichia coli . Proc Natl Acad Sci USA. 100: 1072–1077.
Covert A. W., R. E. Lenski, C. O. Wilke and C. Ofria. 2013. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc Natl Acad Sci USA. 110: E3171-E3178
Daber, R. and M. Lewis. 2009. A novel molecular switch. J Mol Biol. 391: 661–670.
Dekel, E. U. Alon. 2005. Optimality and evolutionary tuning of the expression level of a protein. Nature. 436: 588–592.
Eames, M., T. Kortemme. 2012. Cost-benefit tradeoffs in engineeredlac operons. Science. 336: 911–915.
Ferenci, T. 1996. Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP. FEMS Microbiol Rev. 18: 301–317.
Ferrières, L., G. Hémery, T. Nham, A.-M. Guérout, D. Mazel, C. Beloin, and J. M. Ghigo. 2010. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol. 192: 6418–6427.
Filteau, M., V. Hamel, M.-C. Pouliot, I. Gagnon-Arsenault, A. K. Dube and C. R. Landry. 2015. Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds. Mol Sys Biol. 11: 832–832.
Gerrish P. and R. E. Lenski. 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102-103:127–144.
Gong, L. I., M. A. Suchard and J. D. Bloom. 2013. Stability-mediated epistasis constrains the evolution of an influenza protein. eLife, 2: e00631.
Gram, C. D. and R. J. Brooker. 1992. An analysis of the side chain requirement at position 177 within the lactose permease which confers the ability to recognize maltose. J Biol Chem. 267: 3841–3846.
Harrison, E., D. Guymer, A. J. Spiers, S. Paterson and M. A. Brockhurst. 2015. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol. 25: 2034–2039.
Jahreis, K., E. F. Pimentel-Schmitt, R. Brueckner and F. Titgemeyer. 2008. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev. 32: 891–907.
Jarvik, J. and D. Botstein. 1975. Conditional lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc Natl Acad Sci USA. 72: 2738–2742.
Jasmin, J.-N. and R. Kassen. 2007. Evolution of a single niche specialist in variable environments. Proc R Soc Lond B. 274: 2761–2767.
Kacar, B., X. Ge, S. Sanyal and E. A. Gaucher. 2017. Experimental evolution of Escherichia coli harboring an ancient translation protein. J Mol Evol. 84: 69–84.
Kassen, R. G. Bell. 1998. Experimental evolution inChlamydomonas . IV. Selection in environments that vary through time at different scales. Heredity. 80: 732–741.
King, S. C. and T. H. Wilson. 1990. Identification of valine 177 as a mutation altering specificity for transport of sugars by theEscherichia coli lactose carrier. Enhanced specificity for sucrose and maltose. J Biol Chem. 265: 9638–9644.
Knöppel, A., J. Nasvall and D. I. Andersson. 2016. Compensating the fitness costs of synonymous mutations. Mol Biol Evol. 33: 1461–1477.
Kurlandzka, A., R. F. Rosenzweig and J. Adams. 1991. Identification of adaptive changes in an evolving population of Escherichia coli : the role of changes with regulatory and highly pleiotropic effects. Mol Biol Evol. 8: 261–281.
Lee, M.-C. and C. J. Marx. 2012. Repeated, selection-driven genome reduction of accessory genes in experimental populations. PLoS Genetics. 8: e1002651.
Lehming, N., J. Sartorius, M. Niemöller, G. Genenger, B. von Wilcken-Bergmannand B. Müller-Hill. 1987. The interaction of the recognition helix of lac repressor with lac operator. EMBO J. 6: 3145–3153.
Lehming, N., J. Sartorius, B. Kisters-Woike, B. von Wilcken-Bergmann and B. Müller-Hill. 1990. Mutant lac repressors with new specificities hint at rules for protein–DNA recognition. EMBO J. 9: 615–621.
Lenski, R. E. 1988. Experimental studies of pleiotropy and epistasis inEscherichia coli . II. Compensation for maldaptive effects associated with resistance to virus T4. Evolution. 42: 433–440.
Lenski, R. E., M. R. Rose, S. C. Simpson and S. C. Tadler. 1991. Long-term experimental evolution in Escherichia coli . I. Adaptation and divergence during 2,000 generations. Am Nat. 138: 1315–1341.
Levin, B. R., V. Perrot and N. Walker. 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 154: 985–997.
Lunzer, M., G. B. Golding and A. M. Dean. 2010. Pervasive cryptic epistasis in molecular evolution. PLoS Genetics. 6: e1001162.
MacLean, R. C., G. Bell and P. B. Rainey. 2004. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens . Proc Natl Acad Sci USA. 101: 8072–8077.
Maisnier-Patin, S., O. G. Berg, L. Liljas and D. I. Andersson. 2002. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium . Mol Microbiol. 46: 355–366.
Manson, M. D. 2000. Allele-specific suppression as a tool to study protein–protein interactions in bacteria. Methods. 20: 18–34.
Markiewicz, P., L. G. Kleina, C. Cruz, S. Ehret, and J. H. Miller. 1994. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as “spacers” which do not require a specific sequence. J Mol Biol. 240: 421–433.
Martin, G., and T. Lenormand. 2015. The fitness effect of mutations across environments: Fisher’s geometrical model with multiple optima. Evolution. 69: 1433–1447.
Melnyk, A. H., N. McCloskey, A. J. Hinz, J. Dettman and R. Kassen. 2017. Evolution of cost-free resistance under fluctuating drug selection inPseudomonas aeruginosa . mSphere, 2: e00158–17.
McGee, L. W., A. M. Sackman, A. J. Morrison, J. Pierce, J. Anisman and D. R. Rokyta. 2015. Synergistic pleiotropy overrides the costs of complexity in viral adaptation. Genetics. 202: 285–295.
