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Abstract

This work deals with the existence of almost periodic solutions in a biological model, the model
proposed by VG Nazarenko and E.E. Sel’kov of stem cell dynamics. This article demonstrates
the existence of almost periodic solutions, for this purpose, the constant parameters of the
system were changed to almost periodic functions which allows greater adaptability in bio-
logical cases such as this. This kind of changes have already been raised in other biological
systems. In this case we will use the implicit function theorem to prove the existence of peri-
odic solutions.
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1 Introduction

Fixed Point methods are a widely used tool to analyze the existence of nonlinear
differential equation solutions. There are classical methods, for example those
that appeal to the use of contractions and those that use the Schauder Theorem
(see [3, 9]).
Unfortunately, the latter cannot be used to analyze the existence of almost pe-
riodic solutions because it requires the compactness of the associated operator
K, a characteristic that in AP (R,X) cannot be verified; therefore, a different
approach is required, such as the use of fixed points in cones under monotonicity
conditions (see [4]) that avoid the assumption of compactness.

Almost periodic functions attracted the attention of many researchers in re-
cent decades. Almost periodic solutions of systems of differential equations of
biological models have been studied in various works, for example in the SIR
type models of infectious disease dynamics such as Córdova Lepe et al [7] where
the authors study the stability of an epidemic model with seasonal cyclic pulses,
and under what conditions new endemic equilibrium are observed; Xiao et al
[14] who analyze the existence of almost periodic solutions in a model of mi-
grant workers with periodic almost periodic coefficients. In relation to cellular
dynamics, which is more similar to the subject of study of this article. Several

1



recent studies have analyzed the existence and stability of almost periodic so-
lutions in different models of hematopoiesis (cell production) such as Amster
and Balderrama [3] who proved for a model with several delays and an oscil-
lating circulation loss rate existence and uniqueness of positive almost periodic
solutions by using a fixed point theorem in abstract cones or Ding et al [6] who
have established results of existence and stability of almost periodic solutions.
Existence of almost periodic dynamics in a hematopoiesis model with mixed
discontinuous harvesting terms with delay can be seen in Nieto et al [12]. Re-
cently Kong et al [11] have proved stability, uniqueness and global exponential
stability of almost periodic solutions of a discontinuous bi-directional associative
memory (BAM) neural network model.
In nature the perfect periodic cycles are a rarity, as we have already mentioned,
the lack of periodicity is attributable to the adaptability of the system to changes
in its environment, which is why almost periodic functions are better suited to
these cyclic processes.

For this reason, we point out that the introduction of almost periodic func-
tions are far from being an artificial assumption without biological meaning,
indeed we think that its mean value properties provides a natural framework to
describe some cyclic processes with behavior more complex than periodicity.

In particular, in our work we focus on giving a different approach to the
population dynamics model of stem cells originally proposed by Nazarenko and
Sel’kov [13] and then taken up by Hastings et al [10]. In these previous works
the almost periodicity of the solutions had not been tested.

1.1 A model to represent the stem cell cycle

Stem cells have the ability to divide through mitosis and their study is of wide
scientific interest since they can be differentiated not only in stem cells, but in
numerous other types of specialized cells.
All multicellular organisms have stem cells, which can be classified according
to their potency, which determines the number of different cell types in which
these stem cells can differentiate.
The medical interest in the study of these cells lies in the possibility of using
them for the recovery of tissues damaged by diseases or accidents.

The process to study is reflected in the following scheme G is the mass of
undifferentiated stem cells, the differentiated cells Dj have different phases (or
ages) until they reach a I inhibitory stage or phase, the concentration of these
cells (aged n) inhibits the mitotic process of differentiation. In this model there
is also a loop on G that reflects a duplication (according to [13]) of these undif-
ferentiated stem cells.
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Figure 1: A generalized scheme of the stem cell cycle.

Nazarenko-Sel’kov’s model is as follows:

dG

dt
=

r(t)G(t)

K(t) + I(t− τ)p
− k1(t)G(t),

dD2

dt
= k1(t)G(t− τ)− k2(t)D2(t),

dDj

dt
= kj−1(t)Dj−1(t− τ)− kj(t)Dj(t), 3 ≤ j ≤ n− 1

dI

dt
= kn−1(t)Dn−1(t− τ)− kn(t)I(t)

(1)

where r(t), K(t), ki(t) for all i, are positives functions and the delay τ ≥ 0.

