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Summary

In this paper, we investigate the models of the impulsive cellular neural network
with piecewise alternately advanced and retarded argument of generalized argument
(in short IDEPCAG). To ensure the existence, uniqueness and global exponential
stability of the equilibrium state, several new sufficient conditions are obtained,
which extend the results of the previous literature. The method is based on utilizing
Banach’s fixed point theorem and a new IDEPCAG’s Gronwall inequality. The cri-
teria given are easy to check and when the impulsive effects do not affect, the results
can be extracted from those of the non-impulsive systems. Typical numerical simu-
lation examples are used to show the validity and effectiveness of proposed results.
We end the article with a brief conclusion.
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1 INTRODUCTION

Multi-variable feedback systems can exert the retroactive effect on very different time scales. Exemplifying by the extremes,
according to the date of the information that is used to feedback, this action can define: (a) a continuous process or (b) one
discrete process. In case (a), the growth rates of the variables are feed backed at each instant, let’s say in real time. While, in case
(b) there is a set of isolated dates, for example, a succession of instants in which the information is taken, in order to feedback
the period between two consecutive sequence elements.
Normally and for mathematical modeling purposes, in case (a) differential equations are used and in case (b), if there is no

other dynamics effect between the feedback times, difference equations can be used to express the essence of the dynamics.
There are processes (real-world systems, such as some biotechnology-based ones) that can not be categorized into types (a) or
(b), as they combine characteristics of both types of scales among other particular effects. This leads to the use of hybrid type
equations, for example the impulsive differential equations with piecewise constant arguments (in abbreviation: IDEPCA), that
were first considered by Wiener and Lakshmikantham34 in 2000, and differential equations with piecewise constant argument
without impulsive effect (in short, DEPCA) were studied by Shah andWiener30 andWiener32 in 1983; and has been investigated
by many authors. We highlight the book of J. Wiener33, pioneer of DEPCA, that recollects much of the research done in DEPCA.
In the case, DEPCA of generalized type, were discussed extensively in1,2,8,9,10,11,13,14,15,16,17,29.
When scales are mixed these feedback systems can be visualized as control systems, in that, one scale represents the intrinsic

of the process and the other is external intervention. However, based on internal parameters. As an example, mentioned in
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Busenberg and Cooke4, is the example of the stabilization of hybrid control systems with feedback delay, in which a hybrid
system is a dynamical system that presents both continuous and discrete dynamic behavior. What scale is the internal and what
is the control, whether continuous or discrete? That depends on the attributes and simplifications of modeling on the process,
being the most usual, to represent the intrinsic process with the continuous time scale and to reflect the intervention from the
external environment to the system with the discrete scale.
Note that, either as a feedback system or as a system under control, the questions of interest usually refer to the behavior of

the variables in the long term, in particular looking for specific patterns according to values in the space of feasible parameters.
For reasons of practical necessity for the modeled processes, the most recurrently sought behavior is stability, in some sense,
for example, seen as convergence to a steady state or towards dynamic cycles.
As far as the present work is concerned, we are interested in systems of n-variables x(t), with hybrid type feedback, i.e. in which

to the properly continuous retroaction, that is, the differential system x′(t) =  (t, x(t)), is added another action (⋅, 
(⋅), x(
(⋅)))
of constant type during intervals of time I� = [t� , t�+1), � ∈ ℕ, whose edge points are a predetermined sequence of times {t�},
this from internal information obtained in said sequence and J� , are impulsive effects at the moments t� .
Hence

{

x′(t) =  (t, x(t)) + 
(

t, 
(t), x(
(t))
)

, t ≠ t� ,
Δx(t�) = J�(x(t−� )), � ∈ ℕ,

(1a)
(1b)

where the timer is given by 
(t) = 
� , t� ≤ 
� < t�+1, if t ∈ I� .
In 1988, Chua et al.20 presented a new class of information-processing systems referred to as cellular neural networks (CNNs).

It is known that the study of the stability of CNNs, DCNNs (delayed CNNs) and ICNNs (CNNs with impulses) is an important
problem in theory and application. Many essential aspects of these networks, such as qualitative features of stability, periodicity,
oscillation, and convergence problems have been examined by many other authors (see3,5,7,14,21,22,23,24,25,26,27,28,31,35,36,37 and the
references cited therein.
In 2000, J. Cao5 proposed the problem of neural networks with transmission delays by using the Lyapunov method. After-

wards, considering theory ofM-matrices, some stability criterion were established for delayed Hopfield neural networks7 and
the convergence behavior of a unique equilibrium of ICNNs was derived from21.
In 2003, in view of Halanay-type inequalities and the Lyapunov methods, Mohamad and Gopalsamy27 discussed the stability

of DCNNs with continuous and discrete time; Zhou and Hu36 (2008) studied periodic and stability conditions for DCNNs with
variable and distributed delays. In 2004, by usingMawhin’s coincidence degree theory and Gronwall’s inequality, Liu and Liao25

investigated DCNNs with periodic coefficients.
J. H. Park28 (2006), B. Wang et al.31 (2008), Zhang37 (2009), O.M. Kwona et al.23 and T. Li24 (2012) acquired some delay-

dependent stability criteria for interval time-varying delays neural networks, by constructing a Lyapunov-Krasovskii functional
and linear matrix inequalities. In26 and35, some criteria have been derived for high-order neural networks without and with
time-varying delays, which were analyzed using the Lyapunov method and analytical technique by linear matrix inequality.
In 2006, Huang et al.22 were the first in considering a cellular neural network defined by (1a) with F(⋅, x(⋅)) = 0 and where

the i-th component of (⋅, 
(⋅), x(
(⋅))) is given by

x′i(t) = −ai([t]) +
m
∑

j=1
bij([t]) gj(xj([t])) + di([t]), (2)

where i = 1, 2, ..., m and 
(t) = [t] is the greatest integer function. In this case, x′(t) depends during all the interval [n, n + 1),
n an integer number, only of the value of functions defined at instant n. So, equations type (1a), with 
(⋅) a constant delay of
generalized type, are named differential equation with generalized piecewise constant delays (DEGPCD). The theory of the
DEGPCD with impulsive effect (IDEGPCD) has been investigated by few authors. See1,2,12,19.
We say that a deviation argument is of piecewise alternately advanced and retarded argument, and denote 
(t) = 
� , t� ≤ 
� <

t�+1, if t ∈ I� , for all � ∈ ℕ. One can easily see, the deviation argument l(t) = t− 
(t) is assumed to be negative for t� < t < 
�
and positive for 
� < t < t�+1, � ∈ ℕ. Therefore, Eq. (1a) is of considerable interest: on each interval [t� , t�+1) it is of alternately
advanced and retarded type. Eq. (1a) is of advanced type on I+� = [t� , 
�] and retarded type on I

−
� = (
� , t�+1). So, equations type

(1a), with 
(⋅) of alternately advanced and retarded type, are named differential equation with piecewise alternately advanced
and retarded argument of generalized type (DEPCAG). The equations type can represent anticipatory models. Note that the
scientific mathematical community around the DEPCAG with impulsive effect (IDEPCAG) is very limited. See6,18.
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In the present work, we will consider a case of the IDEPCAG system (1a)-(1b) of more linear nature, but also combining
information of the instant with information of the past, present, future and impulsive effect. This is, (1a)-(1b) with:

{

x′(t) = −A ⋅ x(t) + B ⋅ f (x(t)) + C ⋅ g(x(
(t))) +D t ≠ t� ,
Δx(t�) = J�(x(t−� )), � ∈ ℕ,

(3a)
(3b)

where F(t, x(t)) = −A ⋅ x(t) + B ⋅ f (x(t)) +D, (t, 
(t), x(
(t))) = C ⋅ g(x(
(t))); A = diag{ai}, B = {bij} and C = {cij} are
real n × n-constant matrices and D = {di} is real n × 1-constant matrix, Jk = {Ji�} represents the impulsive effects.

