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Abstract: In this paper, we consider the chemotaxis model

ug = Au — V- (uVv), z e, t>0,
vy = Av — vw, r e, t>0,
wy = —ow + u, re,t>0

under homogeneous Neumann boundary conditions in a bounded and convex domain Q C R3 with smooth
boundary, where § > 0 is a given parameter. It is shown that for arbitrarily large initial data, this prob-
lem admits at least one global weak solution for which there exists 7' > 0 such that the solution (u,v,w)
is bounded and smooth in Q x (T, 00). Furthermore, it is asserted that such solutions approach spatially
constant equilibria in the large time limit.
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1 Introduction

Chemotaxis is a kind of tendentious response of insects, cells and bacteria to chemical stimulation in the
external environment, especially in foraging, courtship and ovulation. It is important for bacteria to look for
food, such as glucose, so that they can move to places where food molecules are high and far away from toxic
ones.

A pioneering result in the chemotactic model of cell migration obtained by Keller and Segel in [9], they
proposed

{ut—Au V- (uVv), zcQ, t>0, (11)

vy = Av — v+ u, e, t>0,

where u and v are expressed as the density of cells or bacteria and the concentration of chemical signals. In
the framework of (1.1), the existing result is that the solution will blow up in finite time when the space
dimension is two-dimensional or higher-dimensional and it is proved that for each ¢ > 5§ and p > n,n > 3
and the initial data (ug,vo) satisfies [|ugl|re(q) < € and ||Vvgl/zr() < €, where n denotes space dimension,
the solution is global in time and bounded ([14], [22], [24]). Particularly, when € is a ball in R™ with n > 3,
there exists a radially symmetric positive initial data (ug,vg) such that the corresponding solution blows up
in finite time [24]. In a word, if n = 1, the solution of (1.1) is global in time and bounded [12]. If n = 2
and [, uo < 4m, the solution will be global and bounded [11]. If n > 3 and the initial value are small, the
solution to (1.1) is global and bounded [22].
However, even more general organic compound tend to move towards the nutrients they consume. We can
obtain the following model
{utAuV'(uVU), xeQ t>0, (12)

vy = Av — vu, zeQ, t>0.
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For (1.2), the existing result is that Tao proved in [16] that if the corresponding initial value is sufficiently
1

smooth and satisfies |lvgl () < 5y there is global classical solution. In the three-dimensional case,
it was shown that for arbitrarily large initial data, this problem admits one global weak solution and there
exists T' > 0 such that (u,v) is bounded and smooth in Q x (T, 00) in [16].
There are also models related to (1.2) such as
{ut:Au—XV-(qu)—i—fw—uuz, z €N t>0, (13)

vy = Av — uv, x € Q,t>0.

The existing result is that there exists a global, bounded and classical solution for suitably large u and there
exists a weak solution for any p > 0. Moreover, in the case of x > 0, the solution convergence to the constant
K

equilibrium (7,0) [8]. In addition, there is global and bounded solution to (1.3) with £ = p = 0 is only
known under the smallness condition

1
oo < — 1.4
X||Uo||L Q) = 6(n+1) ( )

on the initial data or in a two-dimensional setting ([23],[25],[18]). In three-dimensional bounded domains,
weak solution eventually becomes smooth [18]. In addition, chemotaxis-consumption models are embedded
into more complex frame-works. Such as coupled chemotaxis-fluid systems with nonlinear diffusion systems,
nonlinear chemotactic sensitivity, and with zeroth order terms accounting for logistic growth or competition
between species have been analyzed.

In this paper, we deal with a chemotactic model with indirect consumption

up = Au—V - (uVv), e, t>0,

vy = Av — vw, x e, t>0,

fgt:—;wntu, z e, t>0, (1.5)
u v

7 — 9]

% oy 0, z €I, t>0,

u(z,0) =ug(z), v(z,0)=wve(x), w(z,0)=wy(x), x € Q,

where ) is a bounded, smooth and convex region, 6 > 0 is a given parameter, (ug, vy, wg) is the given initial
value and satisfies

ug € C°(Q), x €, uyg >0,
vy € WH(Q), g>3,2€Q, vy >0, (1.6)
wo € CO(Q), x € Q, wy > 0.

The interest of this paper is whether the interaction of chemotactic cross diffusion leads to the singularity
of the solution. It has been shown that (1.5) has a global weak solution when n = 2 in [23]. It has been
proved that if either n < 2 or [|vg| () < 3=, (1.5) has a unique, global and classical solution (u,v,w) and
convergence of (u(-,t),v(-,t),w(-,t)) towards a spatially constant equilibrium as ¢ — oo in [3].

