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Abstract: In this paper, we study the positive solutions of higher order Lane-Emden

system with Navier exterior conditions
(−∆)su(x) = vp(x), u(x) > 0, x ∈ Ω,

(−∆)sv(x) = uq(x), v(x) > 0, x ∈ Ω,

u(x) = −∆u(x) = · · · = (−∆)mu(x) = 0, x ∈ Ωc,

v(x) = −∆v(x) = · · · = (−∆)mv(x) = 0, x ∈ Ωc,

where 1 < p < ∞, 1 < q < ∞, n ≥ 3, s = m + σ with integer m and σ ∈ (0, 1), and

Ωc is the complementary of Ω in Rn. We establish the monotonicity of solutions in the

inward normal direction near the boundary by using the method of moving plane in a

local way. Furthermore, we establish uniform a priori estimates for positive solutions to

higher critical order fractional Lane-Emden system for all large exponents by using the

combination of Green’s representations with suitable cut-off functions. It is well-known

that, with such a prior estimate, one will be able to obtain the existence of solutions via

topological degree or continuation arguments.

Key words: Critical order; Lane-Emden system; Monotonicity; Method of moving plane

in a local way; Green’s function and Re-scaling; Uniform a priori estimates.
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1 Introduction

In this paper, we consider the following higher order fractional system in bounded

domains with Navier exterior conditions:
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
(−∆)su(x) = vp(x), u(x) > 0, x ∈ Ω,

(−∆)sv(x) = uq(x), v(x) > 0, x ∈ Ω,

u(x) = −∆u(x) = · · · = (−∆)mu(x) = 0, x ∈ Ωc,

v(x) = −∆v(x) = · · · = (−∆)mv(x) = 0, x ∈ Ωc.

(1.1)

where 1 < p < ∞, 1 < q < ∞, n ≥ 3, s = m + σ with integer m and σ ∈ (0, 1), and Ωc is

the complementary of Ω in Rn.

It follows from [21], the high order fractional Laplacian (−∆)s is defined by

(−∆)su(x) = (−∆)σ ◦ (−∆)mu(x). (1.2)

By the definition of the higher order fractional Laplacian in (1.2), we can see that

(−∆)s is a nonlocal pseudo-differential operator like the fraction Laplacian. This kind of

nonlocality makes the fraction Laplacians different from the regular Laplacians, and poses

a strong barrier in the generalization of many fine results from the reular Laplacians to

the fraction Laplacians.

We say that operator is in critical order if s = n
2 , and obviously it is a fractional one

when n is odd. This is the focus of the present paper. Let [2σ] be the integer part of 2σ,

and 2σ be the fractional part of 2σ.

Denote

L2σ = {u ∈ L1
loc|
∫
Rn

|1 + u(x)|
1 + |x|n+2σ

dx <∞}.

For u ∈ C [2σ],2σ+ε
loc (Ω) ∩ L2σ with arbitrarily small ε > 0, the fractional Laplacian in Rn is

a nonlocal operator defined by

(−∆)σu(x) = Cn,σP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2σ
dy

= Cn,σ lim
ε→0

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2σ
dy,

where P.V. stands for the Cauchy principle value, Cn,σ is a normalization constant.

Then it is easy to verify that in order (1.2) to make sence, we require that

u ∈ C [2σ],2σ+ε
loc (Ω), (−∆)mu ∈ L2σ.

The definition of the fractional Laplacian can be further extended to the distribution

u in the space L2σ by〈
(−∆)σu, φ

〉
=

∫
Rn
u(−∆)σφdx, ∀φ ∈ C∞0 (Rn).

In recent years, the fractional Laplacian has attracted much attention from the math-

ematical community due to its nonlocality and widespread applications. It can be used to

model diverse physical phenomena. For instance, it has various application in probability

and finance, in which this operator is define as the generator of α-stable Lévy process

that represent random motions, such as the Poisson process and Brownian (see [13, 20]).

In the diffusion process, the operator was used to derive heat kernel estimates for many

symmetric jump-type processes and to study the acoustic wave equation (see [3,12]). For
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more related references, we refer the readers to see the references therein [2, 4, 5]. There-

fore, many authors investigated qualitative properties (existence, regularity, symmetry

and monotonicity) of the elliptic equations involving the fractional Laplacion operator

(see [1, 9, 10,14,16,17,24–26]).

The non-locality of the fractional Laplacion makes it difficult to investigate. In order

to overcome this difficulty, the extension method was firstly introduced by Caffarelli and

Silvestre in [4]. The main idea of the extension method is to reduced the nonlocal problem

into a local one in higher dimensions. Specifically, for a function u : Rn → R, we consider

the extension U : Rn → [0,∞) that satisfies

div(y1−γ∇U) = 0, (x, y) ∈ Rn × [0,∞), U(0, x) = u(x).

Then we have

(−∆)
γ
2 u(x) = −Cn,γ lim

y→0+
y1−γ ∂U

∂y
, x ∈ Rn.

The other method is the integral equations method, such as method of moving planes

in integral forms to study their equivalent corresponding integrals ( [22, 23]). That is,

if we choose the integral equations method to study the well-known nonlinear partical

differential equation:

(−∆)
α
2 u = u

n+p
n−p ,

we need an equaivalent integral form:

u(x) =

∫
Rn

u
n+p
n−p (y)

|x− y|n−α
dy.

We show that the solutions to (1.1) are strictly monotone increasing along the inward

normal direction near the boundary of Ω. To this end, we split the high order equation

in (1.1) into a fractional equations and m integer order equations, then these 2m + 2

equations together with the Navier conditions constitute a system. Applying a direct

method of moving planes (see [6,9,10]) and iteration technique on this system, we are able

to derive the following monotonicity result.

Theorem 1.1. Let Ω ⊂ Rn be a strictly convex bounded domain, s = m + σ with in-

teger m and σ ∈ (0, 1). Assume that u, v ∈ C
2m+[2σ],2σ+ε
loc (Ω) and u, v,−∆u,−∆v, · ·

·, (−∆)mu, (−∆)mv are lower semi-continuous on Ω̄. Let u, v be a pair of solution of (1.1).