Notice that, to know information about the behavior of solutions of (3a)-(3b), as a mathematical problem, has an historical
evolution, we can point out that:

(1) In 2010, M. U. Akhmet et al.1 applied linearization method and established stability criterion for the equilibrium and the
periodic solution of the IDEGPCD system.

(2) In 2013, K.-S. Chiu11 obtained some sufficient conditions for the equilibrium of the IDEPCA system with the particular
argument m

[

t+l
m

]

, where l and m are positive real numbers such that l < m.

(2) In 2021, K.-S. Chiu19 obtained some sufficient conditions for the equilibrium of the IDEGPCD system with the linear
approximation method.

The novelty of our work is to present new and simple sufficient conditions ensuring existence, uniqueness and global expo-
nential stability of the equilibrium state for impulsive neural network models with piecewise alternately advanced and retarded
argument of generalized type (ICNN models with the IDEPCAG system). The proposed criteria extend the results of the pre-
vious literature. The method is given by the traditional and tailored route of a: IDEPCAG’s Gronwall inequality and Banach
contraction principle.
The rest of the paper is organized as follows. Firstly, we will introduce some preliminary concepts and propositions. Then by

using a new IDEPCAG’s Gronwall inequality and the contraction mapping principle, we obtain several criteria for the existence
and uniqueness of the equilibrium state of the ICNN models (3a)-(3b). Moreover under some easily verifiable conditions, our
unique equilibrium state of the ICNNmodels (3a)-(3b) is globally exponentially stable. Finally, two examples with the numerical
simulations are given to show the effectiveness of our results.

2 PRELIMINARY NOTES

In this section, we present some preliminary concepts and propositions, which are used to proof the stability of solutions of the
ICNN models.
The impulsive system under study is the following ICNN models with IDEPCAG system:

⎧

⎪

⎨

⎪

⎩

dxi(t)
dt

= −aixi(t) +
n
∑

j=1
bijfj

(

xj(t)
)

+
n
∑

j=1
cijgj

(

xj (
(t))
)

+ di, t ≠ t� ,

Δxi(t�) = Ji�(xi(t−� )), � ∈ ℕ,

(4a)

(4b)
with 1 ≤ i ≤ n, where

• The constant argument of generalized type is determined by a strictly increasing unbounded sequence of times {t�} and
the function 
(⋅) defined by 
(t) = 
� , t� ≤ 
� < t�+1, if t ∈ I� = [t� , t�+1).

• The positive constant ai denotes the relative rate with which the i–th unit resets its potential to the resting state when
isolated from other units and inputs. So in (4a), it represents an exponential decay.

• The measure of activation of continuous type (resp. piecewise constant type) of the j-th neuron to its incoming potentials
is given at any time by the function fj(xj(⋅)) (resp.gj(xj(
(⋅)))).

• The constant bij (resp. cij) represents the weight of continuous type (resp. piecewise type) of the j-th unit on the i-th unit.

• For each neuron, there is an activation flow from outside the system. It is represented by the function di for the i-th one.
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• Δxi(t�) = xi(t�) − xi(t−� ), where xi(t
−
� ) = lim

ℎ→0−
xi(t� + ℎ) and Ji�(xi(t−� )) at the impulsive moment t� .

In this paper, we understand that a function x(t) = (x1(t), x2(t), ..., xn(t))T , T denotes the transpose of a matrix, is a solution of
the ICNNmodels with the IDEPCAG system (4a)-(4b) inℝ+ = [0,∞), if x(t) is continuous with possible points of discontinuity
of the first kind at t� , � ∈ ℕ such that the derivative x′(t) exists at each point t ∈ ℝ, with the possible exception of the points
t� ∈ ℝ, � ∈ ℕ, where a one-sided derivative exists, and x(t�) satisfies the impulsive effects (4b), � ∈ ℕ. Moreover the ICNN
models with the IDEPCAG system (4a)-(4b) is satisfied by x(t) on each interval

(

t� , t�+1
)

, � ∈ ℕ as well.
For x ∈ ℝn, its norms are defined as

‖x‖1 =

( n
∑

i=1

|

|

xi||

)

and ‖x‖ = max
1≤i≤n

|

|

xi|| .

For reasons of convenience, certain assumptions are formulated below, which will be convened when necessary.

(H1) The functions fi and gi with fi(0) = 0, gi(0) = 0, 0 ≤ i ≤ n, satisfy the Lipschitz condition:

|fi(u) − fi(v)| ≤ Lfi |u − v|, |gi(u) − gi(v)| ≤ Lgi |u − v|.

for some positive constants Lfi , L
g
i and for all u, v ∈ ℝ+.

(H2) The impulsive operator Ji� , 0 ≤ i ≤ n, � ∈ ℕ, satisfies

|Ji�(u) −Ji�(v)| ≤ LJi�|u − v|,

for the positive constant LJi� and for all u, v ∈ ℝ+.

(H3) For any � > 0, it is satisfied �̂(�) =∶ max
{

�1, �2
}

< 1, where

�1 = max1≤i≤n

{

sup
1≤�≤i(�)

(

eai⋅#−� − 1
ai

)

[ n
∑

j=1
Lfj |bij| +

n
∑

j=1
Lgj |cij|

]}

�2 = max1≤i≤n

{

sup
i(�)≤�

(

eai⋅#+� − 1
ai

)

[ n
∑

j=1
Lfj |bij| +

n
∑

j=1
Lgj |cij|

]}

here i(⋅) is an indexer defined by i(t) = � if t ∈ I� = [t� , t�+1), and #+� = 
� − t� , #
−
� = t�+1 − 
� , � ∈ ℕ.

(H ′
3) For any � > 0, it is satisfied �̂(�) < 1, where

�̂(�) = max
1≤i≤n

{

sup
1≤�≤i(�)

(

eai⋅#� − 1
ai

)

[ n
∑

j=1
Lfj |bij| +

n
∑

j=1
Lgj |cij|

]}

and #� = t�+1 − t� , � ∈ ℕ.

To study the ICNN models with the IDEPCAG system (4a)-(4b), we need the following proposition.

Proposition 1. Integral Representation: Given a pair (�, �) ∈ ℝ+ × ℝn, a function x = (x1(⋅),⋯ , xn(⋅))T ∶ ℝ+ → ℝn, such
that x(�) = (x1(�), x2(�)..., xn(�))T = � , is a solution of the ICNN models with the IDEPCAG system (4a)-(4b) if and only if
their coordinates satisfy on ℝ+ the set of integral equations

xi(t) =e−ai(t−�)xi(�) +

t

∫
�

e−ai(t−s)
[ n
∑

j=1
bijfj(xj(s)) +

n
∑

j=1
cijgj

(

xj (
(s))
)

+ di

]

ds

+
i(t)
∑

k=i(�)+1
e−ai(t−t� )Ji�(xi(t−� )), i ∈ {1,⋯ , n},

(5)
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or

x(t) = e−A⋅(t−�)� +

t

∫
�

e−A⋅(t−s)
[

B ⋅ f (x(s)) + C ⋅ g (x (
(s))) +D
]

ds

+
i(t)
∑

k=i(�)+1
e−A⋅(t−t� )J�(x(t−� )), t ∈ ℝ+.

(6)

We do not show the proof of this affirmation, since it can be demonstrated in the same approach as Proposition in11 and
Proposition 2.1 in14.

The following lemma, which is one of the most important tool will be used in the proofs of our results.

