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Abstract. In this paper, we study the well-posedness of nonlinear multi-time

fractional differential equations and show that the solutions of the system will
blow up in finite time under certain assumptions. In particular, we apply the

results to the nonlinear time fractional Burgers equations.

1. Introduction

Fractional calculus has attracted lots of attention in the recent years. Due to
the growing applications in various fields such as fluid mechanics, biomathematics,
finance and electrochemistry, etc, the properties of linear time-space fractional d-
ifferential equations have been extensively studied. We refer the readers to [2] [3],
[8], [14], [17], [20, 21, 22, 23] and references therein. Moreover, the nonlinear time
fractional differential equations have also attracted some attention and properties
such as the global existences, blow-up in finite time have been established under
some conditions.

To be more precise, we recall some known results. In [4, 5], Fujita considered
the nonlinear heat equation in Rn{

∂tu−∆u = |u|p−1u,

u(0, x) = ϕ(x).

He also proved that the solution will blow-up in finite time if 1 < p < 1 + 2
n . In

[12], the authors generalized the results to the time fractional differential systems.
In precious, they considered the following nonlinear nonlocal systems

ut +Dα
0+(u− u0) = |v|p,

vt +Dα
0+(v − v0) = |u|p,

u(0) = u0, v(0) = v0,

where Dα
0+ is the left-handed Riemann-Liouville fractional derivative of order α ∈

(0, 1). Moreover, in [6, 7] the well-posedness of the nonlinear fractional differential

equations with nonlinearities of form
∫ t

0
(t−s)−γ |u(s)|p−1u(s)ds have been studied.

For more results, see for example [1], [9]-[13].
Motivated by the interesting results in [10], [15], we concern the nonlinear multi-

time fractional differential equations as follows

(1.1) c1D
α1

0+,x1
(|u|m1 − ϕm1

1 ) + · · ·+ cnD
αn

0+,xn
(|u|mn − ϕmn

n ) = |u|p
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with initial conditions

u(0, x2, · · · , xn) = ϕ1(x2, · · · , xn), · · · , u(x1, · · · , xn−1, 0) = ϕn(x1, · · · , xn−1).

Note that Dα1

0+,x1
is the left-handed Riemann-Liouville fractional derivatives with

respect to variable xi, 0 < αn < αn−1 < · · · < α1 ≤ 1, p > 1,mi > 0 and ci are
constants for 1 ≤ i ≤ n.

The main results are as follows

Theorem 1.1. Assume that ϕn > 0, ci > 0 for 1 ≤ i ≤ n, p > c1m1 + · · ·+ cnmn,
and n − 1 + αn − αj p

p−mj
< 0 for 1 ≤ j ≤ n − 1, then any solution to (1.1) will

blow up in finite time.

Moreover, we also consider the system of multi-time fractional differential equa-
tions as follows

(1.2)

{
c1D

α1

0+,x1
(|u|m1 − ϕm1

1 ) + · · ·+ cnD
αn

0+,xn
(|u|mn − ϕmn

n ) = |v|q,
b1D

β1

0+,x1
(|v|k1 − ψk11 ) + · · ·+ bnD

βn

0+,xn
(|v|kn − ψknn ) = |u|p,

with initial conditions{
u(0, x2, · · · , xn) = ϕ1(x2, · · · , xn), · · · , u(x1, · · · , xn−1, 0) = ϕn(x1, · · · , xn−1),

v(0, x2, · · · , xn) = ψ1(x2, · · · , xn), · · · , v(x1, · · · , xn−1, 0) = ψn(x1, · · · , xn−1).

Note that 0 < αn < αn−1 < · · · < α1 ≤ 1, 0 < βn < βn−1 < · · · < β1 ≤ 1, p, q >
1,mi, ki > 0 and bi, ci are constants for 1 ≤ i ≤ n.

Theorem 1.2. Assume that ϕn, ψn > 0, bi, ci > 0 for 1 ≤ i ≤ n, p > c1m1 + · · ·+
cnmn, q > b1k1 + · · ·+ bnkn and n− 1 +αn−αj p

p−mj
< 0, n− 1 + βn− βj q

q−kj < 0

for 1 ≤ j ≤ n− 1, then any solution to (1.2) will blow up in finite time.

The paper is organized as follows: In Section 2, we gather some basic facts and
properties of the fractional calculus. The main results will be proved in Section 3.
In Section 4, we will apply our results to some examples.

2. Preliminaries

In this section, we will recall some definitions and properties concerning the
fractional calculus. For more details, we refer the readers to [17], [21].

The left-handed and right-handed Riemann-Liouville fractional derivatives for
continuous function f , 0 < α < 1 are defined as

Dα
0+f(t) =

1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds,

and

Dα
T−f(t) = − 1

Γ(1− α)

d

dt

∫ T

t

f(s)

(t− s)α
ds,

respectively. Then the integration by parts reads (see[21], p.46)∫ T

0

Dα
0+f(t)g(t)dt =

∫ T

0

f(t)Dα
T−g(t)dt

where f, g ∈ C([0, T ]).
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The test function φ is defined as

φ(t) =

{(
1− t

T

)λ
, 0 ≤ t ≤ T

0, t > T.