Then for any xo ∈ ∂Ω, there exists a δo > 0 depending only on xo and Ω such that,

u(x), v(x) and (−∆)iu, (−∆)iv, i = 1, · · ·,m are monotone increasing along the inward

normal direction νo in the region

Σ̃δo = {x ∈ Ω̄ | 0 ≤ (x− xo) · νo ≤ δo}.

Moreover, either u(x), v(x) and (−∆)iu, (−∆)iv, i = 1, · · ·,m are strictly monotone in-

creasing along the inward normal direction in Σ̃δo , or u(x), v(x) are constant in Σ̃δo and

(−∆)iu, (−∆)iv, i = 1, · · ·,m are constants in Rn.

Remark 1.2. To better illustrate the main ideas, we only consider the simple example as

in system (1.1). The methods developed here are also applicable to deal with more general
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nonlinearities, for example, one can replace s in (1.1) by s and t, i.e.
(−∆)su(x) = vp(x), u(x) > 0, x ∈ Ω,

(−∆)tv(x) = uq(x), v(x) > 0, x ∈ Ω,

u(x) = −∆u(x) = · · · = (−∆)m1u(x) = 0, x ∈ Ωc,

v(x) = −∆v(x) = · · · = (−∆)m2v(x) = 0, x ∈ Ωc,

where 1 < p < ∞, 1 < q < ∞, n ≥ 3, s = m1 + σ, t = m2 + σ with integer m1,m2 and

σ ∈ (0, 1), and Ωc is the complementary of Ω in Rn. We can also obtain the monotonicity

of positive solutions.

The above monotonicity results implies that the maxima of u(x), v(x) and (−∆)iu,

(−∆)iv, i = 1, · · ·,m are attained in the interior of Ω away from the boundary, namely in

the set

{x ∈ Ω | dist(x, ∂Ω) ≥ δ}.

It follows that the Lebesgue integral of u(x), v(x) and (−∆)iu, (−∆)iv, i = 1, ···,m on

the boundary layer of Ω can be controlled by the corresponding interior integral in Ω, and

therefore, the Lebesgue integral in Ω is dominated by the interior values in Ω. Using the

moving planes to obtain the estimates to solutions near the boundary for elliptic equations

where early appeared in [18].

In order to derive a uniform a priori estimate, we need a uniform Lebesgue estimate,

which is often obtained by using the eigenvalues and eigenfunctions in the case of integer

order elliptic equations (see [15, 19]). However, for higher order fractional operators, so

far as we know, there have not seen any results on the corresponding eigenvalues and

eigenfunctions. To go around this obstacle, we use a idea (see [11]) of constructing suitable

cut-off functions to obtain the basic uniform Lebesgue estimate.

Combining with the integration by parts formula for higher order fractional operators,

we obtain the following uniform Lebesgue estimate for all positive solutions of (1.1) and

for all exponents p ≥ p0 > 1, q ≥ q0 > 1, there exists C not depend on p, q such that∫
Ω
uq(x)dx ≤ C, (1.3)∫

Ω
vp(x)dx ≤ C, (1.4)

Then we consider system (1.1) in critical fractional order when s = n
2 with odd integer

n ≥ 3, i.e. 
(−∆)

n
2 u(x) = vp(x), x ∈ Ω,

(−∆)
n
2 v(x) = uq(x), x ∈ Ω,

u(x) = −∆u(x) = · · · = (−∆)
n−1
2 u(x) = 0, x ∈ Ωc,

v(x) = −∆v(x) = · · · = (−∆)
n−1
2 v(x) = 0, x ∈ Ωc.

(1.5)

We know that blowing up and rescaling techniques are used to derive a priori estimates

(see [7, 8]) which are usually not uniform and depend on the exponent p, q. In order to

obtain a uniform estimate, we use a approach: the combination of a rescaling and the

Green’s representation of solutions.
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Let E,F denote the maximum of u, v in Ω respectively, and from Theorem 1.1 we

know that it is attained at

Ωδ = {x ∈ Ω | dist(x, ∂Ω) ≥ δ},

which is at least at a distance δ away from the boundary ∂Ω. Without loss of generality,

we assume that 0 ∈ Ωδ and u(0) = E, v(0) = F .

Let M = max{E,F}, make s rescaling

µ(x) =
1

Mp+1
u(M−

pq−1
n x), κ(x) =

1

M q+1
v(M−

pq−1
n x).

Then µ(x) and κ(x) satisfies the equation and the exterior Navier conditions in the

rescaled domain Ω′ = M
pq−1
n Ω, and it is easy to see that

(−∆)
n
2 µ(x) = κp(x), x ∈ Ω′,

(−∆)
n
2 κ(x) = µq(x), x ∈ Ω′,

µ(x) = −∆µ(x) = · · · = (−∆)
n−1
2 µ(x) = 0, x ∈ (Ω′)c,

κ(x) = −∆κ(x) = · · · = (−∆)
n−1
2 κ(x) = 0, x ∈ (Ω′)c.

We establish the following uniform a priori estimate.

Theorem 1.3. Assume that n ≥ 3 is odd, Ω ⊂ Rn is strictly convex and p0q0 > 1. Then

there exists a constant C depending only on p0, q0, n and Ω such that for all p0 ≤ p < +∞,

q0 ≤ q < +∞, and for all solutions u, v ∈ Cn,εloc (Ω)∩Cn−2
0 (Ω) to the system (1.5), we have

the uniform estimate

‖u‖L∞(Ω̄), ‖v‖L∞(Ω̄) ≤ C.

The paper is organized as follows: In Section 2, we given some necessary lemmas. In

Section 3, we complete the proof of Theorem 1.1 by the moving plane. In Section 4, we

establish the uniform a priori estimate and prove Theorem 1.3.

