References
(1) Andreas, S. B., Janna, K. B., & Michael, J. A. (2011) Status of
protein engineering for biocatalysts: How to design an industrially
useful biocatalyst. Curr Opin Chem Biol. 15(2) , 194-200.
doi:10.1016/j.cbpa.2010.11.011
(2) Ali, M., Ishqi, H. M., & Husain, Q. (2020) Enzyme engineering:
Reshaping the biocatalytic functions. Biotechnol Bioeng. 117(6) ,
1877-1894. doi:10.1002/bit.27329
(3) Modarres, H. P., Mofrad, M. R., & Sanati-Nezhad, A. (2016) Protein
thermostability engineering. RSC Adv. 6(116) ,
115252-115270. doi:10.1039/C6RA16992A
(4) Song, J. K., & Rhee, J. S. (2000) Simultaneous enhancement of
thermostability and catalytic activity of phospholipase A(1) by
evolutionary molecular engineering. Appl. Environ. Microbiol. 66 ,
890-894. doi:10.1128/AEM.66.3.890-894.2000
(5) Wohlgemuth, R. (2012) Industrial biotechnology-past, present and
future. New Biotechnol. 29(2) , 165-170.
doi:10.1016/j.nbt.2011.11.013
(6) Huang, P. S., Boyken, S. E., & Baker, D. (2016) The coming of age
of de novo protein design. Nature. 537(7620) , 320-327.
doi:10.1038/nature19946
(7) Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tarn,
S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., Brands,
J., Devine, P. N., Huisman, G. W., & Hughes, G. Y. (2010) Biocatalytic
asymmetric synthesis of chiral amines from ketones applied to
sitagliptin manufacture. Science. 329(5989) , 305-309.
doi:10.1126/science.1188934
(8) Damis, S. I. R., Murad, A. M. A., Bakar, F. D. A., Rashid, S. A., &
Illias, R. M. (2019) Protein engineering of GH11 Xylanase fromAspergillus fumigatus RT-1 for catalytic efficiency improvement
on kenaf biomass hydrolysis. Enzyme Microb Tech. 131 ,
109383. doi:10.1016/j.enzmictec.2019.109383
(9) Lin, Z. L., Thorsen, T., & Thorsen, F. H. (2000) Functional
expression of horseradish peroxidase in E. coli by directed
evolution. Biotechnol. Prog. 15 , 467-471.
doi:10.1021/bp990292b
(10) Yin, B. Q., Hui, Q. Y., Kashif, M., Yu, R., Chen, S., Ou, Q., Wu,
B., & Jiang, C. J. (2019) Simultaneous enhancement of thermostability
and catalytic activity of a metagenome-derived β-Glucosidase using
directed evolution for the biosynthesis of butyl glucoside. Int.
J. Mol. Sci. 20 , 6224. doi:10.3390/ijms20246224
(11) Sinha, S. K., Goswami, S., Das, S., & Datta, S. (2019) Exploiting
non-conserved residues to improve activity and stability of
halothermothrix orenii β-glucosidase. Appl Microbiol Biotechnol.
101(4) , 1455-1463. doi:10.1007/s00253-016-7904-y
(12) Delboni, L. F., Mande, S. C., Rentier-Delrue, F., Mainfroid, V.,
Turley, S., Vellieux, F. M., Martial, J. A., & Hol, W. G. (1995)
Crystal structure of recombinant triosephosphate isomerase fromBacillus Stearothermophilus . An analysis of potential
thermostability factors in six isomerases with known three-dimensional
structures points to the importance of hydrophobic interactions.Protein Sci. 4(12) , 2594–2604. doi:10.1002/pro.5560041217
(13) Chang, C., Park, B. C., Lee, D. S., & Suh, S. W. (1999) Crystal
structures of thermostable xylose isomerases from Thermus
Caldophilus and Thermus Thermophilus : Possible structural determinants
of thermostability. J Mol Biol. 288 , 623–634.
doi:10.1006/jmbi.1999.2696
(14) Rosato, V., Pucello, N., & Giuliano, G. (2002) Evidence for
cysteine clustering in thermophilic proteomes. Trends Genet. 18 ,
278–281. doi:10.1016/j.tig.2003.09.001
(15) Xiao, L., & Honig, B. (1999) Electrostatic contributions to the
stability of hyperthermophilic proteins. J Mol Biol. 289 ,
1435-1444. doi:10.1055/s-2006-925002
(16) Dominy, B. N., Minoux, H., & Brooks, C. L. (2004) An electrostatic
basis for the stability of thermophilic proteins. Proteins.57 , 128-141. doi:10.1002/prot.20190
(17) Jaenicke, R. (2000) Do ultrastable proteins fromHyperthermophiles have high or low conformational rigidity?Proc Natl Acad Sci USA. 97 , 2962–2964.
doi:10.1073/pnas.97.7.2962
(18) Reetz, M. T., Carballeira, J. D., & Vogel, A. (2006) Iterative
saturation mutagenesis on the basis of B factors as a strategy for
increasing protein thermostability. Angew Chem Int Ed Engl. 45 ,
7745–7751.