Therefore, a natural question is whether the global weak solution of (1.5) is still bounded and smooth for
any large initial value, or if the solution is singular, the solution will blow up in finite time or infinite time,
or the solution will eventually disappear. The result of this paper is that the global weak solution of (1.5)
will at least eventually become bounded and smooth, and eventually tend to a constant equilibrium state.

The main result can be read as follows.

Theorem 1.1 Let QO C R3 be a bounded conver domain with smooth boundary, and assume that ug, vy and
wo satisfy (1.6). Then in the sense of Definition 2.1 below, (1.5) has a global weak solution. Moreover, there
exists T > 0 such that the solution (u,v,w) is bounded and belongs to C*1(Q x [T, 00)) x C*!(Q x [T, 00)) x
CO(Q x [T',00)), and we have

u(z,t) = 4o, v(z,t) = 0 and w(z,t) > Wy ast— oo (1.7)
for all x € Q, where Uy := ﬁ Joy w0, wo = %2

Remark 1.1 Theorem 1.1 shows the behavior of the solution in a long time, but does not rules out the
possibility of finite-time blow up in a stronger topology.



The structure of this paper is arranged as follows: In Section 2, the definition of global weak solution of
(1.5) is given and a basic energy functional of (1.5) is derived and estimated and some results of boundedness
are obtained. The weak stability results of u and the estimate of uniform decay of v are derived in Section
3. In Section 4, the final boundedness and regularity of u are deduced, which depend on the boundedness
of |luc(+,t)||r() by using the weight function ¢(v.). Finally, we can get the stability result of u and the
corresponding result of w, so as to complete the proof of Theorem 1.1 in Section 5.

2 Preliminaries
The following concept of weak solutions appears to be natural in the present setting.
Definition 2.1 By a global weak solution of (1.5) we mean a pair (u,v,w) of functions
we Ll ([0,50) L' (), v € L ([0,00) W), w € L, ([0,50): L'(%)

such that
vw and uVv belong to L}, ([0,00); L* (1)),

and such that the identities

_/OOO/ngt_/Quog(-,O):—/OOO/Qvu~V§+AOO/Qqu~V€7
s fsto= [ weeven [ s

[ e fmstn=cs [ e [

hold for all £ € C§° (ﬁ x [0, oo))

and

A global weak solution of (1.5) in the above sense can be obtained as the limit of a sequence of solutions
(Ue, Ve, we), e =€, € (0,1), of the regularized problems

Uy = Aue — V- (uEFE’(us)VUE), e, t>0,

Vet = AVe — VaWe, zeQ t>0,

Wer = —0we + Fi(ue), e, t>0, (2.2)
Ou.  Ove

5 =, =" x el t>0,

Ue(x,0) = ug(x), wve(x,0) =vo(z), we(z,0)=wo(z), x €,

as € =¢; \y 0. Here,
In(1
Fis) = RO s

for e € (0,1).

Lemma 2.1 Let initial value (ug, vo, wo) satisfy (1.6) and F.(s) be as defined above, then for all e € (0,1),
the system (2.2) exists an unique global and classical solution (ue,ve,we) and satisfies ue > 0,v: > 0,we > 0
in Q x [0,00).
Moreover, there exists a sequence (g;);en C (0,1) of numbers e; — 0 such that

Ue = U Ve — V; We —> W IN Llloc(ﬁ X [(),oo)) for a.e. in (Q X [O,oo)),

where the nonnegative function (u,v,w) is a global weak solution of (1.5) in the sense of Definition by (2.1).

Proof. Firstly, we prove that (uc,v.,w.) is a global classical solution of (2.2).
Ezistence. With R > 0 (R is a constat) and T € (0,1) to be specified below, in the Banach space

X = L([0,T); C°()) x L ([0,T); (),



where ¢ > 3. We consider the closed set
$ 1= { (e, v2) € X|lue (1) [ (@) + 0 ()l wrage) < R for ae. t € (0,7)

and introduce a mapping ¢ = (¢1, ¢2) on S by defining

t
b1 (ue,ve) (-, 1) == e"Pugg —/ et=9)Ay . (uEFE'(uE)VUE)(-,s)ds
0

and

¢
a(ues 1) (1) 1= v = [ I u)u, ),
0
where ¥ (ug) (-, t):= e*‘”wsOJrfot F.(ue)e® =0 (., s) for all (ue,v.) € Sand t € (0,T). Here and below, (¢2);50
denotes the Neumann heat semigroup. -
Then since ¢ > 3, we can take 8 € (0,1) such that % < B < %, then we can obtain D(B?) < C°(€Q), where