Lemma 1. IDEPCAG’s Gronwall Inequality: Let v ∶ ℝ+ → ℝ+ be a non-negative piecewise continuous with possible
discontinuity points of the first kind at t = t� , � ∈ ℕ for which the inequality satisfying

v(t) ≤ v(�) +
|

|

|

|

|

|

|

t

∫
�

[

�1v(s) + �2v(
(s))
]

ds

|

|

|

|

|

|

|

+
i(t)
∑

�=i(�)+1
%kv(t−� ), (7)

where �1, �2, %k are non-negative constants. Then:

1. For � ≤ t,

v(t) ≤ v(�)

{ i(t)
∏

�=i(�)+1

(

1 + %�
)

}

e
(

�1+
�2
1−�+

)

⋅(t−�). (8)

2. For 0 ≤ t ≤ �,

v(t) ≤ v(�)

{ i(�)
∏

�=i(t)+1

1
1 − %k

}

e
(

�1+
�2
1−�−

)

⋅(�−t), (9)

where
�+ ∶= sup

i(�)≤�

(


� − t�
) (

�1 + �2
)

≤ � < 1, �− ∶= sup
1≤�≤i(�)

(

t�+1 − 
�
) (

�1 + �2
)

≤ � < 1 and max
1≤�≤i(�)

%k < 1.

(10)

Proof. First, consider � ≤ t. Suppose that  (t) is the right side of the inequality (7). Then  (�) = v(�), v ≤  ,  is a
non-decreasing function and piecewise differentiable, and from (7), we have

{

 ′(t) ≤ �1 (t) + �2 (
(t)) , t ≠ t� ,

 (t�) ≤ (1 + %�) ⋅  (t−� ), � ∈ ℕ.
(11)

If � ≤ l ≤ t with t,l ∈ Ii, we obtain

 (t) −  (r) ≤

t

∫
l

(

�1 (s) + �2 (
(s))
)

ds. (12)

With t = 
i, l = ti in (12) for t ∈ Ii, as  is a non-decreasing function, we get

 (
i) ≤  (ti) +


i

∫
ti

(�1 (s) + �2 (
i))ds

≤  (ti) +


i

∫
ti

(�1 + �2) (
i)ds =  (ti) + (
i − ti)(�1 + �2) (
i).

(13)

By (10), we have
 (
i) ≤

 (ti)
1 − �+

. (14)
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Take now in (12) with t ∈ Ii and l = ti, we give

 (t) ≤  (ti) +

t

∫
ti

(�1 (s) + �2 (
i))ds

≤  (ti) +

t

∫
ti

(

�1 (s) +
�2

1 − �+
 (ti)

)

ds

≤  (ti) +

t

∫
ti

{(

�1 +
�2

1 − �+

)

 (s)
}

ds.

(15)

Then, applying the Gronwall’s Lemma, we have:

 (t) ≤  (ti)e
(

�1+
�2
1−�+

)

⋅(t−ti) for t ∈ Ii.

By the impulsive condition (11), we obtain:

 (ti+1) ≤
(

1 + %i+1
)

 (ti)e
(

�1+
�2
1−�+

)

⋅(ti+1−ti). (16)
From (16), recursively we have

v(t) ≤  (t) ≤  (�)

{ i(t)
∏

k=i(�)+1

(

1 + %k
)

}

e
(

�1+
�2
1−�+

)

⋅(t−�),

by  (�) = v(�), we obtain (8).

Now, if 0 ≤ t ≤ �. Suppose that w(t) is the right side of the inequality (7). So w(�) = v(�), v ≤ w, w is a non-increasing
function and piecewise differentiable and from (7), we give

{

w′(t) ≤ −
[

�1w(t) + �2w (
(t))
]

,

w(t−� ) ≤ (1 − %�)
−1 ⋅w(t�).

(17)

If � ≥ l ≥ t ≥ 0 with t,l ∈ Ij , we obtain

w(t) −w(l) ≤ −

t

∫
l

(

�1w(s) + �2w (
(s))
)

ds. (18)

With t = 
j , in (18) for t ∈ Ij and l = t−j+1, since w is a non-increasing function, we have

w(
j) ≤ w(t−j+1) −


j

∫
tj+1

(�1w(s) + �2w(
j))ds

≤ w(t−j+1) +w(
j) ⋅ (�1 + �2)(tj+1 − 
j).

By (10), we have

w(
j) ≤
w(t−j+1)

1 − �−
. (19)
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Take now (19) in (18) with t ∈ Ij and l = t−j+1, to get

w(t) ≤ w(t−j+1) +

tj+1

∫
t

(�1w(s) + �2w(
j))ds

≤ w(t−j+1) +

tj+1

∫
t

(

�1w(s) +
�2

1 − �−
w(t−j+1)

)

ds

≤ w(t−j+1) +

tj+1

∫
t

(

�1 +
�2

1 − �−

)

w(s)ds

because w is a non-increasing function. Then, applying the Gronwall’s Lemma, we have:

w(t) ≤ w(t−j+1)e
(

�1+
�2
1−�−

)

⋅(tj+1−t) for t ∈ Ij .

By (17) and t = tj we have:

w(tj) ≤ (1 − %j+1)
−1w(tj+1)e

(

�1+
�2
1−�−

)

(tj+1−tj ). (20)
From (20), recursively we obtain

v(t) ≤ w(t) ≤ (1 − %j+1)
−1w(tj+1)e

(

�1+
�2
1−�−

)

(tj+1−t)

≤ (1 − %j+1)
−1(1 − %j+2)

−1w(tj+2)e
(

�1+
�2
1−�−

)

(tj+2−t)

≤…

≤ w(�)

{ i(�)
∏

�=j+1

(

1 − %�
)−1

}

e
(

�1+
�2
1−�−

)

⋅(�−t),

(21)

by w(�) = v(�) we obtain (9). The proof is complete. The IDEPCAG’s Gronwall inequality appears to be new.

We can see that the ICNN models with the IDEPCAG system (4a)-(4b) do not have impulsive condition within the intervals
[ti, ti+1), i ∈ ℕ, which is just like the DEPCAG system. Then applying the identical technique of Gronwall inequality with
piecewise constant argument (see9 and10). We have the following Proposition.

Proposition 2. Let the conditions (H1), (H2) and (H3) be fulfilled. Then, given an initial condition (�, �) ∈ ℝ+×ℝn, the ICNN
models with the IDEPCAG system (4a)-(4b) on [ti(�), ti(�)+1) has a unique solution x(⋅) = x(⋅, �, � ) = (x1(⋅), ..., xn(⋅))T such that
x(�) = (x01, ..., x

0
n)
T = � .

The previous proposition assures the existence and uniqueness of solutions in a local sense. The following theorem provides
the existence of a unique solution when the initial moment is an arbitrary positive real number �.

Theorem 1. Let the conditions (H1), (H2) and (H3) be fulfilled. Then, given an initial condition (�, �) ∈ ℝ+ × ℝn, the
ICNN models with the IDEPCAG system (4a)-(4b) has a unique solution x(⋅) = x(⋅, �, � ) = (x1(⋅), ..., xn(⋅))T such that
x(�) = (x01, ..., x

0
n)
T = � .

Proof. Let � ∈ ℝ+, then we can see that � ∈ [ti(�), ti(�)+1). Using Proposition 2, the ICNN models with the IDEPCAG system
(4a)-(4b) has a unique solution x(⋅) = x(⋅, �, � ) = (x1(⋅), ..., xn(⋅))T on [ti(�), ti(�)+1) such that x(�) = (x01, ..., x

0
n)
T = � .