The following lemmas about the test function are proved in [9]. For the complete-
ness, we will give the proof here.

Lemma 2.1. Let φ be defined as above and the following hold:∫ T

0

Dα
T−φ(t)dt = Cα,λT

1−α,(2.1) ∫ T

0

φ1−p(t)|φ′(t)|pdt = Cp,λT
1−p if p < λ+ 1(2.2) ∫ T

0

φ1−p(t)|Dα
T−φ(t)|pdt = Cp,α,λT

1−αp if λ > αp− 1(2.3)

where Cα,λ = Γ(λ+1)
Γ(λ−α+2) , Cp,λ = λp

1+λ−p , Cp,α,λ = λp

1+λ−αp

{
Γ(λ+1)

Γ(λ−α+2)

}p
.

Proof. Note first that

Dα
T−φ(t) = − 1

Γ(1− α)

d

dt

∫ T

t

(
1− t

T

)λ
(t− s)−αds

= − 1

Γ(1− α)

d

dt

[
T−λ(T − t)1+λ−α

∫ 1

0

(1− y)λy−αdy

]
=
B(1− α, λ+ 1)

Γ(1− α)
(1 + λ− α)T−λ(T − t)λ−α

= Cα,λ(1 + λ− α)T−λ(T − t)λ−α,

where we have used change of variable y = s−t
T−t in the second equality and Cα,λ =

B(1−α,λ+1)
Γ(1−α) = Γ(λ+1)

Γ(λ−α+2) . It is direct to check the Lemma holds by the above equality.

�

3. Main results

3.1. Proof of Theorem 1.1.

Proof. Our method is by contradiction. Set Q = [0, T ]n and∫
Q

f =

∫ T

0

· · ·
∫ T

0

f(x1, · · · , xn)dx1 · · · dxn.

Denote by Φ(x1, · · · , xn) = φ(x1) · · ·φ(xn). Multiply Φ to both side of (1.1) and
integration by parts gives:

c1

∫
Q

(|u|m1 − ϕm1
1 )Dα1

T−,x1
Φ + · · ·+ cn

∫
Q

(|u|mn − ϕmn
n )Dαn

T−,xn
Φ =

∫
Q

|u(t)|pΦ,

where Dαi

T−,xi
is the right-handed Riemann-Liouville fractional derivatives with

respect to variable xi for 1 ≤ i ≤ n.
In turn, it follows that

n∑
i=1

ci

∫
Q

|u|miDαi

T−,xi
Φ =

∫
Q

|u|pΦ +

n∑
i=1

ci

∫
Q

ϕmi
i Dαi

T−,xi
Φ.
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Note that by Hölder inequality, we have
n∑
i=1

ci

∫
Q

|u|miDαi

T−,xi
Φ

≤
n∑
i=1

ci

(∫
Q

|u|pΦ
)mi

p
(∫

Q

|Φ|−
mi

p−mi |Dαi

T−,xi
Φ|

p
p−mi

) p−mi
p

≤
n∑
i=1

ci

(
mi

p

∫
Q

|u|pΦ +
p−mi

p

∫
Q

|Φ|−
mi

p−mi |Dαi

T−,xi
Φ|

p
p−mi

)
.

Moreover, by Lemma 2.1, we obtain∫
Q

|Φ|−
mi

p−mi |Dαi

T−,xi
Φ|

p
p−mi

=

∫ T

0

|φ(xi)|−
mi

p−mi |Dαi

T−,xi
φ(xi)|

p
p−mi dxi

∏
j 6=i

∫ T

0

|φ(xj)|
−

mj
p−mj |φ(xj)|

p
p−mj dxj

=C1T
n−αi

p
p−mi .

And hence
n∑
i=1

ci

∫
Q

|u|miDαi

T−,xi
Φ

≤
∑n
i=1 cimi

p

∫
Q

|u|pΦ +

n∑
i=1

c′iT
n−αi

p
p−mi ,

where c′i = C1ci
p−mi

p .

Thus it follows that

p−
∑n
i=1 cimi

p

∫
Q

|u|pΦ +

n∑
i=1

ci

∫
Q

ϕmi
i Dαi

T−,xi
Φ ≤

n∑
i=1

c′iT
n−αi

p
p−mi .

Since∫
Q

ϕmi
i Dαi

T−,xi
Φ =

∫ T

0

Dαi

T−,xi
φ(xi)dxi

∫
Rn−1

ϕmi
i Φidx,= C2T

1−αi

∫
Rn−1

ϕmi
i Φidx,

where dx is the Lebesgue measure on Rn−1 and Φi =
∏
j 6=i

φ(xj) .

By the assumption p > c1m1 + · · ·+ cnmn, we obtain

C2

n∑
i=1

ciT
1−αi

∫
Rn−1

ϕmi
i Φidx ≤

n∑
i=1

c′iT
n−αi

p
p−mi .

Multiply Tαn−1 to each side of the inequality and by the facts ϕn > 0, we obtain
for T large enough

C2

n−1∑
i=1

ciT
αn−αi

∫
Rn−1

ϕmi
i Φidx+ C3

∫
B(0,1)

ϕndx ≤
n∑
i=1

c′iT
n−1+αn−αi

p
p−mi .