Let us observe that the first equation fits into the type of differential equa-
tions that are called resonants, in this case we will use a classic result: the
Implicit Function Theorem.

Theorem 1 (Implicit Function). Lets X, Y and W Banach spaces, let U ⊂
X, V ⊂ Y be open sets and let f : U × V →W be a Ck mapping. Furthermore,
assume that f(x0, y0) = 0 and that ∂f

∂y (x0, y0) : Y → W is an isomorphism.

Then there exists a U0 neighbourhood of x0 and an unique Ck function φ :
U0 → V such that φ(x0) = y0 and f(x, φ(x)) = 0 ∀ x ∈ U0.

1.2 Preliminaires

For convenience, we introduce some notations. Set AP (R,X) = {x(t) : x(t) ∈
C(R,R+, x(t) is almost periodic function.
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Definition 1. A set A ∈ R is relatively dense in R if there exists a number
` > 0 such that any interval of lenght ` has a non empty intersection with A.

Definition 2 (Bohr). For any bounded function f and ε > 0, we define

T (f, ε) = {x : |f(x+ t)− f(x)| < ε ∀ t}

T (f, ε) is called the ε−translation set of f .

Definition 3 (Bohr). A function f : R → X is called almost periodic if for
every ε > 0, T (f, ε) is relatively dense.

Theorem 2 (Open Map). Lets X, Y Banach spaces and T : X → Y a linear,
surjective and continuous map, then T is open.

Lemma 1. If T : X → Y is linear, bijective and continuous, spaces X, Y as
open map theorem 2, then T−1 : Y→ X is continuous.

Theorem 3 (Fink [8], 5.11). Consider the system

x′(t) = Ax(t) + f(t) (2)

where f ∈ AP (R,Rn+). Suppose that |µ − iεn| ≥ ρ > 0 for all eigenvalues µ of
matrix A and εn ∈ exp(f).
Then there is a unique almost periodic solution x(f) of (2) with exp(x(f)) ⊂
exp(f).
There exists a polynomial P of degree ≤ n with no constant term depending only
on the matrix A and an absolute constant C , so that the mapping f 7→ x(f),
defined on

Nρ = {f : f ∈ CP (R,Rn+), |µ− iεn| ≥ ρ > 0}

is a linear mapping withcon norm less than P (Cρ−1).

2 The periodic Nazarenko-Sel’kov model

Lets suppose that functions r(t), K(t), ki(t) are T−periodic for all i.

Theorem 4. Assume that the following conditions hold

� (sufficiency) For all t ∈ R

r(t)

K(t)
> k1(t) (3)

� (necessity)

1

T

∫ T

0

r(t)

K(t)
dt >

1

T

∫ T

0

k1(t)dt (4)

Then problem (1) has at least one T−periodic solution u = (G,D1, ..., Dn−1, I)
such that uk(t) > 0 for all t and all k.
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We shall apply the continuation method in the the positive cone

K := {u ∈ CT : x0, x1, ..., xn ≥ 0}

of the Banach space of continuous periodic functions

CT := {u ∈ C(R,Rn+1) : u(t) = u(t+ T ) for all t},

equipped with the standard uniform norm. Consider the linear operator L :
C1 ∩ CT → C given by Lu := u′ and the nonlinear operator N : K → CT
defined as the right-hand side of system (1).

For convenience, the average of a function u shall be denoted by u, namely

u := 1
T

∫ T
0
u(t) dt. Also, identifying Rn+1 with the subset of constant functions

of CT , we may define the function φ : [0,+∞)n+1 → Rn+1 given by φ(x) := Nx.

The following continuation theorem can be easily deduced from the standard
topological degree methods (see e.g. ([1]).

Theorem 5. Assume there exists Ω ⊂ K◦ open and bounded such that:

a) The problem Lu = λNu has no solutions on ∂Ω for 0 < λ < 1.

b) φ(u) 6= 0 for all u ∈ ∂Ω ∩ Rn+1.

c) deg(φ,Ω ∩ Rn+1, 0) 6= 0, where ‘deg’ denotes the Brouwer degree.

Then (1) has at least one solution in Ω.

In order to apply Theorem 5 to our problem, let us assume that u =
(x0, x1, ..., xn) ∈ K is a solution of the system Lu = λNu for some λ ∈ (0, 1).
We shall obtain bounds that will yield an appropriate choice of the subset Ω.