Applying the condition (4b), we have

x(ti(�)+1, �, � ) = x(t−i(�)+1, �, � ) +Ji(�)+1
(

x(t−i(�)+1, �, � )
)

.

Now, in the following interval [ti(�)+1, ti(�)+2) the solution of the ICNN models with the IDEPCAG system (4a)-(4b) satisfies

y′(t) = −A ⋅ y(t) + B ⋅ f (y(t)) + C ⋅ g(y(
(t))) +D,

and the ICNNmodels with the IDEPCAG system (4a)-(4b) admit a unique solution y(t, ti(�)+1, y0)with the initial condition y0 =

x(ti(�)+1, �, � ). By definition of the solution of the ICNNmodel x(t, �, � ) = y(t, ti(�)+1, y0) on [ti(�)+1, ti(�)+2). Asℝ+ =
∞
⋃

i=1
[ti, ti+1),

this completes the proof by the mathematical induction.
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Remark 1. If we consider the deviation argument that is of the constant delay of generalized type, i.e, 
(t) = 
i = ti, if t ∈
[ti, ti+1), i ∈ ℕ. The ICNN models with the IDEPCAG system (4a)-(4b) can be reduced to the following IDEGPCD system:

⎧

⎪

⎨

⎪

⎩

dxi(t)
dt

= −aixi(t) +
n
∑

j=1
bijfj

(

xj(t)
)

+
n
∑

j=1
cijgj

(

xj (�(t))
)

+ di, t ≠ t� ,

Δxi(t�) = Ji�(xi(t−� )), � ∈ ℕ,

(22a)

(22b)
with 1 ≤ i ≤ n, where �(t) = t� if t ∈ I� = [t� , t�+1). Then we have the following observations.

i) The ICNN models with the IDEGPCD system is neither more nor less than system (1.1) in1. Since those works
not have a global IDEGPCD’s Gronwall-type inequality, the results for this system have more stronger conditions,
see19, Example 1 and Remark 4.1.

ii) The IDEPCAG’s Gronwall Inequality of this paper reduces to the result of the IDEGPCD’s Gronwall Inequality
in19, Lemma 2.1.

iii) The condition (H3) with �1 < 1 reduces to the condition (H ′
3) which is the same condition (E) in19.

From Theorem 1 and Remark 1, we can conclude the following results.

Corollary 1. Let the conditions (H1), (H2) and (H ′
3) be fulfilled. Then, given an initial condition (�, �) ∈ ℝ+ × ℝn, the

ICNN models with the IDEGPCD system (22a)-(22b) has a unique solution x(⋅) = x(⋅, �, � ) = (x1(⋅), ..., xn(⋅))T such that
x(�) = (x01, ..., x

0
n)
T = � .

Applying our results to CNN models with the DEPCAG system (4a) and CNN models with the DEGPCD system (22a)
without impulsive effects, we have:

Corollary 2. Let the conditions (H1) and (H3) be fulfilled. Then, given an initial condition (�, �) ∈ ℝ+ × ℝn, there exists
a unique solution x(⋅) = x(⋅, �, � ) = (x1(⋅), ..., xn(⋅))T of the CNN models with the DEPCAG system (4a), such that x(�) =
(x01, ..., x

0
n)
T = � .

Corollary 3. Let the conditions (H1) and (H ′
3) be fulfilled. Then, given an initial condition (�, �) ∈ ℝ+ × ℝn, there exists a

unique solution x(⋅) = x(⋅, �, � ) = (x1(⋅), ..., xn(⋅))T of the CNN models with the DEGPCD system (22a), such that x(�) =
(x01, ..., x

0
n)
T = � .

3 MAIN RESULTS

In this section, we shall establish the sufficient criteria for global exponential stability of the equilibrium state of the ICNN
models with the IDEPCAG system (4a)-(4b).

3.1 Existence of a unique equilibrium state
In this subsection, without asking for the conditions of differentiability, monotonicity or boundedness, we present sufficient
conditions that are easily verifiable for the existence and uniqueness of the equilibrium of the ICNN models with the IDEPCAG
system (4a)-(4b).
Notice that an equilibrium of the ICNN models with the IDEPCAG system (4a)-(4b) is the vector x∗ = (x∗1, x

∗
2..., x

∗
n)
T ∈ ℝn

satisfies

aix
∗
i =

n
∑

j=1
bijfj

(

x∗j
)

+
n
∑

j=1
cijgj

(

x∗j
)

+ di, i ∈ {1, 2, ..., n}. (23)

Moreover, suppose that the impulse functions Jik(⋅) satisfy the condition Ji�(x∗i ) = 0, i ∈ {1, 2, ..., n}, � ∈ ℕ. If we consider
cij = 0, the ICNN models with the IDEPCAG system (4a)-(4b) reduces to the ICNN models in21.
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Now, we establish the conditions for the existence and uniqueness of the equilibrium state, x∗ = (x∗1, x
∗
2..., x

∗
n)
T , of the ICNN

models with the IDEPCAG system (4a)-(4b).

Theorem 2. Let the conditions (H1), (H2) and (H3) be fulfilled and the constants ai, bij , cij , L
f
i , L

g
i satisfy

ai >
n
∑

j=1
Lfj

|

|

|

bij
|

|

|

+
n
∑

j=1
Lgj

|

|

|

cij
|

|

|

, i ∈ {1, 2, ..., n}. (24)

Then the ICNN models with the IDEPCAG system (4a)-(4b) admit a unique equilibrium state.

Proof. Let a mapping G ∶ ℝn → ℝn defined by

G(v1, ..., vn) =

(

1
a1

{ n
∑

j=1
b1jfj

(

vj
)

+
n
∑

j=1
c1jgj

(

vj
)

+ d1

}

,⋯ , 1
an

{ n
∑

j=1
bnjfj

(

vj
)

+
n
∑

j=1
cnjgj

(

vj
)

+ dn

})T

.

We will prove that G ∶ ℝn → ℝn is a contraction mapping on ℝn with the supremum norm.
For v = (v1, ..., vn)T ∈ ℝn, v = (v1, ..., vn)T ∈ ℝn, we have

||G(v1..., vn) − G(v1..., vn)||

= max
1≤i≤n

|

|

|

|

|

|

1
ai

[ n
∑

j=1

[

bijfj
(

vj
)

+ cijgj
(

vj
)]

+ di

]

− 1
ai

[ n
∑

j=1

[

bijfj
(

vj
)

+ cijgj
(

vj
)]

+ di

]

|

|

|

|

|

|

≤ max
1≤i≤n

{

1
ai

n
∑

j=1

[

|

|

|

bij
|

|

|

|

|

|

fj
(

vj
)

− fj
(

vj
)

|

|

|

]

+ 1
ai

n
∑

j=1

[

|

|

|

cij
|

|

|

|

|

|

gj
(

vj
)

− gj
(

vj
)

|

|

|

]

}

≤ max
1≤i≤n

{

1
ai

n
∑

j=1

[

Lfj
|

|

|

bij
|

|

|

|

|

|

vj − vj
|

|

|

]

+ 1
ai

n
∑

j=1

[

Lgj
|

|

|

cij
|

|

|

|

|

|

vj − vj
|

|

|

]

}

≤ max
1≤i≤n

{

1
ai

[ n
∑

j=1
Lfj

|

|

|

bij
|

|

|

+
n
∑

j=1
Lgj

|

|

|

cij
|

|

|

]}

⋅ max
1≤j≤n

|

|

|

vj − vj
|

|

|

≤ �1||v − v||,
where the number

�1 = max1≤i≤n

⎡

⎢

⎢

⎢

⎢

⎣

n
∑

j=1
Lfj

|

|

|

bij
|

|

|

+
n
∑

j=1
Lgj

|

|

|

cij
|

|

|

ai

⎤

⎥

⎥

⎥

⎥

⎦

satisfies 0 < �1 < 1 by virtue of the condition (24). Then we have

||G(v) − G(v)|| ≤ �1||v − v||, v, v ∈ ℝn,

which conclude that G is a contraction mapping on ℝn. By the Banach fixed-point theorem, the system (23) admit a unique
solution x∗ such that G(x∗) = x∗. Then the ICNN models with the IDEPCAG system (4a)-(4b) has a unique equilibrium
state.