2 Preliminaries

In this section, we will given some necessary lemmas to proof of Theorem 1.1 and

Theorem 1.2.

Recall that for the usual Laplacian operator, we have the following well-knownmaximum

principle.

Lemma 2.1 ( [10]) Assume that u ∈ C2(Ω̄) is a solution of{
−∆u(x) ≥ 0, x ∈ Ω,

u(x) ≥ 0, x ∈ Ωc,

then

u(x) ≥ 0, x ∈ Ω.

Due to the non-locality of the fractional Laplacian, a correct version of the maximum

principle is
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Lemma 2.2 ( [9]) Assume that Ω is a bounded domain in Rn, u ∈ L2σ is lower semi-

continuous on Ω̄ and satisfies {
(−∆)σu(x) ≥ 0, x ∈ Ω,

u(x) ≥ 0, x ∈ Ωc,

in the sense of distribution, then

u(x) ≥ 0, x ∈ Ω.

In [25], a simple maximum principle for anti-symmetric functions was proved.

Lemma 2.3. Let Ω be a bounded domain in Σλ. Suppose that ωλ(x) = −ωλ(xλ) is

a anti-symmetric functions. Assume that ωλ(x) ∈ L2σ ∩ C1,1
loc (Ω) and is lower anti-

symmetric functions on Ω̄. If{
(−∆)σωλ(x) ≥ 0, x ∈ Ω,

ωλ(x) ≥ 0, x ∈ Σλ\Ω,

then

ωλ(x) ≥ 0, x ∈ Ω.

Furthermore, if ωλ = 0 at some point in Ω, then

ωλ(x) = 0, almost everywhere in Rn.

These conclusions hold for unbounded region Ω if we further assume that

lim inf
|x|→∞

ωλ(x) ≥ 0.

We use a idea of constructing suitable cut-off functions to obtain the basic uniform

Lebesgue estimate. In this process, we need the following key ingredient-the integration

by parts formula for higher order fractional operators.

Lemma 2.4 ( [11]) Assume that Ω ⊂ Rn is a bounded domain, let s = m+ δ with integer

m and δ ∈ (0, 1). Suppose that u ∈ C2m+[2σ],2σ+ε
loc (Ω) and (−∆)iu(x) ∈ L2δ, then∫

Ω
(−∆)su(x)ϕ(x)dx =

∫
Ω

(−∆)sϕ(x)u(x)dx, ∀ ϕ(x) ∈ C∞0 (Ω).

3 Monotonicity

We prove Theorem 1.1 by a direct method of moving plane. To better illustrate the

idea, we first prove the case for m = 1 and then state the proof for m > 1.

3.1 The case m=1

Proof. Let w = ∆u(x), l = ∆v(x), then
(−∆)σw(x) = vp(x), x ∈ Ω,

(−∆)σl(x) = uq(x), x ∈ Ω,

−∆u(x) = w(x), −∆v(x) = l(x), x ∈ Ω,

u(x) = v(x) = w(x) = l(x) = 0, x ∈ Ωc.

(3.1)
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Since w(x) and l(x) satisfies{
(−∆)σw(x) > 0, x ∈ Ω,

w(x) = 0, x ∈ Ωc.
(3.2)

By strong maximum principle implies that

w(x) > 0, x ∈ Ω.

Similarly, we have

l(x) > 0, x ∈ Ω.

For any xo ∈ ∂Ω, let νo be the unit inward normal vector of ∂Ω at xo. We will show that

there exits a constant δo > 0 depending only on xo and Ω such that u(x) is monotone

increasing along the inward normal direction in the region

Σ̃δo = {x ∈ Ω̄ | 0 ≤ (x− xo) · νo ≤ δo}. (3.3)

To this end, we defined the moving plane by

Tλ = {x ∈ R3 | (x− xo) · νo = λ},

and the region to the left of the plane

Σλ = {x ∈ R3 | (x− xo) · νo < λ},

for λ > 0, and let xλ be the reflection of the point x about the plane Tλ. Let

uλ(x) = u(xλ), vλ(xλ) = v(x),

wλ(x) = w(xλ), lλ(x) = l(xλ),

and

Uλ(x) = uλ(x)− u(x), V λ(x) = vλ(x)− v(x),

W λ(x) = wλ(x)− w(x), Lλ(x) = lλ(x)− l(x).

Then we deduce from (3.1) that, for any λ such that the reflection of Σλ ∩Ω is contained

in Ω, 
(−∆)σW λ(x) = vpλ(x)− vp(x) = pξp−1

λ (x)V λ(x), x ∈ Σλ ∩ Ω,

(−∆)σLλ(x) = uqλ(x)− uq(x) = qηq−1
λ (x)Uλ(x), x ∈ Σλ ∩ Ω,

−∆Uλ(x) = W λ(x), −∆V λ(x) = Lλ(x), x ∈ Σλ ∩ Ω,

Uλ(x), V λ(x),W λ(x), Lλ(x) ≥ 0, x ∈ Σλ\(Σλ ∩ Ω).

(3.4)

where ξλ(x) is valued between vλ(x) and v(x), ηλ(x) is valued between vλ(x) and v(x).

Step 1. In this step, we prove that there exists some δ > 0 sufficiently small such

that

Uλ(x) ≥ 0, V λ(x) ≥ 0,W λ(x) ≥ 0, Lλ(x) ≥ 0, x ∈ Σλ ∩ Ω, (3.5)

for 0 < λ ≤ δ. This actually is a narrow region principle for the system.

Uλ(x) > 0, V λ(x) > 0,W λ(x) > 0, Lλ(x) > 0, x ∈ Σλ ∩ Ω, (3.6)
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or

Uλ(x) ≡ 0, V λ(x) ≡ 0, x ∈ Σλ ∩ Ω, W λ(x) ≡ 0, Lλ(x) ≡ 0, x ∈ R3. (3.7)

We first prove (3.5).