Moore, F., D. E. Rozen and R. E. Lenski. 2000. Pervasive compensatory adaptation in Escherichia coli . Proc R Soc Lond B. 267: 515–522.
Moura de Sousa, J., R. Balbontín, P. Durão and I. Gordo. 2017. Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biology. 15: e2001741
Nagaev, I., J. Björkman, D. I. Andersson and D. Hughes. 2001. Biological cost and compensatory evolution in fusidic acid‐resistantStaphylococcus aureus . Mol Microbiol. 40: 433–439.
Nilsson, A. I., O. G. Berg, O. Aspevall, G. Kahlmeter and D. I. Andersson. 2003. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli . Antimicrobial Agents and Chemotherapy. 47: 2850–2858.
Philippe, N., J. -P. Alcaraz, E. Coursange, J. Geiselmann and D. Schneider. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid. 51: 246–255.
Phillips, K. N., G. Castillo, A. Wünsche and T. F. Cooper. 2016. Adaptation of Escherichia coli to glucose promotes evolvability in lactose. Evolution. 70: 465–470.
Platt, T., J. G. Files and K. Weber. 1973. Lac repressor: specific proteolytic destruction of the NH2-terminal region and loss of the deoxyribonucleic acid-binding activity. J Biol Chem. 248: 110–121.
Ponmani, T. and M. H. Munavar. 2014. G673 could be a novel mutational hot spot for intragenic suppressors of pheS5 lesion in Escherichia coli . Microbiology. 3: 369–382.
Poon, A. and L. Chao. 2005a. The rate of compensatory mutation in the DNA bacteriophage ØX174. Genetics. 170: 989–999.
Poon, A., B. H. Davis and L. Chao. 2005b. The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood. Genetics. 170: 1323–1332.
Poon, A. and L. Chao. 2006. Functional origins of fitness effect-sizes of compensatory mutations in the DNA bacteriophage ØX174. Evolution. 60: 2032–2043.
Postma, P. W., J. W. Lengeler and G. R. Jacobson. 1993. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 57: 543–594.
Quan, S., J. C. J. Ray, Z. Kwota, T. Duong, G. Balazsi, T. F. Cooper and R. D. Monds. 2012. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli . PLoS Genetics. 8: e1002444.
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Roemhild, R., C. Barbosa, R. E. Beardmore, G. Jansen and H. Schulenburg. 2015. Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa . Evol App. 8: 945–955.
Rosenzweig, R. F., R. R. Sharp, D. S. Treves and J. Adams. 1994. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli . Genetics. 137: 903–917.
Rozen, D. E., L. McGee, B. R. Levin and K. P. Klugman. 2007. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae . Antimicrobial Agents and Chemo. 51: 412–416.
Sahin-Tóth, M., M. C. Lawrence, T. Nishio and H. R. Kaback. 2001. The C-4 hydroxyl group of galactopyranosides is the major determinant for ligand recognition by the lactose permease of Escherichia coli . Biochemistry. 40: 13015–13019.
Salinas, R. K., G. E. Folkers, A. M. J. J. Bonvin, D. Das, R. Boelens and R. Kaptein. 2005. Altered specificity in DNA binding by thelac repressor: a mutant lac headpiece that mimics thegal repressor. Chembiochem. 6: 1628–1637.
Satterwhite, R. S. and T. F. Cooper. 2015. Constraints on adaptation ofEscherichia coli to mixed-resource environments increase over time. Evolution. 69: 2067–2078.
Schick, A., S. F. Bailey and R. Kassen. 2015. Evolution of fitness trade-offs in locally adapted populations of Pseudomonas fluorescens . Am Nat. 186: S48–S59.
Shah, P., D. M. McCandlish and J. B. Plotkin. 2015. Contingency and entrenchment in protein evolution under purifying selection. Proc Natl Acad Sci USA. 112: E3226–E3235.
Stoebel D. M., A. M. Dean and D. E. Dykhuizen. 2008. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products. Genetics 178:1653–1660.
Szamecz, B., G. Boross, D. Kalapis, K. Kovács, G. Fekete, Z. Farkas, et al. 2014. The genomic landscape of compensatory evolution. PLoS Biol. 12: e1001935.
Tenaillon, O., J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, et al. 2016. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature. 536: 165–170.
Turner, P. E. and S. F. Elena. 2000. Cost of Host Radiation in an RNA Virus. Genetics. 156: 1465–1470.
van Leeuwen, J., C. Pons, J. C. Mellor, T. N. Yamaguchi, H. Friesen, J. Koschwanez, et al. 2016. Exploring genetic suppression interactions on a global scale. Science. 354: aag0839–1 – aag0839–11.
Weickert, M. J. and S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem. 267: 15869–15874.
Wielgoss, S., T. Bergmiller, A. M. Bischofberger and A. R. Hall. 2016. Adaptation to parasites and costs of parasite resistance in mutator and nonmutator bacteria. Mol Biol Evol. 33: 770–782.
Wood, M. P., A. L. Cole, P. Ruchala, A. J. Waring, L. C. Rohan, P. Marx, et al. 2013. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion. PloS One. 8: e55478.
Woods, R., D. Schneider, C. L. Winkworth, M. A. Riley and R. E. Lenski. 2006. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli . Proc Natl Acad Sci USA. 103: 9107–9112.
Zee, P. C., H. Mendes-Soares, Y.-T. N. Yu, S. A. Kraemer, H. Keller, S. Ossowski, et al. 2014. A shift from magnitude to sign epistasis during adaptive evolution of a bacterial social trait. Evolution. 68: 2701–2708.