Theorem 3. Suppose that conditions (H1), (H2) and (H3) hold, the constants ai, bij , cij , L
f
i , L

g
i satisfy

aj > Lfj
n
∑

i=1

|

|

|

bij
|

|

|

+ Lgj
n
∑

i=1

|

|

|

cij
|

|

|

, j ∈ {1, 2, ..., n}. (25)

Then the ICNN models with the IDEPCAG system (4a)-(4b) admit a unique equilibrium state.

Proof. Let aix∗i = y
∗
i , i ∈ {1, 2, ..., n} in the system (23), we give:

y∗i =
n
∑

j=1
bijfj

(

y∗j
aj

)

+
n
∑

j=1
c1jgj

(

y∗j
aj

)

+ di, i ∈ {1, 2, ..., n}. (26)
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It is enough to demonstrate the existence of a unique solution of the system (26).
Let a mapping  ∶ ℝn → ℝn defined by

(v1, ..., vn) =

({ n
∑

j=1
b1jfj

(vj
aj

)

+
n
∑

j=1
c1jgj

(vj
aj

)

+ d1

}

,⋯ ,

{ n
∑

j=1
bnjfj

(vj
aj

)

+
n
∑

j=1
cnjgj

(vj
aj

)

+ dn

})T

.

Then, for any v = (v1, ..., vn)T ∈ ℝn, v = (v1, ..., vn)T ∈ ℝn, we have

‖(v) − (v)‖1 =
n
∑

i=1

|

|

|

|

|

|

n
∑

j=1
bij

(

fj

(vj
aj

)

− fj

(vj
aj

))

+
n
∑

j=1
cij

(

gj

(vj
aj

)

− gj

(vj
aj

))|

|

|

|

|

|

≤
n
∑

i=1

{ n
∑

j=1

(

Lfj
aj

|

|

|

bij
|

|

|

|

|

|

vj − vj
|

|

|

)

+
n
∑

j=1

(

Lgj
aj

|

|

|

cij
|

|

|

|

|

|

vj − vj
|

|

|

)}

≤

[

max
1≤j≤n

(

Lfj
aj

n
∑

i=1

|

|

|

bij
|

|

|

+
Lgj
aj

n
∑

i=1

|

|

|

cij
|

|

|

)] n
∑

j=1

|

|

|

vj − vj
|

|

|

∶= �2‖v − v‖1,
By the assumption �2 < 1, this implies that the mapping  ∶ ℝn → ℝn is a contraction mapping. By Banach fixed-point theorem
 has exactly one fixed point x∗ in ℝn such that (x∗) = x∗. Thus, the ICNN models with the IDEPCAG system (4a)-(4b) has
exactly one equilibrium state. The proof is now complete.

3.2 Global exponential stability of equilibrium state
In this subsection, we want to discuss the stability of the ICNN models with the IDEPCAG system (4a)-(4b).
Let the following change of variables

zi(t) = xi(t) − x∗i , f̃ (zi(t)) = f (xi(t) + x∗i ) − f (x
∗
i ),

g̃
(

zi (
(t))
)

= g
(

xi (
(t)) + x∗i
)

− g(x∗i ), J̃i�(zi(t−� )) = Ji�(xi(t−� ) + x
∗
i ),

so that the ICNN models with the IDEPCAG system (4a)-(4b) can be rewritten as
{

z′(t) = −A ⋅ z(t) + B ⋅ f̃ (z(t)) + C ⋅ g̃ (z (
(t))) , t ≠ t� ,
Δz(t�) = J̃k(z(t−� )), � ∈ ℕ,

(27a)
(27b)

where f̃ (z(t)) =
⎛

⎜

⎜

⎝

f̃1(z1(t))
⋮

f̃n(zn(t))

⎞

⎟

⎟

⎠

, g̃ (z (
(t))) =
⎛

⎜

⎜

⎝

g̃1
(

z1 (
(t))
)

⋮
g̃n

(

zn (
(t))
)

⎞

⎟

⎟

⎠

and J̃�(z(t−� )) =
⎛

⎜

⎜

⎝

J1�(z1(t−� ))
⋮

Jn�(zn(t−� ))

⎞

⎟

⎟

⎠

.

We can see that f̃i(⋅) and g̃i(⋅), with f̃i(0) = g̃i(0) = 0, satisfy the Lipschitz condition:

|f̃i(u) − f̃i(v)| ≤ Lfi |u − v|, |g̃i(u) − g̃i(v)| ≤ Lgi |u − v|,
and J̃i� satisfies

J̃i�(0) = 0, |J̃i�(u) − J̃i�(v)| ≤ LJi�|u − v|,
for v, v ∈ ℝ+, i ∈ {1, ..., n}, � ∈ ℕ.
The stability of the trivial solution for the IDEPCAG system (27a)-(27b) is then studied in the same way as that of the

equilibrium state x∗ of the ICNN models with the IDEPCAG system (4a)-(4b).
The following notations are required in the section:

a∗ = min
1≤i≤n

ai, #− = sup
�∈ℕ

(t�+1 − 
�), #+ = sup
�∈ℕ

(
� − t�), #� = t�+1 − t� , # = sup
�∈ℕ

#� ,

LJ� = max1≤i≤n
LJi� , Li(t) = max

i(�)+1≤�≤i(t)

ln(1 + LJ� )
#�

, �∗ = max
1≤i≤n

�i,

and
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�i =
n
∑

j=1
Lfj |bij| +

n
∑

j=1
Lgj |cij|

ea∗⋅#−

1 − �̂
, max

1≤i≤n

( n
∑

j=1
Lfj |bij| +

n
∑

j=1
Lgj

|

|

|

cij
|

|

|

ea∗⋅#−
)

⋅ #+ ≤ �̂ < 1.

Now, we will introduce the definition and lemma, so as to be used within proof of the stability of the trivial solution for the
ICNN models with IDEPCAG system.

Definition 1. The equilibrium state x∗ of the ICNNmodels with the IDEPCAG system (4a)-(4b) is globally exponentially stable,
if there exist constants �, � > 0 such that

|x(t) − x∗| ≤ � |x(�) − x∗| e−�⋅(t−�), � ≤ t.

Lemma 2. Let the conditions (H1), (H2) and (H3) be fulfilled and ,' are the solutions of the ICNNmodels with the IDEPCAG
system (4a)-(4b). Then the following inequality holds

| (t) − '(t)| ≤ | (�) − '(�)| exp
(

−ℭi(t) ⋅ (t − �)
)

, t ≥ �, (28)

where ℭi(t) = a∗ − Li(t) − �∗.

Proof. Suppose that  (t) = ( 1, ..,  n)T and '(t) = ('1, .., 'n)T are arbitrary solutions of the ICNNmodels with the IDEPCAG
system (4a)-(4b). Let z(t) =  (t) − '(t), by the IDEPCAG system (4a)-(4b), we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z′(t) = −A ⋅ z(t) + B ⋅
(

f (z(t) + '(t)) − f ('(t))
)

+ C ⋅
{

g
(

z (
(t)) + ' (
(t))
)

− g
(

' (
(t))
)

}

,

Δz(t�) = J�(z(t−� ) + '(t
−
� )) −J�('(t−� )), � ∈ ℕ.

