Literature cited
Alikhan NF, Petty NK, Zakour NLB, Beatson SA. 2011. BLAST Ring Image
Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics
12:402
Arndt D, et al. 2016. PHASTER: a better, faster version of the PHAST
phage search tool. Nucleic Acids Res 44(W1): W16-W21.
Baek C, et al. 2005. Genes for utilization of deoxyfructosyl glutamine
(DFG), an amadori compound, are widely dispersed in the family
Rhizobiaceae. FEMS Microbiol Ecol 53: 221-233.
Barbier T, et al. 2014. Erythritol feeds the pentose phosphate pathway
via three new isomerases leading to D-erythrose-4-phosphate in Brucella.
Proc Natl Acad Sci USA 111: 17815-17820.
Beringer JE. 1974. R factor transfer in Rhizobium leguminosarum .
J Gen Microbiol 84:188-198.
Bevan MW, Chilton MD. 1982. T-DNA of the Agrobacterium Ti and Ri
Plasmids. Ann Rev Genet 16: 357-384.
Brinkman AB, Ettema TJ, de Vos WM, van der Oost J. 2003. The Lrp family
of transcriptional regulators. Mol Microbiol 48: 287-94.
Collier R, Thomson J, Thilmony R. 2018. A versatile and robust
Agrobacterium‐based gene stacking system generates high quality
transgenic Arabidopsis plants. Plant J 95: 573–583.
Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome
alignment with gene gain, loss and rearrangement. PLOS ONE 5: e11147.
de Mello Serrano GC, e Silva Figueira TR, Kiyota E, Zanata N, Arruda P.
2012. Lysine degradation through the saccharopine pathway in bacteria:
LKR and SDH in bacteria and its relationship to the plant and animal
enzymes. FEBS Lett 586: 905-911.
Desmet S, et al. 2020. Rhizogenic agrobacteria as an innovative tool for
plant breeding: current achievements and limitations. Appl Microbiol
Biotechnol 104: 2435-2451.
Dessaux Y, Petit A, Tempe J. 1993. Chemistry and biochemistry of opines,
chemical mediators of parasitism. Phytochem 34 : 31-38.
Dhillon BK, et al. 2015. IslandViewer 3: more flexible, interactive
genomic island discovery, visualization and analysis. Nucl Acids Res 43:
W104–W108.
Geddes BA, Oresnik IJ. 2012. Genetic characterization of a complex locus
necessary for the transport and catabolism of erythritol, adonitol and
l-arabitol in S.meliloti. Microbiology 158: 2180-2191.
Goodner B, et al. 2001. Genome sequence of the plant pathogen and
biotechnology agent Agrobacterium tumefaciens C58. Science 294:
2323-2328.
Harrison PW, Lower RPJ, Kim NKD, Young JPW. 2010. Introducing the
bacterial ’chromid’: not a chromosome, not a plasmid. Trends Microbiol
18: 141-148.
Henkel CV, den Dulk-Ras A, Zhang X, Hooykaas PJ. 2014. Genome sequence
of the octopine-type Agrobacterium tumefaciens strain Ach5.
Genome Announc. 2: e00225-14.
Hodges LD, Cuperus J, Ream W. 2004. Agrobacterium rhizogenes GALLS
protein substitutes for Agrobacterium tumefaciens single-stranded
DNA-binding protein VirE2. J Bacteriol 186: 3065-3077.
Hooykaas PJJ. 1979. The role of plasmid determined functions in the
interactions of Rhizobiaceae with plant cells. A genetic approach. PhD
Thesis. Leiden University, The Netherlands.
Huang YY, et al. 2015. Complete genome sequence of Agrobacterium
tumefaciens Ach5. Genome Announc. 3: e00570-15.
Huerta-Cepas J, et al. 2017. Fast genome-wide functional annotation
through orthology assignment by eggNOG-mapper. Mol Biol Evol 34:
2115-2122.
Jouanin L, et al. 1987. Transfer of a 4.3 kb fragment of the TL-DNA ofAgrobacterium rhizogenes strain A4 confers the pRi transformed
phenotype to regenerated tobacco. Plant Science 53: 53-63.
Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent
A. 1998. Unconventional genomic organization in the alpha subgroup of
the Proteobacteria. J Bacteriol 180: 2749–2755.
Kajala K, Coil DA, Brady SM. 2014. Draft genome sequence ofRhizobium rhizogenes strain ATCC15834. Genome Announcements 2:
e01108-14.
Katoh S. 2013. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. Mol Biol Evol 30:772-780.
Kerr A, Panagopoulos CG. 1977. Biotypes of Agrobacterium
radiobacter var. tumefaciens and their biological control.
Phytopath. Z. 90: 172-179.
Kim KS, Farrand SK. 1996. Ti plasmid-encoded genes responsible for
catabolism of the crown gall opine mannopine by Agrobacterium
tumefaciens are homologs of the T-region genes responsible for synthesis
of this opine by the plant tumor. J Bacteriol 178:3275-3284.
Krall L, Raschke M, Zenk MH, Baron C. 2002. The Tzs protein from
Agrobacterium tumefaciens C58 produces zeatin riboside 5′-phosphate from
4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett 527:
315-318.
Kurtz S, et al. 2004. Versatile and open software for comparing large
genomes. Genome Biology 5:R12.
Mehrotra S, Srivastav V, Rahman LU, Kukreja, AK. 2015. Hairy root
biotechnology-indicative timeline to understand missing links and future
outlook. Protoplasma 252: 1189-1201.