Suppose (3.5) is false, then we may assume that there exists 0 < λ ≤ δ such that

Uλ(x) < 0, somewhere in Σλ ∩ Ω. (3.8)

Otherwise, if Uλ(x) ≥ 0 in Σλ ∩ Ω for 0 < λ ≤ δ, then we can derive that

V λ(x) ≥ 0,W λ(x) ≥ 0, Lλ(x) ≥ 0.

Indeed, if

Uλ(x) ≥ 0, x ∈ Σλ ∩ Ω, for 0 < λ ≤ δ.

By (3.4), we have {
(−∆)σLλ(x) ≥ 0, x ∈ Σλ ∩ Ω,

Lλ(x) = 0, x ∈ Σλ\(Σλ ∩ Ω).

By the maximum principle for the anti-symmetric function, we derive

Lλ(x) ≥ 0, x ∈ Σλ ∩ Ω, for 0 < λ ≤ δ. (3.9)

Furthermore, we have {
−∆V λ(x) ≥ 0, x ∈ Σλ ∩ Ω,

V λ(x) = 0, x ∈ Σλ\(Σλ ∩ Ω),

a maximum principle implies that

V λ(x) ≥ 0, x ∈ Σλ ∩ Ω, for 0 < λ ≤ δ.

Similar to (3.9), we have

W λ(x) ≥ 0, x ∈ Σλ ∩ Ω, for 0 < λ ≤ δ.

Let

φ(x) = cos
(x− xo) · νo

δ
.

It follows that φ(x) ∈ [cos1, 1], x ∈ Σλ and

−∆φ(x)

φ(x)
=

1

δ2
.

Define

Uλ(x) =
Uλ(x)

φ(x)
, V λ(x) =

V λ(x)

φ(x)
.

We obtain from (3.7) that there exists a point x0 ∈ Σλ ∩ Ω such that

Uλ(x0) = min
Σλ

Uλ(x) < 0.
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At the negative minimum point of Uλ, we have

−∆Uλ(x0) = −∆Uλ(x0)φ(x0)− 2∇Uλ(x0) · ∇φ(x0)− Uλ(x0)∆φ(x0)

= −∆Uλ(x0)φ(x0)− Uλ(x0)∆φ(x0)

≤ −Uλ(x0)∆φ(x0)

=
Uλ(x0)

δ2
.

(3.10)

On the other hand, by (3.4) we have

W λ(x0) = −∆Uλ(x0) ≤ Uλ(x0)

δ2
. (3.11)

It thus implies that there exists some x1 ∈ Σλ ∩ Ω such that

W λ(x1) = min
Σλ

W λ(x) < 0.

By the definition of the fractional Laplacian and (3.11), we have

(−∆)σW λ(x1) = Cn,σP.V.

∫
R3

W λ(x1)−W λ(y)

|x1 − y|3+2σ
dy

= Cn,σP.V.(

∫
Σλ

W λ(x1)−W λ(y)

|x1 − y|3+2σ
dy +

∫
Σcλ

W λ(x1)−W λ(y)

|x1 − y|3+2σ
dy)

≤ Cn,σP.V.(
∫

Σλ

W λ(x1)−W λ(y)

|x1 − y|3+2σ
dy +

∫
Σλ

W λ(x1) +W λ(y)

|x1 − yλ|3+2σ
dy)

≤ CW λ(x1)

∫
Σλ

1

|x1 − y|3+2σ
dy

≤ CW λ(x1)

δ2δ

≤ CUλ(x0)

δ2+2δ
.

(3.12)

Combining (3.4) and (3.12), we have

V λ(x1) < 0.

Similar to (3.10), there exists a point x2 ∈ Σλ ∩ Ω such that

−∆V λ(x2) ≤ V λ(x2)

δ2
. (3.13)

Furthermore, there exists some x3 ∈ Σλ ∩ Ω such that

Lλ(x3) = min
Σλ

Lλ(x) < 0,

and

(−∆)σLλ(x3) ≤ CV λ(x2)

δ2+2δ
.
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Combining (3.4) with (3.12), we obtain

CUλ(x0)

δ2+2δ
≥ (−∆)σW λ(x1)

= pξp−1
λ (x1)V λ(x1)φ(x1)

≥ pξp−1
λ (x1)V λ(x2)φ(x1)

= pξp−1
λ (x1)V λ(x2)

φ(x1)

φ(x2)

≥ C‖v‖p−1
L∞(Ω̄)

V λ(x2),

(3.14)

i.e.

Uλ(x0) ≥ Cδ2+2δ‖v‖p−1
L∞(Ω̄)

V λ(x2).

Similarly, we have
CV λ(x2)

δ2+2δ
≥ C‖u‖q−1

L∞(Ω̄)
Uλ(x0).

Therefore, we obtain

1

δ4+4δ
≤ C‖u‖q−1

L∞(Ω̄)
‖v‖p−1

L∞(Ω̄)
,

which is a contradiction if we choose δ > 0 small enough such that

0 < δ < C(‖u‖q−1
L∞(Ω̄)

‖v‖p−1
L∞(Ω̄)

)−
1

4+4δ . (3.15)

Therefore, there exists δ > 0 such that (3.5) is holds.

Second, we show (3.6) and (3.7).

Suppose for some ξ ∈ Σλ ∩ Ω such that Uλ(ξ) = 0. Then ξ is the minimum point of

Uλ. Thus

0 ≥ −∆Uλ(ξ) = W λ(ξ).

Meanwhile, by (3.5), we have

W λ(ξ) ≥ 0.

Hence,

W λ(ξ) = 0 = min
Σλ

W λ(x),

and

(−∆)σW λ(ξ) = Cn,σP.V.

∫
R3

−W λ(y)

|x1 − y|3+2σ
dy

= Cn,σP.V.(

∫
Σλ

−W λ(y)

|ξ − y|3+2σ
dy +

∫
Σcλ

−W λ(y)

|ξ − y|3+2σ
dy)

= Cn,σP.V.

∫
Σλ

(
1

|ξ − yλ|3+2σ
− 1

|ξ − y|3+2σ
)W λ(y)dy.