(29)

Using Proposition 1, we obtain the following integral equations

z(t) = exp (−A ⋅ (t − �)) z(�) +

t

∫
�

exp (−A ⋅ (t − s)) ⋅ℜ(s, z(s))ds

+
i(t)
∑

�=i(�)+1
exp

(

−A ⋅ (t − t�)
)

⋅Jk(z(t−� )),

(30)

where
ℜ(s, z(s)) ∶=B ⋅

(

f (z(s) + '(s)) − f ('(s))
)

+ C ⋅
{

g
(

z
(


(t)
)

+ ' (
(t))
)

− g (' (
(t)))
}

,

and
J�(z(t−� )) ∶= J�

(

z(t−� ) + '(t
−
� )
)

−J�('(t−� )).
By the condition (H1) and (H2), we have

|ℜi(s, z(s))| ≤

( n
∑

j=1
Lfj |bij||zj(s)| +

n
∑

j=1
Lgj |cij|

|

|

|

zj (
(s))
|

|

|

)

,

|ℜ(s, z(s))| ≤ max
1≤i≤n

( n
∑

j=1
Lfj |bij||z(s)| +

n
∑

j=1
Lgj |cij| |z (
(s))|

)

,

and
|

|

J�(z(t−� ))|| ≤ LJ� ||z(t
−
� )|| .

Using (30), we can obtain that ui(t) = ea∗⋅(t−�)|zi(t)| satisfies

|ui(t)| ≤ | i(�) − 'i(�)| +

t

∫
�

( n
∑

j=1
Lfj |bij||uj(s)| +

n
∑

j=1
Lgj

|

|

|

cij
|

|

|

|

|

|

uj (
(s))
|

|

|

ea∗⋅(s−
(s))
)

ds

+
i(t)
∑

�=i(�)+1
LJk ||ui(t

−
� )||,
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or

|u(t)| ≤ | (�) − '(�)| + max
1≤i≤n

⎧

⎪

⎨

⎪

⎩

t

∫
�

( n
∑

j=1
Lfj |bij||uj(s)| +

n
∑

j=1
Lgj

|

|

|

cij
|

|

|

|

|

|

uj (
(s))
|

|

|

ea∗⋅(s−
(s))
)

ds

⎫

⎪

⎬

⎪

⎭

+
i(t)
∑

�=i(�)+1
LJk ||ui(t

−
� )||

≤ | (�) − '(�)| + max
1≤i≤n

⎧

⎪

⎨

⎪

⎩

t

∫
�

[ n
∑

j=1

(

Lfj |bij||u(s)| + Lgj
|

|

|

cij
|

|

|

ea∗⋅#− |u (
(s))|
)

]

ds

⎫

⎪

⎬

⎪

⎭

+
i(t)
∑

�=i(�)+1
LJ� ||u(t

−
k )||,

(31)

for t ∈ [�,∞).
Applying the IDEPCAG’s Gronwall Inequality (Lemma 1), we have

|u(t)| ≤ | (�) − '(�)|

{ i(t)
∏

�=i(�)+1

(

1 + LJ�
)

}

e
max
1≤i≤n

{

n
∑

j=1
Lfj |bij |+

n
∑

j=1
Lgj |cij |

ea∗ ⋅#
−

1−�̂

}

⋅(t−�)
.

Then we have

| (t) − '(t)| ≤ | (�) − '(�)|

{ i(t)
∏

�=i(�)+1

(

1 + LJ�
)

}

e

{

−
(

a∗−max1≤i≤n
�i

)

⋅(t−�)
}

≤ | (�) − '(�)|e

{

−
(

a∗−max1≤i≤n
�i

)

⋅(t−�)+ln

(

i(t)
∏

�=i(�)+1
(1+LJ� )

)}

≤ | (�) − '(�)|e

{

−
(

a∗−max1≤i≤n
�i

)

⋅(t−�)+
i(t)
∑

�=i(�)+1

ln(1+LJ� )
#�

⋅#�

}

,
or

| (t) − '(t)| ≤ | (�) − '(�)| exp

{

−

(

a∗ − max1≤i≤n
�i − max

i(�)+1≤�≤i(t)

ln(1 + LJ� )
#�

)

⋅ (t − �)

}

,

and the statement (28) follows.

Theorem 4. If the hypotheses of Theorem 2 and

a∗ − Li(t) − �∗ > 0, for t ∈ ℝ+ (32)

hold, then the unique equilibrium state of the ICNNmodels with the IDEPCAG system (4a)-(4b) is globally exponentially stable.

Proof. According to the result of Theorem 2, the ICNN models with the IDEPCAG system (4a)-(4b) has a unique equilibrium
state x∗. Now consider that x(t, �) is a solution of (4a)-(4b) with the initial condition � and let ℘(t) = x(t, �) − x∗. By Lemma
2, we have

|℘(t)| ≤ |℘(�)|e−ℭi(t)⋅(t−�),
where ℭi(t) = a∗ − �∗ −Li(t). By the condition (32), we can conclude that |℘(t)| → 0 as t→∞. Then the trivial solution of the
ICNN models with the IDEPCAG system (27) is globally exponentially stable. So, the equilibrium state of the ICNN models
with the IDEPCAG system (4a)-(4b) is globally exponentially stable.

By the same way to proof Theorem 4, we have:

Theorem 5. If the hypotheses of Theorem 3 and (32) hold, then the unique equilibrium state of the ICNN models with the
IDEPCAG system (4a)-(4b) is globally exponentially stable.

Remark 2. Theorem 5 reduces to the stability result of11, Theorem 9 with the classic piecewise alternately advanced and retarded
argument, we are able to see that the results obtained in this article extend and improve the results given in11 .

Remark 3. The existence criterion (23)-(24) and the stability criterion (32) can be easily solved by using some existing software,
for example, the MATLAB.
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Without impulsive effects, we have the following corollaries of Lemma 2, Theorem 4 and Theorem 5.

Corollary 4. Let the conditions (H1) and (H3) be fulfilled and  , ' are the solutions of the CNN models with the DEPCAG
system (4a). Then the following inequality holds

| (t) − '(t)| ≤ | (�) − '(�)| exp (−ℭ ⋅ (t − �)) (33)

where ℭ = a∗ − �∗.

Corollary 5. If the hypotheses of Corollary 4 and the conditions (24) (or (25)),

a∗ − �∗ > 0 (34)

hold. Then the unique equilibrium state of the CNN models with the DEPCAG system (4a) is globally exponentially stable.

If we consider the deviation argument that is of the constant delay of generalized type, i.e, 
(t) = 
i = ti, if t ∈ [ti, ti+1),
i ∈ ℕ. We have the following corollaries.

Corollary 6. If the hypotheses of Corollary 1 and the conditions (24) (or (25)),

a∗ − �∗ − Li(t) > 0, for t ∈ ℝ+ (35)

hold, where

�∗ = max
i∈[1,.,n]

( n
∑

j=1
fj |bij| +

n
∑

j=1
gj |cij|e

a∗⋅#

)

.

Then the unique equilibrium state of the ICNN models with the IDEGPCD system (22a)-(22b) is globally exponentially stable.

Remark 4. Corollary 6 reduces to the stability result of19, Theorem 3.2. Moreover this Corollary generalizes corresponding result
obtained by1, Theorem 3.1 under complicated and stronger conditions. See19, Example 1.

Without impulsive effects, we have the following result.

Corollary 7. If the hypotheses of Corollary 3 and (24) (or (25)) hold, then the unique equilibrium state of the CNN models
with the DEGPCD system (22a) is globally exponentially stable.