B stands for the sectorial operator —A + 1 in L?(£2) with homogeneous Neumann boundary conditions [5].
Using the standard estimate of thermal semigroups ([22],Lemma (iv)) and the properties of the function:

F.(s) = ln(l%s), F_.(s) is nonnegative and satisfies 0 < F.'(s) = ?188 <1 for all s >0 and F. € C?([0,00)).
So there exist some positive constants Cy, Ca, C5(R) such that

t
161 (ue, v) (Ol Lo () < lle el Lo () + Cl/ 1B == E=DY - (ueF (ue) Voe ) || Loy ds
0

t
_1_n
<ol (o) + 02/ (t — )7 2720 |uc FL(ue) Ve (o) ds
0

¢ _1g (2.3)
< ueoll Lo (o) +Co [ (t—5)" 27" [Juc Vo pa(ayds
0

t
<ol (o) + CzHusHLoo(Qx(o,T))||Vvs(',8)||Loo((o,T);Lq(Q))/ (t—s)"2 Pds
0
< ucoll (o) + C3(R)YT==? for all t € (0,T).
We note that ¢ > 3 and @ > 2 = 2 imply that Wh4(Q) — C°(Q) and D(B®) < C°(Q) in ([5], [13]).
Proceeding similarly, we Fix any ~ (%, 1) and estimate
t
l[$2(ue, v) (-, ) lwrage) < [l vellwrago) + 04/ 1B e~ =B D (u v (-, 5) || a)ds
0
t
< Csllveollwrage) + 04/ (t =) [ (ue)ve (-, 8)ll La(e) ds
0
t
< Csllveollwra(a) + CG(R)/ (t—s)ds
0
< Cs||veo|lwraqe) + Cr(R)T~" for all t € (0,7)
for some Cy >0, C5 >0, Cg(R) >0, and C7(R) > 0.
Combined with (2.3) and (2.4), this proves that ¢ = (¢1, ¢2) maps S into itself if we take R > 0 large enough

and T > 0 sufficiently small. Next, we prove that when T is sufficiently small, ¢ = (¢1, ¢2) in fact becomes
a contraction on S. For all (uc1,ve1), (te, ve2) € S, we have

¢
|d1(ter, ve1) (v, 1) — P1(ue2, ve2) (- 1) || oo () = H / eBAY . (ugy FL(ue1) Vo, — uEQFE’(usg)Vvsg)dsHLm(Q)
0

t
< C(8/ (t - 3)_’8_% ‘lualFal(u€1>VUsl - u€2F€/(ue2)vva2dSHLq(Q)
0

< CgT_5+%\|(u51,v51) — (Ue2,ve2)||x  forallt € (0,T).



Similarly,

t
e 1) (1) = (i) ) oy = || €072 (et = o)) s

W (Q)

t
< Cy / (= )b (e Yot — (2 veads] gy
0
< 09T7”+1|\(u51, 1}51) — (ugg, UEQ)HX for all ¢t € (O,T)

Therefore, when T is sufficiently small, ¢ = (¢1, ¢2) is a contractive mapping from S to itself. From the
Banach fixed theorem that there exists (u.,v.) € S such that ¢(u.,v.) = (uc,v.). Because vy € WH4(Q) —

C°(Q) and v. = @a(uc,ve), then we can obtain v, € C°([0, Thax); C°(Q)). Moreover, according to the s-
tandard regularity theory of parabolic equation and the standard estimate of thermal semigroup ([4], [7]),
(ue,ve) actually is a smooth solution of (2.2) and satisfies the following smooth properties:

ue € C°([0,7); L*(2)) N L>((0,T); C°(Q2)) N C**((2) x (0,T)),
ve € C°([0,7); L*(Q)) N L((0,T); WH9(Q)) N C*' () x (0,7)).

From w. = 9(uc) and the smoothness of u., we can get w. € C°(Q x [0,7)) N C*(Q x (0,7)). Namely,
(te,ve,we) is the classical solution of (2.2) in Q x (0,T). From the above estimates, we can know that
the coefficient 7" of the contractive mapping is only related to the initial value |lugl| ) and ||vo|lw1,q()-
Therefore, the solution (ue,v.) can be extended to Tiax < 00, then (ue, ve, w,) is the global classical solution
of (2.2).