Theorem 6. Homotopy φ vanishes at a single point within an open set Q ⊂
Rn+1

Proof.
φ(z) = 0

which is equivalent to the non-linear model A(zn) · z = 0:

r

K+zpn
− k1 0 0 0 . . . 0

k1 −k2 0 0 . . . 0

0 k2 −k3 0 . . . 0

0 0 k3 −k4 . . . 0
...

...
...

. . .
. . .

...

0 0 . . . 0 kn−1 −kn


·


z1
z2
...
zn

 = 0 (5)

Obviously a solution is the trivial z = 0 that does not interest us.

For there to be another solution, we need

det(A(zn)) = 0⇔ r

K + zpn
= k1
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this value zn is unique because the average is strictly decreasing as a function
of zn.
Solving the system, a non-trivial solution can be written in Q in this way

z = (z1, z2, ..., zn−1, zn) =

(
kn

k1
zn,

kn

k2
zn, ...,

kn

kn−1
zn, zn

)
= knzn

(
1

k1
,

1

k2
, ...,

1

kn−1
,

1

kn

)
In this way we prove that φ vanishes once inside Q ⊂ Rn and by degree theory
it is concluded that there is a unique solution in Ω ⊂ CT .

3 The almost periodic Nazarenko-Sel’kov model

For the following, we will use the Implicit Function Theorem to prove the exis-
tence of almost periodic solutions.

4 Main Results

We consider the notation:

Λ(t) := (r(t),K(t), k1(t), k2(t), ..., kn(t)) ∈ (AP (R,R+))n+2

Λ0 = (αr, αK , λ1, λ2, λ3, ..., λn−1, λn) := (r,K, k1, k2, ..., kn) ∈ Rn+2

Y = (y1, y2, y3, ..., yn−1, yn) := (G,D2, D3, ..., Dn−1, I).

We will deduce that for almost periodic positive functions that take values near
certain positive constants (the components of Λ0), then (1) has a positive almost
periodic solution.
Now be F (Λ, Y ) the operator F : AP (R,R+)n+2 xAP 1(R,R+)n → AP (R,R+)n

defined by:

F (Λ, Y ) =
dY

dt
−N(Λ, Y )

where

N(Λ, Y ) :=

(
αry1

αK + ypn
− λ1y1, λ1y1 − λ2y2, , ..., λn−1yn−1 − λnyn

)
. (6)

We will set constant parameters r, K, kj > 0 and determine conditions for
a positive balance of the resulting system. Be (Λ0, Y0) ∈ Rn+2

>0 × Rn>0 such
that F (Λ0, Y0) = 0, lets see what conditions should be met for the existence of
Λ0 y de Y0:

ryeq1
K + (yeqn )p

− λ1yeq1 = 0⇔ yeqn = p

√
r −Kλ1

λ1
,

λ1y
eq
1 = λ2y

eq
2 ⇒ yeq1 =

λ2y
eq
2

λ1
,

λj−1y
eq
j−1 = λjy

eq
j ⇒ yeqj−1 =

λjy
eq
j

λj−1
, 3 ≤ j ≤ n− 1

λn−1y
eq
n−1 = λny

eq
n ⇒ yeqn−1 =

λny
eq
n

λn−1
=

λn
λn−1

p

√
r −Kλ1

λ1
.

(7)
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Given the characteristics of the model (1), each equilibrium coordinate can be
written like this:

yeqj =
λn
λj

p

√
αr − αKλ1

λ1
, 1 ≤ j ≤ n.

The differential is defined: L := DyF (Λ0, Y0) : (CP 1(R,R+))n → (CP (R,R+))n

of function F (Λ, Y ) considering the derivatives with respect to Y in the sense
of Fréchet:

Lϕ = DY F (Λ0, Y0)(ϕ) = ϕ′ − ∂N

∂yk
(Λ0, Y0)︸ ︷︷ ︸
:=A

ϕ. (8)

Be also the differential matrix (that is, DYN(Λ0, Y0)) A of the nonlinear oper-
ator

A :=


r

K+(yeqn )p
− k1 k1 0 · · · 0 0

0 −k2 k2 · · · 0 0
...

...
... · · ·

...
...

