[bookmark: _Hlk63606609]A Mass-Temperature Decoupled Discretization Strategy for Large-Scale Molecular-Level Kinetic Model
Zhengyu Chen, Dong Guan, Xiaojie Zhang, Ying Zhang, Suoqi Zhao, Quan Shi, Chunming Xu and Linzhou Zhang*
State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, 102249, P. R. China
Abstract
[bookmark: _Hlk63606235][bookmark: _Hlk63606371][bookmark: _Hlk63606417][bookmark: _Hlk63606484][bookmark: _Hlk63264328][bookmark: _Hlk63436251][bookmark: _Hlk63607753]The molecular conversion of complex mixture involves a large number of species and reactions. The corresponding kinetic model consists of a series of ordinary differential equations (ODEs) with severe stiffness, leading to an exponentially growing computational time. To reduce the computational time, we proposed a mass-temperature decoupled discretization strategy for a large-scale molecular-level kinetic model. The method separates the mass balance and heat balance calculations in the rigorous adiabatic reactor model and divided the reactor into several isothermal segments. After discretization, the differential equations for heat balance can be replaced by algebraic equations between nodes. We used a molecular-level diesel hydrotreating kinetic model as the case to validate the proposed method. We investigated the effects of temperature estimation methods and node number on the accuracy of the model. A good agreement between the discretization model and rigorous model was observed while the computational time was significantly shortened.
1. Introduction
[bookmark: _Hlk63606640]The conversion of complex mixtures (e.g., petroleum, coal, and biomass) is very important in the chemical engineering field. Petroleum refining is a typical complex mixture conversion system and plays a critical role in energy supply worldwide. The kinetic model is the core of refining process optimization. In the past, due to the limitation of analytical methods and computational capacity, the kinetic model was mostly built in terms of lumps to calculate the yield of products.1-3 Under the increasing demand for a more precise prediction of product quality, a model containing detailed molecular information is more and more preferred. A number of studies have been devoted to the development of a detailed kinetic model at the molecular or mechanistic level recently.
[bookmark: _Hlk63603248][bookmark: _Hlk63603288][bookmark: _Hlk63603334]In the past three decades, the Klein research group has carried out a series of studies on building the molecular-level kinetic model for complex mixtures. They used the bond-electron matrix and reaction matrix to represent molecules and reactions, respectively.4 On this basis, Wei et al. integrated all algorithms into an in-house software platform, named Kinetic Modeler's Toolbox (KMT).5 In 1992, Quann and Jaffe proposed a structure-oriented lumping (SOL) framework to develop the molecular-level kinetic models for the refining processes.6 In the SOL framework, molecules are represented by the structural vectors, and reactions are formulated by changing the value in structural vectors.7 Peng and Zhang et al. proposed a molecular type and homologous series (MTHS) matrix to model petroleum fractions.8,9 Recently, Gong used the MTHS to develop an industrial diesel hydrotreating unit at the molecular level.10 Besides, The Green research group developed a reaction mechanism generator (RMG) to build the mechanistic-level reaction network.11,12 RMG has been successfully used in the development of mechanistic-level reaction kinetic models for steam cracking.13,14 With the proposed molecular-level or mechanistic-level kinetic modeling frameworks, various complex reaction systems in petroleum refining have been simulated.15,16 However, molecular level modeling of the complex mixture involves a large number of molecules and reactions. The model also needs to calculate the mass transfer and heat transfer during the process. It results in a large number of coupled ordinary differential equations (ODEs) with severe stiffness, leading to an exponentially increasing computational time.17 Excessive computational time limits the industrial application of the large-scale molecular kinetic model.
To lower the computational time of the detailed kinetic model, several methods have been proposed which can be divided into two categories: the data-driven and model simplification approaches. The data-driven model, also named surrogate model, built a machine learning model using the detailed kinetic model as data generator. Hough et al. used artificial neural network (ANN) and decision trees to build a mechanistic-level kinetic model of biomass pyrolysis, significantly reducing the computational expense.18 Hua et al. used a convolutional neural network (CNN) to model the naphtha steam cracking.19 Compared with the ANN, CNN has a higher ability of recognizing the feature in the reaction network.19 With the help of a large number of data, the data-driven model can be conveniently used to predict the product distribution without information of reaction mechanisms. However, the relationships between input and output variables are treated as a black box in data-driven models. To achieve sufficient accuracy, a large amount of data is required to train the model. Besides, parameter selection also has a significant influence on the performance of the model.