Uniqueness. In order to demonstrate uniqueness within the indicated class, we suppose that (uey, ver, wer)
and (uea, Vez, Wea) are two solutions of (2.2) in  x (0,T) for some T > 0. We fix Ty € (0,7) and multiply
the difference of the PDEs satisfied by u., and u.o by u.1 — us.o to obtain

(uel - u52)t = A(uel - u52) -V. (UEIFEI(UEI)V’UEI - UEQFEI(UE2>VUS2)

and

1d
Py / (Usl - u82)2 +/ ‘V(U'El - u52)|2 = / uElFEI(u&‘l)val : v(ual - UEQ)
2dt Ie) Q Q
- / UEQFEI(UEQ)VUEQ : v(ual - U52)
Q

- /Q(ugl — Ue2) Fe (ue1) Ver - V(uer — uea) (2.5)

+ / Ue2 (Fel(usl) - Fs/(us2))vvel : V(usl - UEQ)
Q
+/ UEQFEI(UEQ)V(vel - UEQ) : v(usl - UsZ)
Q
=L +I+ 13 forallte(0,Tp).
Since Ty < T, there exists C1g > 0 such that

luetllos @) + [[uezll Lo (@) + IVVetlla@) + [[Vvea|lLaga) < Cro for all ¢ € (0,Tp).

Now using Young’s inequality and Hélder’s inequality, we can yield that

1 3
< f/ V(e —u82)|2+7/<u51 — 4e2)?| Vo ?
6 Q 2 Q

é/m V(e — uea)l” + g(/Q |VU51|q)§(/Q(U51 - Ue?)%)%

1 3
f/ IV (et — 4ea) 2+ SC2 s — a2 24 for all £ € (0,Tp).
6 Ja 2 La=2(Q)

IN

IN

According to Ehring’s Lemma and the compactness of the embedding W12(Q) << Lo (©), we have

1
B< g [ 19— ) + Culua — wealfys oo
Q

IN

1
§/ |V (uer — u€2)|2 + Cio / (ue1 — u€2)2 for all t € (0,7).
Q Q

5



By similar arguments involving the Lipschitz continuity of F!, for some positive constants C14 and Cis, we
have

I

IN

1
6/ |V (ue1 — ue2)|* + C13 / (te1 — Ue2)? | Ve 2
Q Q

1
g/ |V(ual - U52)|2 + C'14/<u51 - U62)2
Q Q

IN

and .
I3 < g/ IV (uer — ue2)|” + C15/ IV (ve1 — veo) [?
Q Q
for all t € (0,7p). We can obtain the following formula by substituting I7, I and I5 into (2.5)
d 2 2 2
— [ (ue1r —ue2)” < Cr15 | |V(ver —v=2)|" + Cre | (ue1 — uc2)
dt Jo Q Q

for all ¢t € (0,7Tp). Proceeding similarly, we have

1d 2 2
537 [ =0+ [ V(0 = vea)

= —/(wd — Weo) Ve (Ve1 — Ve2) — / Weo (Vey — Ve2)?
Q

Q

1
< 3 / (wer — w52)2 + 017/ 7@1(“51 - 052)2 + ||w52||C0(§X[0,T)) / (ve1 — U82)2
Q Q Q

1 @ 24 %2
< 5 / (wsl - we2)2 + 017(/ ’Ugl) (/(Ual — 1}62)472) + HwEQHCO(ﬁx[O,T)) / ('Uel _ ’1)52)2
Q 9] Q o
1 1
<= / (wsl - w52)2 + 018 / (Ug1 — ’052)2 —+ 7/ |V(Uel — U82)|2
2 /g ; > /.,

and

d
Cis— / (Ve1 — ve2)? + 015/ |V (ve1 — vea)|* < C15 / (we1 — we2)? + Cho / (Ve1 — ve2)?
dt Jo Q Q Q

for all t € (0,T}). Finally, integrating by parts, we find some positive constants Cyp and Co fulfilling

%% /Q(wsl —wep)? = —5/9(11151 — wep)? +/Q (Fe(uer) — Feluez)) (wer — wes)