(3.16)

If W λ(x) 6≡ 0, then (3.16) implies that

(−∆)σW λ(ξ) < 0.

Together with (3.4), it shows that

V λ(ξ) < 0.
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This is contradiction with (3.5). Hence

W λ(x) ≡ 0, x ∈ Σλ.

Since

W λ(xλ) = −W λ(x), x ∈ Σλ.

Therefore,

W λ(x) ≡ 0, x ∈ R3.

Again with (3.4), one can easily deduce that

Lλ(x) ≡ 0, x ∈ R3.

Uλ(x) ≡ 0, V λ(x) ≡ 0, x ∈ Σλ ∩ Ω.

If W λ(x) 6≡ 0 in R3 and there exists a point ζ ∈ Σλ ∩ Ω such that W λ(ζ) = 0, then

W λ(ζ) = min
Σλ

W λ(x) = 0,

and

(−∆)σW λ(ζ) < 0,

which contradicts with (3.4). Therefore,

W λ(x) > 0, x ∈ Σλ.

By (3.4) and strong maximum principle implies that

Uλ(x) > 0, V λ(x) > 0, Lλ(x) > 0, x ∈ Σλ.

Therefore, we have shown (3.6) and (3.7).

Step 2. In this step, we keep moving the plane continuously along the inward normal

direction at xo to the limiting position as long as the inequality

Uλ(x), V λ(x),W λ(x), Lλ(x) ≥ 0, x ∈ Σλ, (3.17)

holds. We show that this process can be continued as long as the reflection of Σλ ∩ Ω is

still contained in Ω.

Suppose in the contrary, there exists a small ρ > 0 such that the reflection of

Σλ0+ρ ∩ Ω about Tλ0+ρ is still contained in Ω with

λ0 = sup{λ | Uρ(x), V ρ(x),W ρ(x), Lρ(x) ≥ 0, x ∈ Σρ, ρ ≤ λ}.

By (3.6) and (3.7), we derive

Uλ0(x) > 0, V λ0(x) > 0,W λ0(x) > 0, Lλ0(x) > 0, x ∈ Σλ0 ∩ Ω, (3.18)

or

Uλ0(x) ≡ 0, V λ0(x) ≡ 0, x ∈ Σλ0 ∩ Ω, W λ0(x) ≡ 0, Lλ0(x) ≡ 0, x ∈ R3. (3.19)

From (3.19), we know that

0 = u(xo) = uλ0(xo) > 0.
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This is a contradiction and we obtain (3.18).

It follows that there exists a constant Cτ > 0 such that

Uλ0(x), V λ0(x),W λ0(x), Lλ0(x) ≥ Cτ > 0, x ∈ Σλ0−τ ∩ Ω.

From the continuity of Uλ(x), V λ(x),W λ(x), and Lλ(x) with respect to λ, we obtain that

there exists a 0 < ε < min{ρ, τ} such that

Uλ(x), V λ(x),W λ(x), Lλ(x) ≥ 0, x ∈ Σλ0−τ ∩ Ω, λ ∈ (λ0, λ0 + ε].

Denote

D = (Σλ\Σλ0 − δ) ∩ Ω.

Then it is a narrow region, similar to step 1, we have

Uλ(x), V λ(x),W λ(x), Lλ(x) ≥ 0, ∀x ∈ D.

Therefore

Uλ(x), V λ(x),W λ(x), Lλ(x) ≥ 0, x ∈ Σλ ∩ Ω, λ ∈ (λ0, λ0 + ε].

This implies that the plane Tλ can still be moved inward a litter bit from Tλ0
In conclusion, there exists a constant δo > 0 depending only on xo and Ω such

that u(x), v(x),−∆u(x) and −∆v(x) are monotone increasing along the inward normal

direction in the region

Σ̃δ0 = {x ∈ Ω̄ | 0 ≤ (x− xo) · νo ≤ δo}.

Moreover, either u(x), v(x),−∆u(x) and −∆v(x) are strictly monotone increasing in Σ̃δ0

or u(x) and v(x) are constants in Σ̃δ0 , −∆u(x) and −∆v(x) are constants in R3. �

3.2 The case m > 1

Proof. Let wi = (−∆)iu, li = (−∆)iv and

W λ
i (x) = wλi (x)− wi(x), Lλi (x) = lλi (x)− li(x)

for i = 1, · · ·,m. Then we can deduce from (1.1) that for any λ with the reflection of

Σλ ∩ Ω containing in Ω

(−∆)σW λ
m(x) = vpλ(x)− vp(x) = pξp−1

λ (x)V λ(x), x ∈ Σλ ∩ Ω,

(−∆)σLλm(x) = uqλ(x)− uq(x) = qηq−1
λ (x)Uλ(x), x ∈ Σλ ∩ Ω,

−∆Uλ(x) = W λ
1 (x), −∆V λ(x) = Lλ1(x), x ∈ Σλ ∩ Ω,

−∆W λ
1 (x) = W λ

2 (x), −∆Lλ1(x) = Lλ2(x), x ∈ Σλ ∩ Ω,

· · ·
−∆W λ

m−1(x) = W λ
m(x), −∆Lλm−1(x) = Lλm(x), x ∈ Σλ ∩ Ω,

Uλ(x), V λ(x),W λ
i (x), Lλi (x) ≥ 0, i = 1, · · ·,m, x ∈ Σλ\(Σλ ∩ Ω),

(3.20)

where ξλ(x) is valued between vλ(x) and v(x), ηλ(x) is valued between vλ(x) and v(x).
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Define

Uλ(x) =
Uλ(x)

φ(x)
, V λ(x) =

V λ(x)

φ(x)
,

W λ
i (x) =

W λ
i (x)

φ(x)
, Lλi (x) =

Lλi (x)

φ(x)
,

for i = 1, · · ·,m and x ∈ Σλ ∩ Ω.