For the detailed kinetic model simplification, the most straightforward way is to reduce the size of the reaction network.20 A series of algorithms have been developed to simplify the reaction network, such as sensitivity analysis,21 principal components analysis,22 directed relation graph method,23 and path flux analysis method24. These algorithms remove the unimportant components and reactions in the reaction network to reduce the size of the network. Moreover, these algorithms can also be combined to obtain the simplest and optimal reaction network,25 such as the decoupling methodology proposed by Chang et al.26 These algorithms were broadly used in mechanistic-level kinetic models. For refinery processes, due to the complexity in molecular composition, the kinetic model is frequently built at the molecular pathway level. Recent progress in advanced molecular characterization method provides an increasing number of detectable molecules.27 The measured molecular composition can be directly used as model input.28 Therefore, the model which contains high number of molecule is unavoidable for refinery molecular-conversion model development.
Improving the model solving algorithm can also reduce computational time. The stiffness problem is one of the main reasons for the low computational efficiency of a large-scale molecular-level kinetic model. Previous studies have reported that one of the reasons for the stiffness problem is the coupling of the heat balance and mass balances.29 Dente and Ranzi proposed a joint solution strategy by combining a lumped kinetic model with the detailed kinetic model to overcome this problem.29 This strategy has been successfully applied to the software SPYRO. Besides, Gillespie proposed a kinetic Monte Carlo (kMC) method to solve the complex reaction system.30 The kMC method has been widely used to solve the molecular-level kinetic model of heavy oil processes.31,32 Recently, Alvarez-majmutov et al. applied the method to simulate the industrial vacuum gas oil (VGO) hydrocracking unit, and key products and reaction temperature were predicted along the reactor.33 However, the kMC method is a stochastic algorithm. Repeat model calculations were required to reduce the error.34 
To achieve a fast and accurate calculation for a large-scale molecular-level kinetic model, we proposed a deterministic solution strategy named decoupled discretization strategy. This method decoupled the mass balance and heat balance calculations in the model. Then, according to a finite element method (FEM), the kinetic model was discretized. The proposed method was applied to the molecular-level kinetic model of diesel hydrotreating. The results showed that the calculated values of the discretization model agree with the result of the rigorous model while the computational time was significantly shortened.
2. Theory and Methodology
2.1 Stiffness problem for a large-scale molecular-level kinetic model
The refinery process is a complex molecular conversion system. We took diesel hydrotreating as an example. The diesel hydrotreating reactor is an adiabatic trickle bed reactor. The temperature will increase from the inlet to outlet due to the reaction heat. The molecular-level reaction network contains 942 molecules and 1727 reactions (the detail can be found in the following part of the paper), as shown in Figure 1(c). In addition to the complex reaction network, the corresponding adiabatic reactor model also needed to consider transfer phenomena, such as mass transfer and heat transfer (shown in Figure 1(b)). The model consists of mass balance and heat balance (or heat transfer). The mass balance contains the chemical reaction between molecules and mass transfer in different phases. Mass and heat balances in the model were expressed in a large number of coupled ordinary differential equations (ODEs) with high stiffness.
[bookmark: _Hlk63606087]To investigate the computational time contribution of different parts in the model, we disassembled the model by calculating the model with different detail, as shown in Figure 1(a). Since the computational time of different computers was different, the relative computational time was used in this work. The rigorous adiabatic reactor model (rigorous model) calculation is used as the benchmark, which is around 100 seconds. The model was coded in MATLAB, and the computer hardware was as follows: Intel Core i7 (dual processor). 16 GB memory and 64-bit windows system. Figure 1(a) shows that the computation expense was extremely low if only for the molecular-level micro-kinetic model without mass and heat transfer. When the mass transfer was involved, many bulk properties needed to be calculated frequently. The computational time increased rapidly. Furthermore, when the reaction was coupled with mass transfer and heat transfer, the stiffness of ODEs becomes more severe. It led to a dramatically growing computational time. According to the results of Figure 1(a), the main reasons for excessive computational time of the model are as follows:
• Stiffness problem: the change rate of molecular concentration is quite different from that of temperature, resulting in a severe stiffness problem. Thus, it is challenging to solve all ODEs in the same ODE solver.
