Reference
[1] Smith SA, Lynch KW. Cell-based splicing of minigenes[J]. Methods in Molecular Biology, 2014, 1126: 243-255.
[2] Jourdy Y, Fretigny M, Nougier C, et al. Splicing analysis of 26 F8 nucleotide variations using a minigene assay[J]. Haemophilia, 2019, 25(2): 306-315.
[3] Matera AG, Wang Z. A day in the life of the spliceosome[J]. Nature Reviews: Molecular Cell Biology, 2014, 15(2): 108-121.
[4] De Conti L, Baralle M, Buratti E. Exon and intron definition in pre-mRNA splicing[J]. Wiley Interdiscip Rev RNA, 2013, 4(1): 49-60.
[5] Dufner-Almeida LG, do Carmo RT, Masotti C, et al. Understanding human DNA variants affecting pre-mRNA splicing in the NGS era[J]. Advances in Genetics, 2019, 103: 39-90.
[6] López-Bigas N, Audit B, Ouzounis C, et al. Are splicing mutations the most frequent cause of hereditary disease?[J]. FEBS Letters, 2005, 579(9): 1900-1903.
[7] Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing[J]. Trends in Biochemical Sciences, 2010, 35(3): 169-178.
[8] Park E, Cho MH, Hyun HS, et al. Genotype-Phenotype Analysis in Pediatric Patients with Distal Renal Tubular Acidosis[J]. Kidney and Blood Pressure Research, 2018, 43(2): 513-521.
[9] Tanner MJ. The structure and function of band 3 (AE1): recent developments (review)[J]. Molecular Membrane Biology, 1997, 14(4): 155-165.
[10] Smith AN, Skaug J, Choate KA, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing[J]. Nature Genetics, 2000, 26(1): 71-75.
[11] Yang Q, Li G, Singh SK, et al. Vacuolar H+ -ATPase B1 subunit mutations that cause inherited distal renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells[J]. Journal of the American Society of Nephrology, 2006, 17(7): 1858-1866.
[12] Stehberger PA, Schulz N, Finberg KE, et al. Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis[J]. Journal of the American Society of Nephrology, 2003, 14(12): 3027-3038.
[13] Enerbäck S, Nilsson D, Edwards N, et al. Acidosis and Deafness in Patients with Recessive Mutations in FOXI1[J]. 2018, 29(3): 1041-1048.
[14] Rungroj N, Nettuwakul C, Sawasdee N, et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations[J]. Clinical Genetics, 2018, 94(5): 409-418.
[15] Jobst-Schwan T, Klämbt V, Tarsio M, et al. Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis[J]. Kidney International, 2020, 97(3): 567-579.
[16] Zhao X, Lu J, Gao Y, et al. Novel compound heterozygous ATP6V1B1 mutations in a Chinese child patient with primary distal renal tubular acidosis: a case report[J]. 2018, 19(1): 364.
[17] Palazzo V, Provenzano A, Becherucci F, et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis[J]. Kidney International, 2017, 91(5): 1243-1255.
[18] Chen L, Wang HL, Zhu YB, et al. Screening and function discussion of a hereditary renal tubular acidosis family pathogenic gene[J]. 2020, 11(3): 159.
[19] Zhang R, Wang C, Lang Y, et al. Five Novel Mutations in Chinese Children with Primary Distal Renal Tubular Acidosis[J]. Genet Test Mol Biomarkers, 2018, 22(10): 599-606.
[20] Wang S, Wang Y, Wang J, et al. Six Exonic Variants in the SLC5A2 Gene Cause Exon Skipping in a Minigene Assay[J]. Front Genet, 2020, 11: 585064.
[21] Zhang R, Wang J, Wang Q, et al. Identification of a novel TSC2 c.3610G > A, p.G1204R mutation contribute to aberrant splicing in a patient with classical tuberous sclerosis complex: a case report[J]. 2018, 19(1): 173.
[22] Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing[J]. Nat Rev Genet, 2002, 3(4): 285-298.
[23] Auclair J, Busine MP, Navarro C, et al. Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing[J]. Human Mutation, 2006, 27(2): 145-154.
[24] Théry JC, Krieger S, Gaildrat P, et al. Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes[J]. European Journal of Human Genetics, 2011, 19(10): 1052-1058.
[25] Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, et al. Identification of Eight Spliceogenic Variants in BRCA2 Exon 16 by Minigene Assays[J]. Front Genet, 2018, 9: 188.
[26] Zhao X, Cui L, Lang Y, et al. A recurrent deletion in the SLC5A2 gene including the intron 7 branch site responsible for familial renal glucosuria[J]. Scientific Reports, 2016, 6: 33920.
[27] Suarez-Artiles L, Perdomo-Ramirez A, Ramos-Trujillo E, et al. Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease[J]. 2018, 9(1).
[28] Sritippayawan S, Kirdpon S, Vasuvattakul S, et al. A de novo R589C mutation of anion exchanger 1 causing distal renal tubular acidosis[J]. Pediatric Nephrology, 2003, 18(7): 644-648.
[29] Karet FE, Gainza FJ, Györy AZ, et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6337-6342.
[30] Jarolim P, Shayakul C, Prabakaran D, et al. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3- exchanger[J]. Journal of Biological Chemistry, 1998, 273(11): 6380-6388.
[31] Littink KW, Pott JW, Collin RW, et al. A novel nonsense mutation in CEP290 induces exon skipping and leads to a relatively mild retinal phenotype[J]. Investigative Ophthalmology and Visual Science, 2010, 51(7): 3646-3652.