Moriguchi, et al. 2001. The complete nucleotide sequence of a plant
root-inducing (Ri) plasmid indicates its chimeric structure and
evolutionary relationship between tumor-inducing (Ti) and symbiotic
(Sym) plasmids in Rhizobiaceae. J Mol Biol: 307: 771-784.
Nishiguchi R, Takanami M, Oka A. 1987. Characterization and sequence
determination of the replicator region in the hairy‐root‐inducing
plasmid pRiA4b. Mol Gen Genet 206: 1– 8.
Offringa IA, et al. 1986. Complementation of Agrobacterium tumefaciens
tumor-inducing aux mutants by genes from the TR-region of the Ri plasmid
of Agrobacterium rhizogenes Proc Natl Acad Sci USA 83: 6935-6939.
Oger PM, Reich C, Olsen GJ, Farrand SK. 2001. Complete nucleotide
sequence and analysis of pTiBo542: what genomics tells us about
structure and evolution of plasmids in the family Rhizobiaceae .
Plasmid 45: 169-170.
Otten L. 2018. The Agrobacterium phenotypic plasticity
(Plast ) genes. Current Top Microbiol Immunol 418: 375-420.
Petit A, et al. 1983. Further extension of the opine concept: Plasmids
in Agrobacterium rhizogenes cooperate for opine degradation. Mol
gen Genet 190: 204-214.
Riker AJ. 1930. Studies on infectious hairy root of nursery apple trees.
J Agr Res 41: 507-540.
Ron M, et al. 2014. Hairy root transformation using Agrobacterium
rhizogenes as a tool for exploring cell type-specific gene expression
and function using tomato as a model. Plant Physiol 166: 455-469.
Shao S, Zhang X, van Heusden GPH,
Hooykaas PJJ. 2018. Complete sequence of the tumor-inducing plasmid
pTiChry5 from the hypervirulent Agrobacterium tumefaciens strain Chry5.
Plasmid 96-97:1-6.
Shao S, van Heusden GPH, Hooykaas PJJ. 2019. Complete sequence of
succinamopine Ti-plasmid pTiEU6 reveals its evolutionary relatedness
with nopaline-type Ti-plasmids. Genome Biology and Evolution 11:
2480–2491.
Sharma S, Shinde S, Verslues PE. 2013. Functional characterization of an
ornithine cyclodeaminase-like protein of Arabidopsis thaliana .
BMC Plant Biol 13: 182.
Slater SC, et al. 2009. Genome sequences of three Agrobacteriumbiovars help elucidate the evolution of multichromosome genomes in
bacteria. J Bacteriol 191: 2501-2511.
Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D. 1986. Nucleotide
sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine
type plasmid. Identification of open reading frames. J Biol Chem
261(1):108-21.
Stothard P, Wishart DS, 2005. Circular genome visualization and
exploration using CGView. Bioinformatics 21: 537-539.
Thompson MG, et al. 2020. Draft genome sequence of Agrobacterium
fabrum ARqua1. Microbiology Resource Announcements 9: e00506-20.
Tong X, et al. 2018. The complete genome sequence of cucumopine-typeAgrobacterium rhizogenes strain K599 (NCPPB2659), a nature’s
genetic engineer inducing hairy roots. Int J Agric Biol 20: 1167-1174.
Trovato M, Maras B, Linhares F, Costantino P. 2001. The plant oncogenerolD encodes a functional ornithine cyclodeaminase. Proc Natl
Acad Sci USA 98: 13449-13453.
Trovato M, Mattioli R, Costantino P. 2018. From A. rhizogenesRolD to plant P5CS: exploiting proline to control plant development.
Plants 7:108.
Valdes Franco et al. 2016. Draft genome sequence of Agrobacterium
rhizogenes strain NCPPB2659. Genome Announcements 4: e00746-16.
Watanabe S, Tozawa Y, Watanabe Y. 2014. Ornithine
cyclodeaminase/μ‐crystallin homolog from the hyperthermophilic archaeonThermococcus litoralis functions as a novel
Δ1‐pyrroline‐2‐carboxylate reductase involved in putativetrans ‐3‐hydroxy‐l‐proline metabolism. FEBS Open Bio 4: 2211-5463
Watanabe S, Sueda R, Fukumori F, Watanabe Y. 2015. Characterization of
flavin-containing opine dehydrogenase from bacteria. PLOS One 10:
e0138434.
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview
Version 2-a multiple sequence alignment editor and analysis workbench.
Bioinformatics 25: 1189-1191.
Weisberg et al. 2020. Unexpected conservation and global transmission of
agrobacterial virulence plasmids. Science 368: eaba5256.
Weller SA, Stead DE, O’Neill TM, Hargreaves D, McPherson GM. 2000.
Rhizogenic Agrobacterium biovar 1 and cucumber root mat in the
UK. Plant Pathol 49: 43-50.
Wetzel ME, Olsen GJ, Chakravartty V, Farrand SK. 2015. The repABCplasmids with quorum-regulated transfer systems in members of the
Rhizobiales divide into two structurally and separately evolving groups.
Genome Biology and Evolution. 7: 3337–3357.
White FF, Nester EW. 1980. Hairy root: plasmid encodes virulence traits
in Agrobacterium rhizogenes . J Bacteriol 141: 1134-1141.
Wood DW, et al.. 2001. The genome of the natural genetic engineerAgrobacterium tumefaciens C58. Science. 294: 2317-2323.
Xie Z, Tang H. 2017. ISEScan: automated identification of insertion
sequence elements in prokaryotic genomes. Bioinformatics 33: 3340-3347.
Yost CK, Rath AM, Noel TC, Hynes MF. 2006. Characterization of genes
involved in erythritol catabolism in Rhizobium leguminosarum bv.Viciae . Microbiology 152: 2061-2074.