Similarly, we can obtain from (3.20) that there exists a point x0 ∈ Ω such that

Uλ(x0) = min
Σλ

Uλ(x) < 0.

Through a similar argument as in obtaining (3.11), we derive that there exists some

x1 ∈ Σλ ∩ Ω such that

W λ(x1) = min
Σλ

W λ(x) < 0.

Then

W λ
2 (x1) = −∆W λ

1 (x1) ≤ W λ
1 (x1)

δ2
< 0.

Continuing this way, we derive that there exist

xi ∈ Σλ ∩ Ω,

such that

W λ
i (xi) = min

Σλ
W λ
i (x) < 0.

for i = 2, · · ·,m− 1.

Finally, we have

W λ
m(xm) = min

Σλ
W λ
m(x) < 0.

and

(−∆)σW λ
m(xm) ≤ CUλ(x0)

δ2s
. (3.21)

By (3.20), we have

V λ(xm) < 0.

Then there exists a point x̄0 ∈ Σλ ∩ Ω such that

V λ(x̄0) = min
Σλ

V λ(x) < 0.

Similarly, for i = 1, · · ·,m, there exist

x̄i ∈ Σλ ∩ Ω,

such that

Lλi (x̄i) = min
Σλ

Lλi (x) < 0.

Finally, we have

(−∆)σLλm(x̄m) ≤ CV λ(x̄0)

δ2s
. (3.22)

Arguing similarly as in deriving (3.15), we prove that for

0 < δ < C(‖u‖q−1
L∞(Ω̄)

‖v‖p−1
L∞(Ω̄)

)−
1
4s , (3.23)
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it holds

Uλ(x), V λ(x),W λ
i (x), Lλi (x) ≥ 0, x ∈ Σλ, for 0 < λ ≤ δ,

for i = 1, · · ·,m.
Similar to the case of m = 1, we obtain that there exists a constant δo > 0 depending

only on xo and Ω such that u(x), v(x), (−∆)iu(x) and (−∆)iv(x) are monotone increasing

along the inward normal direction in the region

Σ̃δo = {x ∈ Ω̄ | 0 ≤ (x− xo) · νo ≤ δo}.

Moreover, either u(x), v(x),−∆u(x) and −∆v(x) are strictly monotone increasing in Σ̃δ0

or u(x) and v(x) are constants in Σ̃δ0 , (−∆)iu(x) and (−∆)iv(x) are constants in Rn.This

completes the proof of Theorem 1.1. �

4 Uniform a priori estimates

In this section, we consider the higher critical order fractional equations when s = n
2

with odd integer n. We obtain the uniform a priori estimates and thus prove Theorem 1.3

by Green′s representations and a rescaling technique.

4.1 The Green’s function

To begin with, we first introduce some notations and derive relevant properties of the

Green’s function for (−∆)
n
2 .

Denote

Ωδ = {x ∈ Ω | dist(x, ∂Ω) ≥ δ}.

For arbitrary fixed x ∈ Ωδ, let G(x, y) be the Green’s function for (−∆)
n
2 with pole at x

associated with Navier exterior conditions. Then

G(x, y) = Cn ln
1

|x− y|
− h(x, y), ∀ y ∈ Ω̄,

where the n
2 -harmonic function h(x, y) satisfies{

(−∆)
n
2 h(x, y) = 0, y ∈ Ω,

(−∆)ih(x, y) = (−∆)i(Cn ln 1
|x−y|), i = 0, 1, · · ·, n−1

2 , y ∈ Ωc.

The expression of the remainder h(x, y) is unknown, Chen and Li use the equations

and the exterior conditions it satisfied to derive the needed properties (see [11]).

Lemma 4.1. The harmonic part h(x, y) in the Green’s function is bounded from above

for any x ∈ Ωδ and y ∈ Ω.

4.2 The uniform estimates

Let E and F denote of the maximum of u and v respectively, i.e.

E = max
Ω̄

u, F = max
Ω̄

v.
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From Theorem 1.1, we know that the maximum E and F are attained at

Ωδ = {x ∈ Ω | dist(x, ∂Ω) ≥ δ},

which is at least at a distance δ away from the boundary ∂Ω. Without loss of generality,

we may assume that 0 ∈ Ωδ and

u(0) = E, v(0) = F.

Let M = max{E,F}, we first rescale u(x) and v(x) by letting

µ(x) =
1

Mp+1
u(M−

pq−1
n x), κ(x) =

1

M q+1
v(M−

pq−1
n x). (4.1)

It is easy to see that
(−∆)

n
2 µ(x) = κp(x), x ∈ Ω′,

(−∆)
n
2 κ(x) = ωµq(x), x ∈ Ω′,

µ(x) = −∆ω(x) = · · · = (−∆)
n−1
2 µ(x) = 0, x ∈ (Ω′)c

κ(x) = −∆κ(x) = · · · = (−∆)
n−1
2 κ(x) = 0, x ∈ (Ω′)c

(4.2)

with

µ(0) = max
Ω′

µ(x) ≤ 1, κ(0) = max
Ω′

κ(x) ≤ 1,

where Ω′ = M
pq−1
n Ω.

Denote

Ω′δ = {x ∈ Ω′ | dist(x, ∂Ω′) ≥M
pq−1
n δ},

For arbitrarily x ∈ Ω′δ, by re-scaling, the Green’s function for (−∆)
n
2 for (4.2) with pole

at x is

G′(x, y) = G(
x

M
pq−1
n

,
y

M
pq−1
n

) = Cn ln
M

pq−1
n

|x− y|
− h(

x

M
pq−1
n

,
y

M
pq−1
n

),

where the n
2 -harmonic function h( x

M
pq−1
n
, y

M
pq−1
n

) satisfies

 (−∆)
n
2 h( x

M
pq−1
n
, y

M
pq−1
n

) = 0, y ∈ Ω,

(−∆)ih( x

M
pq−1
n
, y

M
pq−1
n

) = (−∆)i(Cn ln M
pq−1
n

|x−y| ), i = 0, 1, · · ·, n−1
2 , y ∈ Ωc.