(19) Liang, H. K., Huang, C. M., Ko, M. T., & Hwang, J. K. (2010) Amino
acid coupling patterns in thermophilic proteins. Proteins.59 , 58–63. doi:10.1002/prot.20386
(20) Chan, C. H., Liang, H. K., Hsiao, N. W., Ko, M. T., & Lyu, P. C.
(2004) Relationship between local structural entropy and protein
thermostability. Proteins. 57 , 684–691. doi:10.1002/prot.20263
(21) Chinea, G., Padron, G., Hooft, R.W., Sander, C., & Vriend, G.
(1995) The use of position-specific rotamers in model building by
homology. Proteins. 23 , 415–421. doi:10.1002/prot.340230315
(22) Kellogg, E. H., Leaver-Fay, A., & Baker, D. (2011) Role of
conformational sampling in computing mutation-induced changes in protein
structure and stability. Proteins. 79 , 830–838.
doi:10.1002/prot.22921
(23) Zeiske, T., Stafford, K. A., & Palmer, A. G. (2016)
Thermostability of enzymes from molecular dynamics simulations. J
Chem Theory Comput. 12 , 2489–2492.
doi:10.1021/acs.jctc.6b00120
(24) Dombkowski, A. A. (2003) Disulfide by design: A computational
method for the rational design of disulfide bonds in proteins.Bioinformatics. 19 , 1852–1853.
doi:10.1093/bioinformatics/btg231
(25) Humer, D., & Spadiut, O. (2019) Improving the performance of
horseradish peroxidase by site-directed mutagenesis. Int J Mol
Sci. 20(4) . doi:10.3390/ijms20040916
(26) Ashraf, N. M., Krishnagopal, A., Hussain, A., Kastner, D., Mahmoud,
A., Sayed, M., Mok, Y. K., Swaminathan, K., & Zeeshan, N. (2019)
Engineering of serine protease for improved thermostability and
catalytic activity using rational design. Int J Biol Macromol.
126 , 229-237. doi:10.1016/j.ijbiomac.2018.12.218
(27) Ren, L. Q., Chang, T. T., Ren, D. P., Zhou, Y., & Ye, B. C. (2019)
Rational design to improve activity of the Est3563 esterase fromAcinetobacter sp. LMB-5. Enzyme Microb Tech. doi:
10.1016/j.enzmictec.2019.04.005
(28) Azouz, R. A. M., Hegazy, U. M., Said, M. M., Bassuiny, R. I.,
Salem, A. M., & Fahmy, A. S. (2019) Improving the catalytic efficiency
of thermostable Geobacillus Stearothermophilus xylanase XT6 by
single-amino acid substitution. J. Biochem. 167(2) . doi:
10.1093/jb/mvz086
(29) Su, L. Q., Yao, K. L., & Wu, J. (2020) Improved activity of
sulfolobus acidocaldarius maltooligosyltrehalose synthase through
directed evolution. J. Agric. Food Chem. 68 , 4456-4463.
(30) Kryukova, M. V., Petrovskaya, L. E., Kryukova, E. A., Lomakina, G.
Y., Yakimov, S. A., Maksimov, E. G., Boyko, K. M., Popov, V. O.,
Dolgikh, D. A., & Kirpichnikov, M. P. (2019) Thermal inactivation of a
cold-active esterase PMGL3 isolated from the permafrost metagenomic
library. Biomolecules. 9 , 880. doi: 10.3390/biom9120880
(31) Yang, G., Yao, H., Mozzicafreddo, M., Ballarini, P., Pucciarelli,
S., & Miceli, C. (2017) Rational engineering of a cold-adapted
α-amylase from the Antarctic Ciliate Euplotes Focardii for
simultaneous improvement of thermostability and catalytic activity.Appl Environ Microb. 83(13) , e00449-17. doi:
10.1128/AEM.00449-17
(32) Yadav, S., & Yadav, K. D. S. (2000) Secretion of a-l-rhamnosidases
by Aspergillus terreus and its role debittering of orange juice.J Sci Ind Res. 59 , 1032-1037.