< Cy / (we1 — wea)? + Coy / (Ue1 — Uea)?
Q Q

for all t € (0,Tp). All in all,

d 2 o 1 2
%{/ﬂ(ual_uaﬂ) +C15/Q(U81—U52) +§/Q(we1—w52) }

< Oy / (Ua1 - U52)2 + Chg / (Uel - 052)2 +Cas / (wsl - w52)2
Q Q Q

for all t € (0,Ty), We infer that y(t) := fQ(usl — uz)? + O fQ(Ud — V)2 + %fg(wsl — we)? satisfies
y'(t) < Coqy(t) for all ¢ € (0,Ty) for some Cay > 0 depending on Ty only. From Gronwall’s inequality and
y(0) = 0, this yields y = 0 in (0,Tp). Therefore, u.; = ueca, Ve1 = Ve2, We1 = wee for all ¢ € (0,7T,) and
thereby proves the clam, for Ty € (0,7T) is arbitrary. Finally, from the comparison principle of parabolic
equation, we can obtain the conclusion u. > 0, v. > 0 and from t(u.) = we, then we can yield we > 0. O

Lemma 2.2 For all € € (0,1), the solution of (2.2) satisfies

1
@/ua(-7t)zﬂo for allt > 0.
Q



Proof. Integrating the first equation of (2.2) on Q x (0,¢), then we can obtain

t
[ fpo
0o Jo
/ug(-,t):/uo.
Q Q

1 1 _
@/ﬂug(~,t):@/gu0:uo. ]

Lemma 2.3 Let e € (0,1). Then for the solution of (2.2),

as well as

Then we have

t = [Jv=(-, 1) () is not increasing in [0, 00).

Proof. Since v.; < Aw. due to the fact that w. and v. are nonnegative, the claim results obtained by the
application of the maximum principle of parabolic equation. [

o0
/ /’UE’U)ES/UE().
0 Q Q

In particular, the limit couple (v,w) defined through Lemma 2.1 fulfills

oo
/ /vwg/vo.
0 JO Q

Proof. Integrating the second equation of (2.2) on  x (0,t), then

t
/ve(~7t)+/ /UEMEZ/%O for all t > 0.
Q 0o Jo Q

o0
/ /UEMES/UEO'
0 Q Q

oo
[ fowe ]
0 Q Q

|

can be obtained by using the Fatou’s lemma.

Lemma 2.4 For all e € (0,1) we have

Since v, > 0, we can yield

Particularly,

Lemma 2.5 For each e € (0,1), the solution of (2.2) satisfies

d 2 1 2
*{/“fln“ﬁ?/ |Vx/va|2}+/ M+/va\D21nvE|2+—/waW”a'
dt Q Q o Ue Q 2 Ja Ve

(2.6)
—I—/ Ve - Vw, —I—/ F.(u:)Av:. <0
Q Q
for all ¢ > 0.
Proof. Multiplying the two ends of the first equation of (2.2) by (1 + Inw.) and integrating by parts, we
have
/ Ut (L + Inw,.) = / Auc(l+Inwu.) — / V- (ustl(us)Vvs)(l + Inw,)
Q Q Q
as well as p )
—/ Ue In Ug —|—/ Ve = / F.'(u:)Vu. - V. (2.7)
dt Jo Q Ue Q



Through a direct integration by parts, we can obtain
331 LIV0F = [ Vo@ (Vi) = [ (Ve (¢ (0aTe +v/()Va)
/1/) P ( |Vc|2(:t+/w )2Ve - Ve

/ W' ()" (¢)|Vefe; — / P (c)’cAc
for all ¢, c € C*'(Q x [0,t)). Moreover, we have

d 1
2—/ |V«/v5|2:7/v;2|V1}5|2v6t—/v;lAvg.vgt
dt Jo 2 Jg Q

1

= 7/ v 2|V |2 (Ave — vow,) — / v Av (Ave — vow,) (2.8)
2 Ja Q

_ )[Rl e A
2 Jo vz 2Jq e Q Ue Q

Now by (23], Lemma3.1), we have

2 2,12 2 4
B S N L
Q Ve Q Ve 2 Jq 02 Q U3 2 Joq v OV
and D2 2 D2 4
/ U5|D21nva|2 :/ ﬂ -9 Ve 'v;(;"v'lls + |VU35| . (210)
Q Q Q Ve Q U
Combining (2.9), (2.10) with (2.8), we can obtain
d D2 e " (ol € € 4 5 2
27/ |V@|2:—/05|D21HUE|2—2/M+2 |V'U | o |VU | ’UE
dt Jo Q Q vZ o v2 o U2 (2.11)
1 2w, 1 1 '
,/ Vo, - Vw, — ,/ M,/ —2|V1}5|2
Q 2 9] Ve 2 a0 Ve 81/
and 2 2 4
72/ (D?v, - V;s) - Vo, :/ |Vv5|2Av5 72/ |Vv35| . (2.12)
Q Vg Q Vg Q Vg