• Coupled problem: due to the coupling of mass balances and heat balance, there are a series of coupled ODEs in the model. They influence each other and increase the computational expense.
• Bulk property calculation: a large number of bulk properties need to be calculated, such as molecular diffusivity, phase equilibrium parameter, heat capacity, and density. These properties vary with the change of molecular composition and reaction temperature. During ODEs solving, the property was calculated iteratively.
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Figure 1. A large-scale molecular-level kinetic model. (a) relative computational time for different kinetic model; (b) Adiabatic reactor model; (c) Molecular-level reaction network
2.2 A mass-temperature decoupled discretization strategy
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: _Hlk62659984]According to the above discussion, it is difficult to solve a large-scale molecular-level kinetic model due to the coupling of mass balance and heat balance. If mass balance and heat balance can be decoupled, the above three problems may be weakened or even eliminated, and computational time can be shortened. According to this conjecture, we proposed a mass-temperature decoupled discretization strategy, as shown in Figure 2. The method disconnected the mass balance and heat balance in the rigorous model and divided the reactor into several discrete segments (or nodes) based on the FEM. Each discrete node was treated as an isothermal reactor model, which means that only mass balance calculation was performed. Then, the temperature difference in discrete nodes can be estimated by the inlet-outlet molecular concentration of the node. After discretization, the differential equation for heat balance can be transformed into a difference equation (algebraic equation, ) between nodes. Through this way, the computation complexity was decreased.
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Figure 2. Development of a mass-temperature decoupled discretization strategy
Figure 3 shows the flowchart of two solving strategies. For the rigorous models, it is commonly used in calculating lumped kinetic model and detailed kinetic model, as shown in Figure 3(a). This method packs all equations (ODEs and algebraic equations) into the ODE solver and directly calculates the product distribution and temperature distribution iteratively. For the mass-temperature decoupled discretization model (discretization model, Figure 3(b)), the algebraic equations (bulk property calculation and heat balance calculation) were removed from the ode solver and the computational load for the ODE solver was reduced. The detailed flowchart of the discretization model is as follows: Firstly, the initial conditions and the length of the discrete node were input into the model. Next, the first node,, can be solved by the ODE solver, and the molecular composition was obtained. Then, the temperature difference can be estimated by the molecular composition and then was delivered to the heat balance equation to calculate the inlet temperature of the next node (). Finally, according to the molecular composition and reaction temperature, the bulk properties were calculated. After acquiring the composition, temperature, and properties, the next discrete node can be performed. According to the above steps, we can calculate to the reactor outlet in a node-by-node manner and obtain the product composition and properties.
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[bookmark: _Hlk62500304]Figure 3. Flowchart of the model solving. (a) rigorous adiabatic reactor model; (b) mass-temperature decoupled discretization model
Compared with the rigorous model, the discretization model has three advantage:
• The coupled ODE is transformed into the differential-algebraic equation (DAE).35 The stiffness problem caused by the inconsistency between the change rate of concentration and that of the temperature is solved;
• Bulk property calculation is separated from the ODEs function. After separation, time-intensive bulk property calculation is avoided during ODEs solver iteration. Besides, the frequency of property calculation can also be controlled by the node number.
• After discretization, it is easier to combine chemical reaction and phase equilibrium. For example, the decoupled discretization strategy can link the kinetic model with the flash model easier for the hydrocracker.
The mass-temperature decoupled discretization strategy has been proposed, but there are still two key issues to be solved: the estimation of the temperature difference and step length of discrete nodes (or node number).
2.3 Temperature difference estimation
The discretization method treats the continuous adiabatic reactor as a series of isothermal segments. Therefore, the algorithm for temperature difference estimation is critically important for the model accuracy. In this paper, we incorporated and tested several commonly used algorithms to estimate the temperature difference, including Euler method, improved Euler method, and predictor-corrector (PECE) method. 
2.3.1 Euler method
The most intuitive and simple method for solving the ODE is to use the difference equation to replace the differential equation. The formula is shown in Eq. (1).
	