We can derive from Lemma 4.1 that

h(
x

M
pq−1
n

,
y

M
pq−1
n

) ≤ C, x ∈ Ω′δ, y ∈ Ω′. (4.3)

By Green’s representation formula and (4.3), for any x ∈ Ω′δ and p ≥ p0, q ≥ q0, we

have

1 ≥ µ(x) =

∫
Ω′
G′(x, y)κp(y)dy

= Cn

∫
Ω′

ln
M

pq−1
n

|x− y|
κp(y)dy −

∫
Ω′
h(

x

M
pq−1
n

,
y

M
pq−1
n

)κp(y)dy

≥ Cn
∫

Ω′
ln
M

pq−1
n

|x− y|
κp(y)dy − C

∫
Ω′
κp(y)dy.

(4.4)
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Similarly, we have

1 ≥ κ(x) ≥ Cn
∫

Ω′
ln
M

pq−1
n

|x− y|
µq(y)dy − C

∫
Ω′
µq(y)dy. (4.5)

In order to obtain a uniform a priori estimate for u(x) and v(x), we need to estimate

the bounds for µ(x) and κ(x). Therefore, we give the following two lemmas, the first is a

uniform Lebesgue estimate and the second is the pointwise bounds.

Lemma 4.2. Assume that n ≥ 3 is odd, Ω ⊂ Rn is strictly convex and p0q0 > 1. Let

u, v ∈ Cn,εloc (Ω)∩Cn−2
0 (Ω) be a pair of solution of critical order problem (1.5). Then there

exists a constant C depending only on p0, q0, n and Ω such that for all p0 ≤ p < +∞,

q0 ≤ q < +∞, we have ∫
Ω
uq(x)dx ≤ C,

∫
Ω
vp(x)dx ≤ C,

and therefore, for any solution to (4.2), we have∫
Ω′
µq(x)dx ≤ C

M q+1
,

∫
Ω′
κp(x)dx ≤ C

Mp+1
.

Proof. Denote

Ωδ = {x ∈ Ω | dist(x, ∂Ω) ≥ δ},

Let η(x) ∈ C∞0 (Ω), η(x) ∈ [0, 1], x ∈ Ω and

η(x) =

{
1, x ∈ Ωδ,

0, x ∈ Ω\Ω δ
2
.

First, by Theorem 1.1 and a similar argument as in [15], we have∫
Ω
uq(x)dx ≤ C

∫
Ωδ

uq(x)dx,

∫
Ω
vp(x)dx ≤ C

∫
Ωδ

vp(x)dx, (4.6)

where C depends only on n and Ω.

Second, applying Theorem 1.2, we have∫
Ω

(−∆)
n
2 u(x)η(x)dx =

∫
Ω
u(x)(−∆)

n
2 η(x)dx.

By (1.5), we have ∫
Ω
vp(x)η(x)dx =

∫
Ω
u(x)(−∆)

n
2 η(x)dx. (4.7)

Combing this with (4.6), we have∫
Ω
vp(x)dx ≤ C

∫
Ωδ

vp(x)dx

≤ C
∫

Ω
vp(x)η(x)dx

= C

∫
Ω
u(x)(−∆)

n
2 η(x)dx

≤ C
∫

Ω
u(x)dx

≤ C|Ω|1−
1
q (

∫
Ω
uq(x)dx)

1
q .

(4.8)
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Similarly, we obtain ∫
Ω
uq(x)dx ≤ C|Ω|1−

1
p (

∫
Ω
vp(x)dx)

1
p . (4.9)

Combing (4.8) and (4.9), we have∫
Ω
vp(x)dx ≤ C|Ω|1−

1
pq (

∫
Ω
vp(x)dx)

1
pq ,

i.e. ∫
Ω
vp(x)dx ≤ C.

Similarly, we obtain ∫
Ω
uq(x)dx ≤ C.

It follows from (4.1), we have∫
Ω′
µq(x)dx ≤ C

M q+1
,

∫
Ω′
κp(x)dx ≤ C

Mp+1
.

This completes the proof of Lemma 4.3. �
Lemma 4.3. Assume that n ≥ 3 is odd, Ω ⊂ Rn is strictly convex and let p0q0 > 1. Let

u, v ∈ Cn,εloc (Ω) be a pair of solution of critical order problem (1.5), and µ, κ be as defined

in (4.1). Then we have

max
Ω′
| −∆µ(x)| ≤ C

(pq)1− 2
n

,

max
Ω′
| −∆κ(x)| ≤ C

(pq)1− 2
n

,

and for any p ≥ p0, q ≥ q0

0 ≤ 1− µ(x) ≤ C

pq
, |x| ≤ δ

(pq)
1
n

,

0 ≤ 1− κ(x) ≤ C

pq
, |x| ≤ δ

(pq)
1
n

.

Proof. One can easily see from (4.2) and the maximum principle that

−∆µ(x) ≥ 0, x ∈ Ω′.

By Theorem 1.1, the maximum of −∆µ(x) in Ω′ can only be attained at some point

x1 ∈ Ω′δ, i.e.

−∆µ(x1) = max
Ω′

(−∆µ(x)).

By Lemma 4.1, we know that

−∆h(
x

M
pq−1
n

,
y

M
pq−1
n

) ≤ 0.

Therefore, it follows by the Green’s representation that
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−∆µ(x1) = C

∫
Ω′

κp(y)

|x1 − y|2
dy − C

∫
Ω′

[−∆h(
x1

M
pq−1
n

,
y

M
pq−1
n

)]κp(y)dy

≤ C
∫

Ω′

κp(y)

|x1 − y|2
dy.

(4.10)

We only need to discuss that M ≥ 1 with guarantees Bδ(0) ⊂ Ω′ (δ is small). If

M < 1, we are done.