Putting (2.12) into (2.11), we can yield that

d |V |?w 1 19
2— Vel? <|D?Inv. e - Vw, #<7/ Vo . 2.13
dt/ﬂ\VU|+/v\ nv\-l—/Vv -Vuw 2/9 o =3 ) v 0w Vo, (2.13)
Combining (2.7) and (2.13), we can obtain that
d Vu|?
—{/uglnu5+2/ |V\/v5|2}+/ ﬂ+/vE|DQInvE|2+/ Vo, - Vw,
dt Q Ue Q

|VUE| We / 1/ 190 2
/ 2(ue)Ave < 3 |0 v W Vuel*.

Since the boundary condition 88”5 = 0 and the convexity of 0 imply that B‘VUEI < 0on 9N in ([19], Lemma 3.2),
this immediately yields (2.6). O

Corollary 2.1 There exists C > 0 such that for all e € (0,1) the solution of (2.2) satisfies

o] 2
/ /|V“€| <c (2.14)
0 o Ue

/O /Q|Vv€|4§0, (2.15)

8



/ /vaal2 <C, (2.16)
0 Q

/ |Voe|? < C forallt >0, (2.17)
Q
/ |D?v.|? < C (2.18)
0 Q
and -
/ /w€|Vv€|2 <C. (2.19)
0 Q

Proof. Integrating (2.6) over s € (0,¢) we obtain

t 2 t t 2
Ve 1 Vv,
2/Q|V\/1TE|2+/O /Q| v +/O /QUE\DQIDUE\Q—FE/O /Qw5| v
t t
7/0 /QVUEoVwE—/O /QFE(us)Avs (2.20)
{f/uslnus(~,t)+/uolnuo+2/ |V\/%|2/u51nu5(',t)}
Q Q Q Q

1211—|—12+13

for all t > 0 and € € (0,1). By using Young’s inequality, we have

t 1 t ) 1 t 5
I < [Voe||[Vwe| < = |[Voe|* + = |[Vw,|
o Ja 2 Jo Ja 2 Jo Ja

and by ([23], Lemma5.2), we can obtain

1 t t 52
Ilg—//\vm%cl//‘w' e
2 Jo Ja 0 Ja U

t t

122/ /Fg/(uE)VuE~VUES/ /|Vu€\|Vv5|

0 Q 0 Q
P e [ ot
- Voe|* 4+ = Vue|3
1/, Q\ \ 1]/, Q| \
1 t t 52
f//\wg\4+c2/ /L”' )
4 Jo Ja 0o Jo Ue

t t 2
11+I2§C3/ /|VU5|4+C4/ /M-&-CZ
0 Ja 0 Jo Ue

and we can obtain I + I < C5 with some Cs > 0 for all ¢ > 0 by ([23] Corollary 5.3). Since —£In¢ < L for
all £ > 0, this shows that

2 oo 2 o0 1 [e'e] 2
,Sup/ Ve / /\Vus| +/ /U8|D2ms|2+,/ /ME‘WE‘
2 1>0 2Jo Ja Ve

< Cq _/uolnu0+2/|Vf\2 £ |—|—C

as well as

IN

IN

Therefore, we have

for all € € (0,1). Then (2.14), (2.15) and (2.16) are available.
Furthermore, since
1

1 [ |Vol|?
2[lvo| o= () J¢

v 2
| E' 29 Ve

S CG)



(2.17) holds and the same reason for (2.19). Moreover, using that (a —b)? > 2a? — b for all a,b € R, we see

that
8% lnwv
2 2 €
/ /UE|D Inv,]| / /v8 Z ‘8xk8xl
k=1
// 3 a%s /w/li‘avs du. |2
Vg 6xk0ml 0o Jov3 e Oz, Ox;

AL
o Ue .
Now by [7, Lemma 3.3] we have

[e'e] 4 oo
/ / |VU53| S (2 + \/5)2/ / U5|D2 IHU5|2
o Ja lvel 0 JQ

1 /OO/|D2U |2</00/ ‘D2U6|2
1> =
vollL=(@) Jo Ja o Jo  ve
o [e’e} v 4
§2/ /U5|D21DU5|2+2/ | ”;'
0 Q 0 Q U