	
	(1)


Ignoring the error in Eq (1), we can obtain the approximate Eq (2), namely Euler formula.
	
	
	(2)


According to the Euler method, we transform the differential equation of heat balance equation (Eq. (3)) into a difference equation, where  and  are substituted by  and , respectively. shown in Eq. (4).
	
	
	(3)

	
	
	(4)


 in Eq. (4) is equal to . Thus, we put the  into the Eq. (4) and derive Eq. (5). The derivative of temperature in Eq. (5) is expressed as , as shown in Eq. (6). Eq. (5) is the algebraic equation of heat balance, which is expressed as the Euler formula.
	[bookmark: _Hlk61012577]
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The outlet temperature can be estimated by using Eq. (5). For the Euler method, the computational expense is relatively low, but the error is relatively large, as shown in Figure 4(a).
2.3.2 Modified Euler method
To improve the accuracy of the Euler method, the Euler method was modified and called the modified Euler method, as shown in Eq. (7) and (8).
	
	
	(7)

	
	
	(8)


Compared with the Euler method, the modified Euler method uses the average slope of the inlet and outlet of nodes to estimate outlet values, as shown in Figure 4(b). Because the outlet slope cannot be obtained directly, it is necessary to use the Euler method to estimate the initial values of the outlet () before calculating the outlet value.
According to Eq. (7) and (8), the Eq. (9) and (10) can be derived in the same way as above.
	
	
	(9)

	
	
	(10)


2.3.3 Predictor-Corrector (PECE) method
The Euler method and modified Euler method belong to the single-step method. To further improve the stability of the algorithm, the linear multistep method was proposed. This method uses the previous multistep values to estimate the value of the next node. Linear multistep methods are mostly implicit methods and need to construct a predictor-corrector system. This work used the two-step Euler method for predictor and used the modified Euler method for corrector, as shown in Eq. (11) and (12).
	Predictor:
	
	(11)

	Corrector:
	
	(12)


It is worth noting that  is estimated by . Thus, the minimum value of  is 2 in the predictor-corrector system. When  is equal to 1, the PECE method needs to use the Euler method or modified Euler method to calculate the header. Therefore, there are two cases for PECE methods, the PECE method (Euler) and the PECE method (modified Euler).
If the Euler method is used as a header, the algebraic equation for heat balance can be expressed as Eq. (13) ~ (15).
	Header:
	
	(13)

	Predictor:
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	Corrector:
	
	(15)


For another case, the header is calculated by the modified Euler method. The heat balance equation can be written as Eq. (16) ~ (19).
	Header:
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	Predictor:
	
	(18)

	Corrector:
	
	(19)


2.3.4 Algorithm error analysis
In this work, the Euler method and modified Euler method were taken as examples to derive the truncation error, , as shown in Eq. (20) and (21), respectively.
	
	
	(20)

	
	
	(21)


According to Taylor series of  and , Eq. (22) ~ (24) can be obtained.
	
	
	(22)

	
	
	(23)

	
	
	(24)


Then, we substitute Eq. (22) into Eq. (20), Eq. (25) can be derived and substitute Eq. (23) and (24) into Eq. (21), Eq. (26) can be derived.
	
	
	(25)

	
	
	(26)