4 ILLUSTRATIVE EXAMPLES WITH SIMULATIONS

In this section we should present two illustrative examples with simulations for our proposed results.

Example 1. Consider the following ICNN models with the IDEPCAG system:
⎧

⎪

⎨

⎪

⎩

x′1 = −a1x1 + b11f1(x1) + b12f2(x2) + c12g2(x2(
(⋅)))) + c13g3(x3(
(⋅))) + d1
x′2 = −a2x2 + b21f1(x1) + b23f3(x3) + c21g1(x1(
(⋅)))) + c22g2(x2(
(⋅))) + d2
x′3 = −a3x2 + b31f1(x1) + b32f2(x2) + c31g1(x1(
(⋅)))) + c33g3(x3(
(⋅))) + d3,

(36a)

⎧

⎪

⎨

⎪

⎩

Δx1(t�) = J1�(x1(t−� ))
Δx2(t�) = J2�(x2(t−� )),
Δx3(t�) = J3�(x3(t−� )),

(36b)

where
a1 = 1.2,
b11 = 0.25,
b23 = 0.35,
c12 = 0.15,
c22 = 0.35,
d1 = 0.2,

a2 = 0.7,
b12 = 0.45,
b31 = 0.35,
c13 = 0.35,
c31 = 0.45,
d2 = 0.1,

a3 = 0.9,
b21 = 0.15,
b32 = 0.25,
c21 = 0.25,
c33 = 0.25,
d3 = 0.2,
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and 
(t) = 3�
8
� − �

4
, if 3�

8
(� − 1) ≤ t < 3�

8
�, � ∈ ℕ.

The output functions are

f1(x1(t)) = tanh
(

x1(t)
6

)

, f2(x2(t)) = tanh
(

x2(t)
4

)

, f3(x3(t)) = tanh
(

x3(t)
8

)

g1(x1(
(t))) = tanh
(

x1(
(t))
4

)

, g2(x2(
(t))) = tanh
(

x2(
(t))
8

)

, g3(x3(
(t))) = tanh
(

x3(
(t))
3

)

.

The impulsive functions are

J1�(x1(t−� )) = J1�

(

x1
(

3�
8
(� − 1)−

))

=
x1
(

3�
8
(�−1)−

)

−x∗1
5

,

J2�(x2(t−� )) = J2�

(

x2
(

3�
8
(� − 1)−

))

=
x2
(

3�
8
(�−1)−

)

−x∗2
8

,

J3�(x3(t−� )) = J3�

(

x3
(

3�
8
(� − 1)−

))

=
x3
(

3�
8
(�−1)−

)

−x∗3
6

where x∗1 = 0.22081, x
∗
2 = 0.20723, x

∗
3 = 0.30335.

We can easily verify that the point x∗ =
(

x∗1, x
∗
2, x

∗
3

)T satisfies

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a1x
∗
1 =

2
∑

j=1
b1jfj(x∗j ) +

2
∑

j=1
c1jgj

(

x∗j
)

+ d1,

a2x
∗
2 =

2
∑

j=1
b2jfj(x∗j ) +

2
∑

j=1
c2jgj

(

x∗j
)

+ d2,

a3x
∗
3 =

2
∑

j=1
b3jfj(x∗j ) +

2
∑

j=1
c3jgj

(

x∗j
)

+ d3,

approximately. And it is clear that Ji�
(

x∗i
)

= 0 for i = 1, 2, 3. By simple calculation, we can see that a∗ = 0.7, #+ = #+� =
�
8
,

#− = #−� = �
4
, # = #� =

3�
8
, Lf1 = LJ3� =

1
6
, Lf2 = Lg1 =

1
4
, Lf3 = Lg2 = LJ2� =

1
8
, Lg3 =

1
3
, LJ1� =

1
5
, LJ� = 1

5
and

Li(t) = ln(1 + LJ� )∕#� ≈ 0.15476.
Then

max
1≤i≤3

{

(

eai⋅#− − 1
ai

)

[ 3
∑

j=1
Lfj |bij| +

3
∑

j=1
Lgj |cij|

]}

≈ 0.377986 < 1,

max
1≤i≤3

{

(

eai⋅#+ − 1
ai

)

[ 3
∑

j=1
Lfj |bij| +

3
∑

j=1
Lgj |cij|

]}

≈ 0.149165 < 1,

and

a1 = 1.2 > 0.289583 ≈
3
∑

j=1
Lfj

|

|

|

b1j
|

|

|

+
3
∑

j=1
Lgj

|

|

|

c1j
|

|

|

,

a2 = 0.7 > 0.175 =
3
∑

j=1
Lfj

|

|

|

b2j
|

|

|

+
3
∑

j=1
Lgj

|

|

|

c2j
|

|

|

,

a3 = 0.9 > 0.316667 ≈
3
∑

j=1
Lfj

|

|

|

b3j
|

|

|

+
3
∑

j=1
Lgj

|

|

|

c3j
|

|

|

.

By Theorem 2, we can conclude that the ICNNmodels with the IDEPCAG system (36a)-(36b) has a unique equilibrium state x∗.
On the other hand, we have

�̂ = max
1≤i≤3

( 3
∑

j=1
Lfj |bij| +

3
∑

j=1
Lgj

|

|

|

cij
|

|

|

ea∗⋅#−
)

⋅ #+ ≈ 0.1807149 < 1,

�1 =
3
∑

j=1
Lfj |b1j| +

3
∑

j=1
Lgj |c1j|

ea∗⋅#−

1 − �̂
≈ 0.431113 < 0.5452406 ≈ a∗ − Li(t),

�2 =
3
∑

j=1
Lfj |b2j| +

3
∑

j=1
Lgj |c2j|

ea∗⋅#−

1 − �̂
≈ 0.273166 < 0.5452406 ≈ a∗ − Li(t)
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and

�3 =
3
∑

j=1
Lfj |b3j| +

3
∑

j=1
Lgj |c3j|

ea∗⋅#−

1 − �̂
≈ 0.53504 < 0.5452406 ≈ a∗ − Li(t).

Then

a∗ − Li(t) − �∗ ≈ 0.0102002 > 0.

One can see that all conditions (H1), (H2), (H3), (24) and (32) in Theorem 4 are satisfied. So, by Theorem 4, the unique
equilibrium state of the ICNN models with the IDEPCAG system (36a)-(36b) is globally exponentially stable. The simulation
of the unique equilibrium state x∗ of the ICNN models (36a)-(36b) with and without impulses, are shown in Figs. 1 and Figs. 2.
For the simulation, the initial states

(

x1(0), x2(0), x3(0)
)T are given by the random function. Figs. 1. show that the conditions

obtained in this article are valid for the ICNN models with the IDEPCAG system (36a)-(36b).

0 2 4 6 8 10 12 14
t

0.1

0.2

0.3

0.4

0.5

x 1

0 2 4 6 8 10 12 14
t

0.1

0.2

0.3

0.4

0.5

x 2

0 2 4 6 8 10 12 14
t

0.1

0.2

0.3

0.4

0.5

x 3

Fig. 1a. Convergence of the unique globally exponentially stable equilibrium state for the ICNN models with the IDEPCAG system (36a)-(36b).

Fig. 1b. Phase portrait of state variables for the ICNN models with the IDEPCAG system (36a)-(36b).

Note that the simulation illustrates that all trajectories uniformly converge to the unique exponentially stable equilibrium
point where x∗ = (0.22081; 0.20723; 0.30335)T .
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The numerical simulation, the initial states is chosen as (0.5; 0.35; 0.1)T , illustrates that the trajectory uniformly converge to
the unique equilibrium x∗ = (0.22081; 0.20723; 0.30335)T for the CNN models with the DEPCAG system (36a).