−y
eq
1 k21p(y

eq
n )p−1

r 0 0 ... 0 −kn

 =


0 λ1 0 · · · 0 0
0 −λ2 λ2 · · · 0 0
...

...
... · · ·

...
...

−η 0 0 ... 0 −λn

 ,

(9)
where

η :=
λn
λ1

(
αr − αKλ1

λ1

)2− 1
p

.

To prove the main statement, we will need the Theorem 3.

Theorem 7. Lets be r, K, kj ∈ (0,+∞) such that r −Kk1 > 0, we fix Λ0 as
before.

Besides, suppose the following polynomial

Q(x) = 1 +
x+ λn
η

x

λ1

n−1∏
k=2

x+ λk
λk

has no pure imaginary roots.
Then there is a ε > 0 such that for every

‖Λ(t)− Λ0‖ < ε,

there is a positive almost periodic solution of (1).

To prove the theorem 7 we will use the following results.

Proposition 1. If polynomial Q does not have pure imaginary roots, all A
eigenvalues have a non-zero real part.

Proof. Suppose there is a vector v ∈ Cn6=0 such that for certain ε ∈ R:

Av = iεv.

Now we proceed as follows:
0 λ1 0 · · · 0 0
0 −λ2 λ2 · · · 0 0
...

...
... · · ·

...
...

−η 0 0 ... 0 −λn




v1
v2
...
vn

 =


iεv1
iεv2

...
iεvn

 (10)
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This follows:

v2 =
iε

λ1
v1

v3 =
iε+ λ2
λ2

iε

λ1
v1

v4 =
iε+ λ3
λ3

v3 =
iε+ λ3
λ3

iε+ λ2
λ2

iε

λ1
v1

v5 =
iε+ λ4
λ4

v4 =
iε+ λ4
λ4

iε+ λ3
λ3

iε+ λ2
λ2

iε

λ1
v1

...

vn =
iε+ λn−1
λn−1

vn−1 =
ε

λ1
(iλ2 − ε)v1

n−1∏
k=3

iε+ λk
λk

and finally:

v1 = − iε+ λn
η

vn = − iε+ λn
η

iε

λ1
v1

n−1∏
k=2

iε+ λk
λk

.

From the latter it follows that either v1 = 0 (which concludes the proof) or the
term:

− iε+ λn
η

iε

λ1

n−1∏
k=2

iε+ λk
λk

= 1,

but this is equivalent to the following,

1 +
iε+ λn
η

iε

λ1

n−1∏
k=2

iε+ λk
λk

= 0⇐⇒ Q(iε) = 0, ε ∈ R,

That is not supposed to happen.

Now we have what we need to prove the result we are looking for.

Proposition 2. Under the conditions of Theorem 7, the linear operator L is
an isomorphism.

Proof. Under the proposal 1 we have det(A) = −η
n∏
k=1

λk 6= 0; furthermore, it is

known from the same proposition that the A eigenvalues have a real part other
than 0 accordingly, from Theorem 3 it follows that L is bijective.

Besides L : (CP 1(R,R+))n → (CP (R,R+))n, it is continuous then

||Lϕ||∞ ≤ ||ϕ′||∞ + ||A||||ϕ||∞ ≤ C||ϕ||CP 1

where C = 1 + ||A|| y ||ϕ||CP 1 = ||ϕ′||∞ + ||ϕ||∞.
By Theorem 2, L has continuous inverse. Then, L is an isomorphism that

was what we wanted to prove.

Finally, let’s prove the Theorem 7.
By the Implicit Function Theorem, there exists U0 ⊂ (CP (R,R+))n+2 an en-
vironment of Λ0, V0 ⊂ (CP 1(R,R+))n an environment of Y0 and an unique
function φ : U0 → V0 such that F (Λ, φ(Λ)) = 0, therefore there is some almost
periodic solution of (1).
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5 Discussion

Almost periodic solutions have a meaning applied to models of differential equa-
tions representative of various biological dynamics. Given its degree of adapt-
ability, these types of solutions have aroused much interest in the study of
biological mathematics. In this work the existence of almost periodic positive
solutions (with biological sense) in a resonant problem was demonstrated. These
two characteristics make it difficult to use nonlinear topological analysis tools
such as topological degree theory. In our case, we successfully use a classic re-
sult such as the implicit function theorem. In future studies we intend to use
techniques similar to the one observed here for systems of differential equations
with and without delay and circumstantially resonant.
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