According to Eq. (25) and (26), we can calculate the order of algorithms, which is equal to the index of step length minus 1. Thus, the Euler method is a first-order method, and the modified Euler method is a second-order method. The PECE method is also the second-order method. Figure 4 represents the schematic illustration of three temperature estimation methods. As can be seen from the figure, the accuracy of the second-order method should be higher than the first-order method. However, the computational expense of the second-order is more expensive than the first-order method. Furthermore, the accuracy is improved with the decrease of step length, but the computational time is increased. Therefore, the step length setting should be carefully chosen considering the accuracy and computational time.
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Figure 4. Schematic illustration of different temperature estimation methods
2.4 Step length setting
To obtain the least node number (with the lowest computational expense), it is necessary to investigate the effect of step length on error. Besides, Choosing the appropriate step length with an acceptable error level also needs to be discussed. A molecular-level kinetic model is generally used to predict the product properties. We can assume that if the model error is less than that of analytical measurements, the error is acceptable. Thus, the measuring error can be regarded as convergence tolerance (). When the difference of calculated results between the discretization model and rigorous model is less than convergence tolerance, the step length is reasonable. For example, we generally use gas chromatography-mass spectrometry (GC-MS) to detect hydrocarbon classes. The measuring accuracy of GC-MS is ~0.1 wt%. Thus, 0.1 wt% can be used as the tolerance of hydrocarbon classes. Figure S1 shows the flowchart of this strategy in the supporting information.
3. Case Study and Model Validation
In this work, the diesel hydrotreating process was chosen to validate the proposed strategy. Using the computer-aided kinetic model development method from our group,36 a molecular-level micro-kinetic model of diesel hydrotreating was built. Then, the rigorous model and discretization model were developed, respectively. We compared the calculated results of the two models to validate the novel strategy. 
There are two reasons for choosing diesel hydrotreating as study case. Firstly, diesel is a middle fraction with a simpler composition and its rigorous model is relatively easy to solve. Besides, diesel hydrotreating involves typical physical and chemical changes, such as catalytic reaction, mass transfer, heat transfer, and phase equilibrium. If the method can be applied to diesel hydrotreating successfully, it can also be applied to the other complex reaction systems.
3.1 Molecular-level kinetic modeling of diesel hydrotreating
3.1.1 Feedstock composition modeling
The molecular composition modeling of diesel was developed based on the hybrid structural unit and bond-electron matrix (SU-BEM) framework proposed by our group.37 In this work, a fluid catalytic cracking (FCC) diesel was used as the feedstock. According to the analytical data of the FCC diesel, we selected 39 representative molecules as the cores. The compositional model contains common molecules in diesel, including paraffins, olefins, 1~3 ring naphthenes, 1~3 ring aromatics, sulfur, and nitrogen. The boiling point range of diesel was used as a constraint for homologue series extension by adding sidechains with different length. Then, a molecule library consisting of 531 molecules was obtained.
After the predefined molecule library was determined, the feedstock composition model used experimental bulk properties as input, including density, elemental analysis, mass spectrometry, and simulated distillation. The molecule composition and bulk properties in the model were calculated by a molecular reconstruction algorithm.37 Figure 5(b) represents the calculated and experimental of hydrocarbon classes, and a more detailed comparison of bulk properties is listed in Table S1. The results show that a good agreement between the calculated value and experimental data was observed.
3.1.2 Reaction rules and reaction network of diesel hydrotreating
[bookmark: _Hlk62588057]Reaction rule is used to generate the reaction network based on the reaction mechanism. Figure 5(a) shows all reaction rules and representative reactions in the molecular-level kinetic model of diesel hydrotreating. There were 29 reaction rules in the model, which are relevant to hydrocarbon, sulfur, nitrogen, respectively. For hydrocarbon, alkyl aromatics first undergo dealkylation reaction into aromatics and paraffins. Paraffins can undergo isomerization into isoparaffins, followed by undergoing hydrocracking reaction to generate the smaller paraffins. Aromatics can occur aromatic ring saturation in a ring-by-ring manner and generate the six-membered naphthenic ring. Then the six-membered naphthenic ring undergoes isomerization into a methyl-substituted five-membered ring, followed by ring opening into an alkyl aromatic. In this work, paraffin isomerization, naphthenic ring isomerization, and aromatic ring saturation are reversible reactions.
For hydrodesulfurization (HDS), the corresponding reaction rules were formulated based on reaction mechanisms and included the hydrogenolysis pathway and hydrogenation pathway. Besides, since the HDS reactivity of thiophenes (T), thiophenes (BT), and dibenzothiophenes (DBT) is quite different in hydrotreating, HDS reaction rules of Ts, BTs, DBTs, and their homologues were distinguished.38
Compared with sulfur, nitrogen only undergoes the hydrogenation pathway,39 as shown in Figure 5(a). After the hydrogenation, nitrogen will occur ring opening, and then the nitrogen atom is removed. According to the degree of unsaturation of nitrogen heterocycle, three corresponding reaction rules were formulated.
[bookmark: _Hlk63608111]After all reaction rules were determined, the molecular-level reaction network of diesel hydrotreating was generated by applying all reaction rules to diesel molecules. The reaction network contained 942 molecules and 1727 reactions.
3.1.3 Molecular-level micro-kinetic model
The reaction network was automatically transformed into the reaction rate equations by an in-house computer program.40 The reaction rate of each reaction was expressed as Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism, as shown in Eq. (27). To extend the LHHW kinetic model to the complex reaction system, some assumptions were proposed:
• The rate-determining step of all reactions is the surface reaction;
• All molecules can be adsorbed on the catalyst reactive site;
• All reactions are irreversible, and the reversible reactions are divided into two irreversible reactions41.
	