0 2 4 6 8 10 12 14
t

0.1

0.2

0.3

0.4

0.5

x 1

0 2 4 6 8 10 12 14
t

0.1

0.2

0.3

0.4

0.5

x 2

0 2 4 6 8 10 12 14
t

0.1

0.2

0.3

0.4

0.5

x 3

Fig. 2a. Convergence of the unique globally exponentially stable equilibrium state for the CNN models with the DEPCAG system (37a) without impulsive effects.

Fig. 2b. Convergence of the unique globally exponentially stable equilibrium state for the CNN models with the DEPCAG system (37a) with the initial conditions

(0.5; 0.2; 0.3)T .

Example 2. Consider the following ICNN models with the IDEPCAG system:

dx(t)
dt

= −
(

0.9 0
0 0.6

)(

x1(t)
x2(t)

)

+
(

0.16 0.25
0.25 0.18

)

⎛

⎜

⎜

⎝

tanh
(

x1(t)
6

)

tanh
(

x2(t)
5

)

⎞

⎟

⎟

⎠

+
(

0.23 0.25
0.15 0.27

)

(

|x1(
(t))+1|−|x1(
(t))−1|
8

|x2(
(t))+1|−|x2(
(t))−1|
16

)

+
(

3
2

)

, (37a)

Δx(t�) =

( x1(3(�−1)
−)−x∗1

6
x2(3(�−1)

−)−x∗2
8

)

, (37b)
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where 
(t) = 3(� − 1) + 1, if 3(� − 1) ≤ t < 3�, � ∈ ℕ.
The output functions are

f1(x1(t)) = tanh
(

x1(t)
6

)

, f2(x2(t)) = tanh
(

x2(t)
5

)

,

g1(x1(
(t))) =
|x1(
(t))+1|−|x1(
(t))−1|

8
, g2(x2(
(t))) =

|x2(
(t))+1|−|x2(
(t))−1|
16

.

The impulsive functions are
J1�(x1(t−� )) = J1�

(

x1(3(� − 1)−)
)

= x1(3(�−1)−)−x∗1
8

,
J2�(x2(t−� )) = J2�

(

x2(3(� − 1)−)
)

= x2(3(�−1)−)−x∗2
6

,
where x∗1 = 3.7103, x

∗
2 = 3.8762.

We can easily verify that the point x∗ =
(

x∗1
x∗2

)

satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a1x
∗
1 =

2
∑

j=1
b1jfj(x∗j ) +

2
∑

j=1
c1jgj

(

x∗j
)

+ d1,

a2x
∗
1 =

2
∑

j=1
b2jfj(x∗j ) +

2
∑

j=1
c2jgj

(

x∗j
)

+ d2,

approximately. And it is clear thatJi�
(

x∗i
)

= 0 for i = 1, 2. By simple calculation, we can see that a∗ = 0.6, #+ = #+� = 1, #
− =

#−� = 2, # = #� = 3, L
f
1 = LJ1� =

1
6
, Lf2 = 0.2, L

g
1 = 0.25, L

g
2 = LJ2� = 0.125, L

J
� =

1
6
and Li(t) = ln(1 + LJ� )∕#� ≈ 0.05138.

Then

max
1≤i≤2

{

(

eai⋅#− − 1
ai

)

[ 2
∑

j=1
Lfj |bij| +

2
∑

j=1
Lgj |cij|

]}

≈ 0.928106 < 1,

max
1≤i≤2

{

(

eai⋅#+ − 1
ai

)

[ 2
∑

j=1
Lfj |bij| +

2
∑

j=1
Lgj |cij|

]}

≈ 0.268269 < 1,

and

a1 = 0.9 > 0.1883333 ≈ Lf1

2
∑

j=1
|b1j| + Lg1

2
∑

j=1
|c1j|,

a2 = 0.6 > 0.1385 = Lf2

2
∑

j=1
|b2j| + Lg2

2
∑

j=1
|c2j|.

By Theorem 3, we can conclude that the ICNNmodels with the IDEPCAG system (37a)-(37b) has a unique equilibrium state x∗.
On the other hand, we have

�̂ = max
1≤i≤2

( 2
∑

j=1
Lfj |bij| +

2
∑

j=1
Lgj

|

|

|

cij
|

|

|

ea∗⋅#−
)

⋅ #+ ≈ 0.371327 < 1,

�1 =
2
∑

j=1
Lfj |b1j| +

2
∑

j=1
Lgj |c1j|

ea∗⋅#−

1 − �̂
≈ 0.545368 < 0.548616 ≈ a∗ − Li(t),

and

�2 =
2
∑

j=1
Lfj |b2j| +

2
∑

j=1
Lgj |c2j|

ea∗⋅#−

1 − �̂
≈ 0.422617 < 0.548616 ≈ a∗ − Li(t).

Then

a∗ − Li(t) − �∗ ≈ 0.0032476 > 0.

One can see that all conditions (H1), (H2), (H3), (25) and (32) in Theorem 5 are satisfied. So, by Theorem 5, the unique
equilibrium state of the ICNN models with the IDEPCAG system (37a)-(37b) is globally exponentially stable. The simulation
of the unique equilibrium state x∗ of the ICNN models (37a)-(37b) with and without impulses, are shown in Figs. 3 and Figs. 4.

For the simulation, the initial states
(

x1(0)
x2(0)

)

are given by the random function. Fig. 3a. show that the conditions obtained in

this article are valid for the ICNN models with the IDEPCAG system (37a)-(37b).
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Fig. 3a. Some trajectories uniformly convergent to the unique equilibrium state for the ICNN models with the IDEPCAG system (37a)-(37b).

3.6 3.8 4 4.2 4.4 4.6 4.8 5
x

1

2

2.5

3

3.5

4

4.5

5

5.5

x 2

Fig. 3b. Exponential convergence of two trajectories towards the unique equilibrium state for the ICNN models with the IDEPCAG system (37a)-(37b). Initial

conditions: (i) (4; 5) in red and (ii) (5; 2) in blue.

Now, for the numerical simulation, we show transient behavior of the CNN models with the DEPCAG system (37a) without
impulses.
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Fig. 4a. Convergence of the unique globally exponentially stable equilibrium state for the CNN models with the DEPCAG system (37a) without impulsive effects.

3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
x

1

4

4.5

5

5.5

6

x 2

Fig. 4b. Convergence of the unique globally exponentially stable equilibrium state for the CNN models with the DEPCAG system (37a) without impulsive effects. Initial

conditions: (i) (3.6; 5.5) in red and (ii) (4; 5) in blue.

Remark 5. Note that the simulation shows that some trajectories converge to the unique equilibrium state
(

3.7103
3.8762

)

of the CNN

models with the DEPCAG system (37a).

5 CONCLUSIONS

In this paper, the unique globally exponentially stable equilibrium state for the impulsive cellular neural network models with
piecewise alternately advanced and retarded argument of generalized type have been investigated. By using the equivalent
integral equation, a new IDEPCAG’s Gronwall inequality and Banach fixed-point theorem, some new sufficient conditions
have been developed to ensure the existence, uniqueness and global exponential stability of the equilibrium state for general
non-autonomous ICNN models with the IDEPCAG system. The proposed criteria for the existence and stability theorems are
easily tested by analyzing multiple relationships between neural network parameters and Lipschitz constants without asking for
the conditions of differentiability, monotonicity or boundedness. Based on the proposed approach, it is unnecessary to utilize
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Razumikhin-type technique or construct a Lyapunov function that is applied from the previous literature. Moreover, illustrative
simulation examples show that the approach used is more efficient and extend the results of the previous literature11 and19.
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