<206 +2(2+ \/5)2/ / ve|D? Inwv,|?
0 Q
< (2422 +V3)?)Cs

Therefore, (2.18) is available and the conclusion holds. O

1 0%, 7i8v6 v, |2
ve Ox0x;  v2 Oz, Oxp

(2.21)

and

Corollary 2.2 The weak solution of (1.5) obtained from Lemma 2.1 has the properties

e} 2
/ /W“‘ < o0, (2.22)
0 o Uu

/ / |Vo|? < oo, (2.23)
0 Q
/ /IVwI2 < 00, (2.24)
0 Q

sup/ Vo] < oo, (2.25)
t>0 Jo

(o)
/ / |D?v|? < 0 (2.26)
0 Q
/ / w|Vv|? < oo. (2.27)
0 Q

and

Proof. It can be proved by Corollary 2.1.

3 A weak stabilization result for u

As a first step on our way to (1.7), let us derive from Corollary 2.1 a provisional statement on convergence
of uc(-,t) to g as t — oo.

10



Lemma 3.1 There exists C > 0 such that for all e € (0,1), the solution of (2.2) satisfies

= — 2
| el o dt < (3.1)
where ugy := ﬁ fQ ug. In particular, the weak solution of (1.5) gained from Lemma 2.1 has the property that
. — <C. .
/0 a1t = Tl , dt < C (3.2)

Proof. We apply the Hélder’s inequality to (2.14) and recall Lemma 2.2 to obtain

/OOO(/ Vi) / /lwgma
/ /|Vue|2 /Qu

<(Cyp foralle €(0,1)

with C; > 0. By Poincaré’s inequality and continuous embedding W1 (€) «— L2 (Q) in (]20],8.9), we can
yield that

< Co|Vzlprie forall 2 € WH(Q) with / z=0.

e i

2 ()

Taking z = uc(-,t) — U satisfies [ uc(-,t) —up = 0 for all £ > 0 and ¢ € (0, 1), we can obtain that

e L 2 [ 12 2
| et =2y <65 [ 1906010 < 0103,

Therefore, (3.1) is established. By Fatou’s Lemma, we can see that

2 o . .
| =iy = [ it s <2y
oo
< lim i . =2
—il—%mf/o lue () UOHL%(Q)
SCZS)

then (3.2) is available. O

Lemma 3.2 There exists C > 0 such that for the solution of (2.2) we have

/Ooo/ﬂvgt <C. (3.3)

Proof. Testing the second PDE in (2.2) by v, we obtain

2 2 2
- V — ——
/Qvat 2dt Q | UE' 2 /Q wa(”a)t

1d 1
= _—__ wEUQ—&—f/wEtv? for all ¢ > 0.
Q

whenever ¢ € (0,1).

(3.4)

It can hold that

AN

l/t/wv2 l/wvz(t)—/t/wvv
2098t5729557 elelet
1 3.5
_§HUOIIL«>(Q)/wave, //wsvg (Ave — weve) (3:9)

=11 + 1y forall t>D0.

A

11



By Young’s inequality, we obtain that

t t
—/ /wE’UEAUE—‘r/ /w?v?
0 Q 0 Q
V3 ¢ 1 t
< Pl [ [ D20l + (5 llie) [ [ u?
0 JQ 0 Q

From Poincaré’s inequality, we can yield
|lwe —WellL2(0) < Cl|Vwel|L2(0)

and
w32y < 2(1Tel20) + C2IVHL 2y ).

From v (u.) = w. and ||EEH%2(Q) = é||w£||2L1(Q)7 we can obtain that

t
||w5||L1(Q) S ||wEOHL1(Q) —|—/ UE/ eé(s—t)ds
Q 0

t t t t 9
ool s <2 [ ot o) ds +-2020m0* [ ([ ee0as)

Combining (2.18), (2.16), (3.5) with Lemma 2.4, we can yield that

1/t
f/ / wetvg <Oy forall t>0.
2)o Jo

Combining (3.5) and integrating (3.4) in time we thus obtain on dropping nonnegative terms that

// vz < /|V1}0|2 /wovo //wstv <C
Q Q

holds for all ¢ > 0 and each € € (0,1). O

and

Corollary 3.1 The function v obtained by Lemma 2.1 satisfies
vE CO<[O,00);L2(Q)).
Moreover, in (1.7) we may assume without loss of generality that as € = €; \, 0 we have
Ve =V in LZQOC<[O, oo);LOO(Q)>,

ve(,t) = v(-,t)  in L>(Q) for a.e. t > 0 and

ve v in Lf§c<[0,oo);L2(Q)>.