(33) Prakash, S., Singhal, R. S., & Kulkarni, P. R. (2002) Enzymic
debittering of indian grapefruit (citrus paradisi) juice. J Sci
Food Agr. 82 , 394-397. doi: 10.1002/jsfa.1059
(34) Caldini, C., Bonomi, F., Pifferi, P. G., Lanzarini, G., & Galante,
Y. M. (1994) Kinetic and immobilization studies on the fungal
glycosidases for the aroma enhancement in wine. Enzyme Microb
Tech. 16 , 286-291. doi: 10.1016/0141-0229(94)90168-6
(35) Spagma, G., Barbagallo, R. N., & Martino, A. (2000) A simple
method of purifying glycosidase: a-l-rhamnopyranosidases fromAspergillus niger to increase the aroma of moscato wine.Enzyme Microb Tech. 27 , 522-530. doi:
10.1016/S0141-0229(00)00236-2
(36) Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W., & Murata, K.
(2007) Crystal structure of glycoside hydrolase family 78
alpha-L-Rhamnosidase from Bacillus sp. GL1. J. Mol. Biol.
374 , 384-398. doi: 10.1016/j.jmb.2007.09.003
(37) Fujimoto, Z., Jackson, A., Michikawa, M., Maehara, T., Momma, M.,
Henrissat, B., Gilbert, H. J., & Kaneko, S. (2013) The structure of a
streptomyces avermitilis alpha-L-rhamnosidase reveals a novel
carbohydrate-binding module CBM67 within the six-domain arrangement.J. Biol. Chem. 288 , 12376-12385. doi: 10.1074/jbc.M113.460097
(38) O’Neill, E. C., Stevenson, C. E., Paterson, M. J., Rejzek, M.,
Chauvin, A. L., Lawson, D. M. , & Field, R. A. (2015) Crystal structure
of a novel two domain GH78 family alpha-rhamnosidase fromKlebsiella Oxytoca with rhamnose bound. Proteins.83 , 1742-1749.
(39) Pachl, P., Škerlová, J., Šimčíková, D., Kotik, M., Křenková, A.,
Mader, P., Brynda, J., Kapešová, J., Křen, V., Otwinowski, Z., &
Řezáčová, P. (2018) Crystal structure of native α-l-rhamnosidase fromAspergillus Terreus . Acta. Crystallogr. D. 74 , 1078-1084.
doi: 10.1107/S2059798318013049
(40) Guillotin, L., Kim, H., Traore, Y., Moreau, P., Lafite, P.,
Coquoin, V., Nuccio, S., de Vaumas, R., & Daniellou, R. (2019)
Biochemical characterization of the α-l-Rhamnosidase Dt Rha fromDictyoglomus Thermophilum : Application to the selective
derhamnosylation of natural flavonoids. ACS. Omega. 4 ,
1916-1922. doi: 10.1021/acsomega.8b03186
(41) Li, L. J., Yu, Y., Zhang, X., Jiang, Z. D., & Chen, F. (2016)
Expression and biochemical characterization of recombinant
α-L-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528.Int J Biol Macromol. 85 , 391-399. doi:
10.1016/j.ijbiomac.2015.12.093
(42) Li, L. J., Gong, J. Y., Li, W. J., Wu, Z. Y., & Li, Q. B. (2020)
Enhancement in affinity of Aspergillus niger MU-TS528
α-L-rhamnosidase (r-Rha1) by semiconservative site-directed mutagenesis
of (α/α)6 catalytic domain. Int J Biol Macromol. 151 ,
845-854. doi: 10.1016/j.ijbiomac.2020.02.157
(43) Liao, H., Gong, J. Y., Yang, Y., Jiang, Z. D. & Li, Q. B. (2019)
Enhancement of the thermostability of Aspergillus nigerα-L-rhamnosidase based on PoPMuSiC algorithm. J Food Biochem.43(6) . doi: 10.1111/jfbc.12945
(44) Li, L. J., Liao, H., Yang, Y., Gong, J. Y., Liu, J. N., Jiang, Z.
D., Zhu, Y. B., Xiao, A. F., & Ni, H. (2018) Improving the
thermostability by introduction of arginines on the surface of
alpha-L-rhamnosidase (r-Rha1) from Aspergillus niger . Int J
Biol Macromol. 112 , 14-21.