	
	(27)


The rate constant of surface reaction rate can be calculated by the Arrhenius equation, as shown in Eq. (28). the number of the parameters of the rate constant can be reduced by using linear free energy relationship (LFER),42,43 and the exothermic and endothermic reactions correspond to Eq. (29) and Eq. (30), respectively. For adsorption constants in the LHHW formalism, the adsorption constants number was reduced by the QSRC,44 as shown in Eq. (31).
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	(29)

	
	
	(30)

	
	
	(31)


3.1.4 Rigorous adiabatic reactor model
Diesel hydrotreating involves the gas-liquid-solid three phases. In this work, the trickle-bed reactor model was used to simulate the diesel hydrotreating process.45 For the trickle-bed reactor model, the mass balance of each molecule in the gas phase and liquid phase can be expressed by ODEs, as shown in Eq. (32) and Eq. (33), respectively. Besides, the heat balance equation is shown in Eq. (3). For the bulk properties in the reactor model (such as gas-liquid mass transfer coefficient, henry's coefficient, and gas-liquid interfacial area),46,47 it has been listed in Table S2 for details.
	
	
	(32)

	
	
	(33)


3.1.5 Model parameters evaluation
After the molecular-level kinetic model was built, the model parameters need to be tuned using the experimental data. In the previous work,36 the initial values of model parameters have been obtained. On this basis, the model parameters of diesel hydrotreating were updated using the experimental data of a pilot hydrotreating unit. The experimental conditions are as follows: the reaction temperature was 330 oC, the pressure was 8 MPa, the liquid hourly space velocity (LHSVs) was 1.2 h-1, and the hydrogen-to-oil (H2/oil) ratio was 600 NL/L. The tuned parameters are listed in Table S3. Figure 5(c) compares experimental and calculated properties of hydrocarbon classes. A good agreement between calculated and experimental values can be observed. Besides, a more detailed comparison of bulk properties is listed in Table S4.
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Figure 5. Molecular-level kinetic modeling of diesel hydrotreating. (a) reaction rules for diesel hydrotreating; (b) comparison of hydrocarbon classes of feedstock; (c) comparison of hydrocarbon classes of product
3.2 Temperature difference estimation methods for discretization model
After the development of rigorous diesel hydrotreating model, we then discretized the model to improve the computational efficiency. At the first step, we evaluate the performance of the temperature difference estimation methods and the node number. As discussed above, four methods for temperature difference estimation have been proposed. To choose the optimal method, four methods were applied, and the results were compared in detail. Four methods were all delivered to the discretization model to calculate the model results (shown in Figure S3). Then, the absolute error of the four methods was calculated. Because the analytic solution of mass and heat balance equations cannot be obtained, the rigorous model was used as the benchmark, which using Runge-Kutta algorithm as an ODE solver. According to the step length setting strategy, the convergence tolerance of each bulk property was determined (shown in Table S5). The absolute error of four methods varies with the node number is shown in Figure 6. As expected, as the node number increased, the errors of all properties gradually decrease. The error value is close to zero when the node number is high. 
However, the convergence rate of each property was different. Among them, the error of temperature prediction is the largest. The convergence rate of each method was also different. The Euler method was the slowest. Only when the node number is more than 1000, the temperature prediction converged (Figure S4). The converge speed of the modified Euler method and PECE method (modified Euler) were the fastest, and the calculated errors of two methods were consistent. Their bulk properties were all convergence when the node number was greater than 200.
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Figure 6. Effect of node number on the absolute error of four methods. (a) paraffins; (b) monocyclic naphthenes; (c) dicyclic naphthenes; (d) tricyclic naphthenes; (e) monoaromatics; (f) diaromatics; (g) triaromatics; (h) sulfur; (i) nitrogen; (j) density; (k) temperature
The discretization model should guarantee the model accuracy while reducing the computational time, which is mainly determined by the node number. The increasing node number results in the calculation accuracy improvement while increasing the computational time. Thus, it is necessary to investigate the effect of node numbers on computational time, as shown in Figure 7. The dotted line represents the computational time of the rigorous model (about 100 s). Since the Euler method is the first-order method, the relative computational time was the shortest. For the other three second-order methods, the relative computational time was almost the same. Although the relative computational time of the Euler method was shortest, it is difficult to make up for the loss of calculated accuracy. For the modified Euler method and the PECE method (modified Euler method), the relative computational time was about 0.2 when they were convergence (200 nodes). Considering the PECE method (modified Euler) is a multistep method, the stability of the calculated result is higher than that of the modified Euler method. Therefore, the PECE method (modified Euler) was selected to estimate the temperature difference based on the computational time, accuracy, and stability.
[image: ]
Figure 7. Effect of the node number on the computational time
3.3 Evaluation of mass-temperature decoupled discretization strategy
3.3.1 Trade-off between the relative computational time and error
After determining the temperature difference estimation method, we systematically evaluated the mass-temperature decoupled discretization strategy. According to Figure 6, the reaction temperature was the key to the convergence of the reactor model. Therefore, when the node numbers were 10, 25, 50, 100, 150, 200, the temperature distribution along the reactor was investigated, as shown in Figure 8(a). The results showed that with the increase of the node number, the temperature distribution along the reactor gradually approached the rigorous model.