Since κ(x) ≤ 1, for any p ≥ p0, we have∫
|x1−y|≤ δ

(pq)
1
n

κp(y)

|x1 − y|2
dy ≤ C

∫
|x1−y|≤ δ

(pq)
1
n

1

|x1 − y|2
dy

≤ C

(pq)1− 2
n

,

(4.11)

and by Lemma 4.2, we obtain∫
Ω′∩|x1−y|≥ δ

(pq)
1
2−

1
n

κp(y)

|x1 − y|2
dy ≤ (

1

(pq)
1
2
− 1
n δ

)2

∫
Ω′
κp(y)dy

=
1

(pq)1− 2
n δ2

C

Mp+1

≤ C

(pq)1− 2
n

,

(4.12)

and by Lemma 4.2 and (4.4), for any x ∈ Ω′δ and p ≥ p0, q ≥ q0, we have

1 ≥ Cn
∫

Ω′
ln(

M
pq−1
n

|x− y|
)κp(y)dy −

∫
Ω′
h(

x

M
pq−1
n

,
y

M
pq−1
n

)κp(y)dy

≥ Cn
∫

Ω′
ln(

M
pq−1
n

|x− y|
)κp(y)dy − C

Mp+1
.

Therefore, we have ∫
Ω′

ln(
M

pq−1
n

|x− y|
)κp(y)dy ≤ C. (4.13)

It follow that

∫
δ

(pq)
1
n
≤|x1−y|≤δ(pq)

1
2−

1
n

κp(y)

|x1 − y|2
dy

≤
∫

Ω′
ln(

M
pq−1
n

|x− y|
)κp(y)dy max

δ

(pq)
1
n
≤|x1−y|≤δ(pq)

1
2−

1
n

{ 1

|x1 − y|2
1

ln(M
pq−1
n

|x−y| )
}

≤ C (pq)
2
n

δ2

1
pq−1
n lnM − ln((pq)

1
2
− 1
n δ)

≤ C

(pq)1− 2
n

.

(4.14)
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Combining (4.10)-(4.14), we have

0 ≤ −∆µ(x1) = max
Ω′

(−∆µ(x)) ≤ C

(pq)1− 2
n

.

Since Bδ(0) ⊂ Ω′ and µ(0) ≤ 1, by applying the Harnack inequality, we derive

sup
Br(0)

(1− µ(x)) ≤ C( inf
Br(0)

(1− µ(x)) + r‖∆µ‖Ln(B2r(0))),

for all r ∈ [0, δ4 ].

Therefore, we have

0 ≤ 1− µ(x) ≤ −∆µ(x1)r2 ≤ Cr2

(pq)1− 2
n

, |x| ≤ r,

which implies that for any p ≥ p0 and q ≥ q0,

0 ≤ 1− µ(x) ≤ C

pq
, |x| ≤ δ

(pq)
1
n

,

Similarly, we have

max
Ω′
| −∆κ(x)| ≤ C

(pq)1− 2
n

,

0 ≤ 1− κ(x) ≤ C

pq
, |x| ≤ δ

(pq)
1
n

.

This completes the proof of Lemma 4.3. �

Proof of Theorem 1.3. By Lemma 4.3 and (4.13), we obtain

C ≥
∫

Ω′
ln(

M
pq−1
n

|x− y|
)κp(y)dy

≥
∫
B δ

(pq)
1
n

(0)
ln(

M
pq−1
n

|x− y|
)(1− C

pq
)pdy

≥ C
∫ δ

(pq)
1
n

0
ln(

M
pq−1
n

r
)rn−1dr

≥ C

pq
ln(

M
pq−1
n (pq)

1
n

δ
)

≥ C lnM.

It follow that

M ≤ C,

where C depends only on n, p0, q0 and Ω. This completes the proof of Theorem 1.3. �
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solutions for critical order Hardy-Hénon equations in Rn, (2018) arXiv 1808.06609v2

[7] Chen, W., Li, C., A priori estimate for the Nirenberg problem. Discrete Contin. Dyn. Syst.

Ser. S 1, (2008),225-233

[8] Chen, W., Li, C., Li, Y., A direct blowing-up and rescaling argument on nonlocal elliptic

equations, Internat. J. Math. 27, 1650064, (2016) 20 pp

[9] Chen, W., Li, C., Li, Y., A direct method of moving planes for the fractional Laplacian,

Adv. Math. 308 (2017), 404-437.

[10] Chen, W., Li, Y., Ma, P., The Fractional Laplacian. World Scientific Publishing Co, Singa-

pore (2019)

[11] Chen W., Wu L., Uniform a priori estimates for solutions of higher critical order fractional

equations. Calculus of Variations and Partial Differential Equations, 2021, 60(3):1-19.

[12] Chen, Z., Kim, P., Kumagai, T., Global heat kernel estimates for symmetric jump processes.

Trans. Amer. Math. Soc. 363 (2011), 5021-5055

[13] David, A., Lvy Processes-From Probability to Finance and Quantum Groups, Notices of

the American Mathematical Society (American Mathematical Society, 2014), pp. 1336-1347

[14] Dupaigne, L. Sire, Y., A Liouville theorem for nonlocal elliptic equations, in: Symmetry

for Elliptic PDEs, in: Contemp. Math., vol. 528, Amer. Math. Soc. Providence, RI, (2010),

105-114.

[15] Dai, W., Duyckaerts, T.: Uniform a priori estimates for positive solutions of higher order

Lane-Emden equations in Rn, arXiv 1905.10462v1 (2019)

[16] Felmer, P. Quaas, A. Tan, J., Positive solutions of the nonlinear Schrödinger equation with

the fractional Laplacian, Proc. Roy. Soc. Edinburgh, 142A (2012), 1237-1262.

[17] Felmer, P., Wang, Y., Radial symmetry of positive solutions involving the fractional Lapla-

cian. Communications in Contemporary Mathematics, 16(1) (2013), 259-268.

20



[18] Han, Z. C., Asymptotic approach to singular solutions for nonlinear elliptic equations in-

volving critical Sobolev exponent, Annales de ĺInstitut Henri Poincare (C) Non Linear
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