By the assumption 0 < αn < · · · < α1 ≤ 1 and n − 1 + αn − αi
p

p−mi
< 0 for

1 ≤ i ≤ n− 1, the above inequality leads to contradiction as T →∞ since we have
C3 > 0. �
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3.2. Proof of Theorem 1.2.

Proof. We still use the method of contradiction. Multiply each term in (1.2) by
φ(t) and integration by parts leads

n∑
i=1

ci

∫
Q

|u|miDαi

T−,xi
Φ =

∫
Q

|v|qΦ +

n∑
i=1

ci

∫
Q

ϕmi
i Dαi

T−,xi
Φ

and
n∑
i=1

bi

∫
Q

|v|kiDβi

T−,xi
Φ =

∫
Q

|u|pΦ +

n∑
i=1

bi

∫
Q

ψkii D
βi

T−,xi
Φ.

By Hölder inequality, we obtain

n∑
i=1

bi

∫
Q

|v|kiDβi

T−,xi
Φ

≤
n∑
i=1

bi

(∫
Q

|v|qΦ
) ki

q
(∫

Q

|Φ|−
ki

q−ki |Dβi

T−,xi
Φ|

q
q−ki

) q−ki
q

≤
n∑
i=1

bi

(
ki
q

∫
Q

|v|qΦ +
q − ki
q

∫
Q

|Φ|−
ki

q−ki |Dβi

T−,xi
Φ|

q
q−ki

)
.

and ∫
Q

|Φ|−
ki

q−ki |Dβi

T−,xi
Φ|

q
q−ki = B1T

n−βi
q

q−ki .

Then we have the estimates∫
Q

|v|qΦ +

n∑
i=1

ci

∫
Q

ϕmi
i Dαi

T−,xi
Φ ≤

∑n
i=1 cimi

p

∫
Q

|u|pΦ +

n∑
i=1

c′iT
n−αi

p
p−mi

as well as∫
Q

|u|pΦ +

n∑
i=1

bi

∫
Q

ψmi
i Dβi

T−,xi
Φ ≤

∑n
i=1 biki
p

∫
Q

|v|qΦ +

n∑
i=1

+c′iT
n−βi

q
q−ki .

By the assumption p > c1m1 + · · ·+ cnmn and q > b1k1 + · · ·+ bnkn the above two
inequalities lead to

C2

n∑
i=1

ciT
1−αi

∫
Rn−1

ϕmi
i Φidx+B2

n∑
i=1

biT
1−βi

∫
Rn−1

ψkii Φidx

≤
n∑
i=1

c′iT
n−αi

p
p−mi + b′iT

n−βi
q

q−ki

Without loss of generality, we can assume that αn ≤ βn and multiplying Tαn−1 to
each side of the above inequality gives

C3

∫
B(0,1)

ϕndx+ C2

n−1∑
i=1

ciT
αn−αi

∫
Rn−1

ϕmi
i Φidx+B2

n∑
i=1

biT
αn−βi

∫
Rn−1

ψkii Φidx

≤
n∑
i=1

c′iT
n−1−αn−αi

p
p−mi + b′iT

n−1−αn−βi
q

q−ki
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By the assumption 0 < αn < · · · < α1 ≤ 1, 0 < βn < · · · < β1 ≤ 1, n − 1 + αn −
αi

p
p−mi

< 0, n− 1 + βn − βi p
p−mi

< 0 for 1 ≤ i ≤ n− 1, the above inequality leads

to contradiction as T →∞ since we have C3 > 0. �

4. Applications

In this section, we will consider several examples and give the corresponding
blow up results.

Example 4.1. (Nonlinear time fractional Burgers Equation)
Now consider the equation for 0 < α < 1

Dα
0+,t(u(x, t)− ϕ(x)) +

1

2
Dx(u2(x, t)) = |u|p,

with initial data u(0, x) = ϕ(x) > 0.
According to Theorem 1.1, we have for p satisfying

p > 2, 1 + α− p

p− 2
, 1 + α− 2p

p− 1
,

which is 2 < p < 2(1+α)
α , the solution will blow up in finite time.

Example 4.2. (Nonlinear coupled time fractional Burgers Equations)
Now consider the following systems{

Dα
0+,t(u− ϕ) + 1

2Dx(|u|2) = |v|q,
Dβ

0+,t(v − ψ) + 1
2Dx(|v|2) = |u|p,

with initial condition u(0, x) = ϕ(x) > 0, v(0, x) = ψ(x) > 0 where 0 < α, β < 1.
Thus by Theorem 1.2 for

2 < p <
2(1 + α)

α
, 2 < q <

2(1 + β)

β
,

the solution will blow up in finite time.

5. Conclusions

In this paper, the testing function methods are used to study the nonlinear multi-
time fractional differential equations. As a result, we prove the systems will blow
up in finite time provided the nonlinear term satisfying some condition which is
determined by the structure of the equations. Then we apply our results to the
time fractional Burgers equations and give the explicit range which will lead to a
blow up of the systems.
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