[image: ]
[bookmark: _Hlk62748635]Figure 8. Effect of the node number on the calculated results. (a) Effect of the node number on the reaction temperature along the reactor; (b) The relative computational time and error
Although increasing node number can improve the accuracy, it also causes an increasing computational time. Thus, we need to quantitatively obtain the relationship between relative computational time and absolute error to choose an appropriate node number. The results are as shown in Figure 8(b). The hydrocarbon class prediction error in the figure is an average error, and a more detailed error about each hydrocarbon class is represented in Figure S5. With the increasing node number, the relative computation time increased linearly, but the errors decreased sharply. The results indicated a trade-off between the accuracy and computational time of the discretization model. It only needed to pay the small investment (computational time) can make a larger profit (error reduction). Thus, for industrial practice, the computational time of the model can be adjusted dynamically according to the accuracy requirements. It is also an advantage for the mass-temperature decoupled discretization strategy. Besides, figure 8(b) shows that the errors are relatively low when the node number is greater than 100. Therefore, we chose 100 as the node number to validate the discretization model.
3.3.2 Validation of product bulk properties
The molecular-level kinetic model is generally used to calculate product properties. Figure 6 shows that the discretization model can accurately calculate the product properties at the outlet of the reactor. If the product distribution along the reactor is also consistent with the rigorous model, the model will become more reliable. Thus, the distribution of key bulk properties and temperature along the reactor was calculated to validate the discretization model, as shown in Figure 9(a) ~ (d). The node number was 100, and the product and temperature distribution of the discretization model had an excellent agreement with that of the rigorous model. In Figure 9(a), with the progress of the reaction, the weight fraction of diaromatics and triaromatics gradually decreased, and the reactivity of triaromatics is less than that of diaromatics. For monoaromatics, the content increased gradually at first. However, as the reaction proceeded, their content presented a tendency of decrease, and about 41 wt% at the outlet of the reactor. This is because the reactivity of monoaromatics is relatively low, and their generation was less than their consumption in the hydrotreating. However, as the reaction proceeded, the content of diaromatics and triaromatics gradually decreased, their formation was gradually less than their consumption. Thus, the weight fraction of monoaromatics presented a downward trend. For naphthenes, due to the hydrogenation of aromatics, the content of naphthenes all increased gradually. Figure 9(c) and (d) illustrate the distribution of sulfur and nitrogen along the reactor. The reaction rate of HDS and hydrodenitrogenation (HDN) was both gradually decreased. The content of sulfur and nitrogen was extremely low at the outlet of the reactor, about ten ppm and two ppm, respectively.
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Figure 9. Comparison of calculated results between rigorous model and discretization model: (a) hydrocarbon classes; (b) temperature; (c) sulfur; (d) nitrogen; (e) exact molecular weight distribution; (f) relative computational time. Lines represent rigorous model; circles represent discretization model; node number is 100.
3.3.3 Validation of product molecular composition
The calculated results of bulk properties for the discretization model have been validated. Next, the model would be further validated at the molecular level. Figure 9(e) shows that the molecular distribution of the discretization model had a great agreement with the rigorous model. It proved the accuracy of the developed model at the molecular level. As shown from the figure, the molecular distribution of hydrotreated diesel was reasonable and approximately followed a gamma distribution. Moreover, because the feedstock was FCC diesel, the content of sulfur and nitrogen is relatively high. To match clean oil requirements, a few hydrocarbons occurred ring opening and hydrocracking reaction during the deep hydrotreating. Therefore, from a molecular perspective, there is a trade-off between the reaction depth of diesel hydrotreating and the yield of the product.
After the accuracy of the discretization model was proved, the computational time of the two models was also compared, as shown in Figure 9(f). The results show that the computational speed was accelerated 10 times by using the discretization strategy and the relative computational time can meet industrial practice demand.
3.3.4 Sensitive analysis for inlet temperature
The reaction temperature is one of the most important process parameters in hydrotreating. Generally, the inlet temperature of diesel hydrotreating is 310 oC~340 oC. Thus, the effect of inlet temperature on the accuracy of the model was investigated, as shown in Figure 10. Figure 10(b) is the average error of hydrocarbon classes at the outlet of the reactor, and more detailed errors of each hydrocarbon class are represented in Figure S6. Figure 10(a) indicates that the node number increased with the inlet temperature increased. This is because the inlet temperature rose, and the reaction rate also increased, causing a growing temperature difference. Therefore, a more detailed discretization was required to meet the convergence tolerance. When the convergence tolerance of temperature difference was 0.1, the minimum node number of each inlet temperature can be obtained based on the step length setting strategy. Then, Eq. (34) can be fitted by using these minimum node numbers. The user can then dynamically adjust the node number according to the inlet temperature and save the computational expense.
	