(45) Lu, Z., Wang, Q., Jiang, S.,
Zhang, G., & Ma, Y. (2016) Truncation of the unique N-terminal domain
improved the thermos-stability and specific activity of alkaline
alpha-amylase Amy703. Sci Rep-UK. 6 , 22465. doi:
10.1038/srep22465
(46) Bernardi, R.C., Cann, I., &
Schulten, K. (2014) Molecular Dynamics Study of Enhanced Man5B Enzymatic
Activity. Biotechnol Biofuels. 7 , 83. doi: 10.1186/1754-6834-7-83
(47) Xu, L., Liu, X., Yin, Z., Liu,
Q., Lu, L., & Xiao, M. (2016) Site-directed mutagenesis of
α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis
yield of reverse hydrolysis based on rational design. Appl
Microbiol Biot. 100 , 1-10. doi: 10.1007/s00253-016-7676-4
(48) Mohd, K. H., Mohd, A., & Rosli, M. I. (2016) Thermostability
enhancement of xylanase Aspergillus Fumigatus RT-1. J Mol
Catal B-Enzym. 134 , 154-163. doi: 10.1016/j.molcatb.2016.09.020
(49) Li, J. H., Bewley, J. D., Hua, Z., Zheng, W. J., & Wang, A. X.
(2008) Model and molecular dynamic simulations of active and inactive
endo-β-1,4-Mannanase in tomato fruit. Protn Journal. 27(6) ,
363-370. doi: 10.1007/s10930-008-9145-0
(50) Noorbatcha, I. A, Salleh, H. M., & Hadi, M. A. (2011) Molecular
dynamics approach in designing thermostable Bacillus CirculansXylanase. ICEBE. 11 , 17-19
(51) Awasthi, M., Jaiswal, N., Singh, S., Pandey, V. P., & Dwivedi, U.
N. (2014) Molecular docking and dynamics simulation analyses unraveling
the differential enzymatic catalysis by plant and fungal laccases with
respect to lignin biosynthesis and degradation. J Biomol Struct
Dyn. 33(9) ,1835-1849. doi: 10.1080/07391102.2014.975282
(52) Christensen, N. J., Kepp, K. P., & Jie, Z. (2013) Stability
mechanisms of a thermophilic laccase probed by molecular dynamics.Plos One, 8(4) :e61985-. doi: 10.1371/journal.pone.0061985
(53) Yu, M., Li, Y. Z., Wang, L. F., Huang, H. P., & Yu, S. Y. (2006)
Crystal structure and pi-pi stacking of a coplanar mu-S Bridged
1,10-phenanthrolinepalladium(II) Dinuclear complex. Chinese J
Inorg Chem. 22(5) , 963-966. doi: 10.3321/j.issn:1001-4861.2006.05.037
(54) Naito, A., Kawamura, I., & Javkhlantugs, N. (2015) Recent
solid-state NMR studies of membrane-bound peptides and proteins.Annu Rep NMR Spectro. 86 , 333-411. doi:
10.1016/bs.arnmr.2015.06.001
(55) Ren, L. Q., Chang, T. T., Ren, D. P., Zhou, Y., & Ye, B. C. (2019)
Rational design to improve activity of the Est3563 Esterase fromAcinetobacter sp. LMB-5. Enzyme Microb Tech. 131 . doi:
10.1016/j.enzmictec.2019.04.005
(56) Li, L. J., Wu, Z. Y., Yu, Y., Zhang, L. Z., Zhu, Y. B., Ni, H., &
Chen, F. (2018) Development and characterization of an α-L-rhamnosidase
mutant with improved thermostability and a higher efficiency for
debittering orange juice. Food Chem. 245 , 1070-1078. doi:
10.1016/j.foodchem.2017.11.064
(57) Zorn, H., & Li, Q. (2016) Trends in Food Enzymology. ACS
Publications. doi: 10.1021/acs.jafc.6b05483
(58) De. Van Der Spoel, Lindahl, E., Hess, B., Groenhof, G., Mark, A.
E., & Berendsen, H. J. (2005) GROMACS: Fast, flexible, and free.J. Comput. Chem. 26 , 1701-1718. doi: 10.1002/jcc.20291
(59) Hou, T., Wang, J., Li, Y., & Wang, W. (2011) Assessing the
performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of
binding free energy calculations based on molecular dynamics
simulations. J. Chem. Inf. Model. 51 , 69-82. doi:
10.1021/ci100275a