	
	(34)


From the perspective of model development and validation, the calculated accuracy should be as high as possible. However, in a large-scale industrial diesel hydrotreating unit, the accuracy of 0.1 oC may waste computational resources. For industrial practice, 1 oC is enough. Therefore, in the same way, the relationship between the inlet temperature and the minimum node number is obtained when the temperature difference is 1 oC, as shown in Eq. (35).
	
	
	(35)


[image: ]
Figure 10. Effect of the node number on the absolute error under different inlet temperatures. (a) temperature; (b) average error of hydrocarbon classes
4. Conclusion
[bookmark: _Hlk63607331][bookmark: _Hlk63607727][bookmark: _Hlk63607892]In this work, a novel mass-temperature decoupled discretization strategy was proposed to solve the problem that the large-scale molecular-level kinetic model is difficult to solve. The method decoupled the mass balance and heat balance of the rigorous adiabatic reactor model and divided the model into several isothermal nodes. After discretization, the differential equation for heat balance can be replaced by the algebraic equation, and the computation expense was decreased. Then, the temperature difference estimation method and the step length setting strategy were proposed. We used a molecular-level kinetic model of diesel hydrotreating as the case to validate the proposed method. No matter bulk properties or molecular weight distribution, A good agreement between the discretization model and rigorous model was observed. The relative computational time was also reduced to 0.1 times of rigorous model. The discretization model of diesel hydrotreating can meet industrial practice demands in terms of calculation accuracy and computational time. Besides, a trade-off between accuracy and computational time was observed, and it allows the user to adjust the computational time flexibly to match different accuracy.
Nomenclature
 = Derivative of 
 = Second derivative of 
 = Third derivative of 
 = Truncation error
 = Step length
 = Heat capacity of the gas, J/(g‧K)
 = Heat capacity of the liquid, J/(g‧K)
 = Density of the gas, kg/m3
 = Density of the liquid, kg/m3
 = Reaction rate of reaction 
 = Surface reaction rate constant of reaction 
 = Adsorption constant of species 
 = Adsorption constant of hydrogen
 = Concentrations in the liquid phase of species , mol/cm3
 = Concentrations in the liquid phase of hydrogen , mol/cm3
 = Hydrogen stoichiometry of hydrogenation reactions
 = Arrhenius constant of reaction family 
= activation energy of reaction family , kJ
 = Reaction index factor in the Bell-Evans-Polyani LFER of reaction family 
 = Activation energy factor in the Bell-Evans-Polyani LFER of reaction family 
 = Enthalpy of reaction , kJ
 = Adsorption parameters
 = Number of aromatic rings of species 
 = Number of saturated carbons of species 
 = Universal gas constant, J/mol‧K
 = Reaction temperature, K
 = Pressure of species  in the gas phase, MPa
 = Relative reactor-bed length
 = Velocity of the gas, cm/s
 = Velocity of the liquid, cm/s
 = gas-liquid interfacial area, cm-1
 = gas-liquid mass transfer coefficient of species , cm/s
 = Henry's coefficient of species , MPa‧cm3/mol
 = Bulk density of the catalyst particles, g/cm3
 = the number of the discrete unit
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