(3.6)

(3.7)

(3.8)
(3.9)

Proof. Firstly, we prove v C’%([ 0, ), L?(2)). Let T > 0. Using the Holder’s inequality and the

boundedness of (vet)ec(o,1) in L ((0,T7); L3(9)) asserted by Lemma 3.2, for any t; < to, t1, t2 €

have

et ooy = ootz | 12 oo )y

[ta — 112 |ty — 1|2
’ t2 vaE ) vet (v t)dzdt’
(fqv2(-,t))dx)2
|ty — 1] 2

t2 3
([ /)
C1.

IN

IN

12
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This implies that (v )z (0,1) is bounded in Cz ([0, T]; L%(2)). Thus, since (Ve)ee(o0,1) is bounded in L*((0,T);
Wh2(Q)) by (2.17) and Lemma 2.3, and since the embedding W12(Q) — L2(Q) is compact, the Arzela-Ascoli
theorem says that (v:).e(0,1) is relatively compact in L*°((0,7); L?(£2)), then (3.9) holds which also implies
(3.6).

Next, recalling (2.18) we know that (v:).c(o,1) is bounded in L*((0,T); W*2(Q)). Since W>2(Q) —
W1P(Q) for each p < 6, we may combine this with the boundedness of (vet)-c(0,1) in L*((0,T); L*(Q ))
obtain from the Aubin-lions Lemma [15] that (v:).e(0,1) is relatively compact in L*((0,T); W'P(Q)) for any
p. In light of the fact that W1P(Q) < L>(Q) for all p > 3, from this we can deduce (3.7) and (3.8). O

Throughout the sequel, we fix any sequence () en such that both (1.7) and the conclusion of Corollary
3.1 hold.
We can now already prove part of the result claimed in Theorem 1.1.

Lemma 3.3 The second component of the weak solution of (1.5) constructed in Lemma 2.1 satisfies
v(,t) =0 in L=(Q) as t — oo.

Proof. Since v is bounded in L>( x (0,00)) by Lemma 2.4 and [;° [, [Vo|* < oo by Corollary 2.1, there
exists a sequence of times t; — oo such that t; < tx41 <t + 1 for all k € N and (v(-, tx))ken is bounded in
W4(Q) and

/v(-,tk)w(~,tk)—>0, k — 0o, (3.10)
Q

Considering in the three-dimensional setting the spaceW1:4(Q) is compactly embedded into L>(2), we may
pass to a subsequence, not relabeled for convenience, along which

V(- tg) = Voo In L(Q) with vy > 0.

Claim 1 : The limit v, is a constant.
Suppose v, is not a constant, then

1 1 1
lim —/ v(tk) = — lim v(-, ;) = —/ Voo < ||Vso || Lo (02
ko0 Q] 1 Jo kroo 1 Jo @

hence there exists kg € N such that

1
1 J,, V0 tho) < sl

Set T.(+,t) := e'®v(-, txo). It is well known (see for instance [22], Lemma 1.3 (i)) that

v-, ko) —0 ast— oo,
IQ\/ L(9)

hence there exist k1 > kg and € > 0 so small such that
H@( P /v( t )H <e
) ~ Tol Uk
1 Jo e @)

(s t) < lvoollLoe (@) — €

in (tx1 — tgo,00). Note that tg1 > tio as (tx)ren is increasing. Moreover, let v(-,t) := v (-, t + tro), t > 0 be
the subsolution of the following heat conduction equation

and

Ut:AU7 IITGQ,t>0,
@:0, r e, t>0,
ov

’U(',O) = U('atk0)7 x € Q.

From the comparison principle of parabolic equation, we have

v(, t+tr) =v(-,t) <o(-,t) forallt>0

13



and
sollpeoy = lm ([0l ti) || noay < Hm |00, )] Lo () < |[voollLoe () — €.
[voollzoe (o) = Hm o tk)llLe(o) < lm (B¢, t)llze(0) < llvoollze() —€

This is a contradiction, hence v, is a constant.
Claim 2: vs = 0.
Suppose that vy # 0 from Claim 1, we can obtain vy, = C with C' > 0, thus we may choose ks € N such

that
v:(, tg) > S for all k > ko. By (3.10) implies that

2
< 1 . < 1 & . ) _
0=, dm | wite) < lim /Qv( )W, te) = 0,

hence
lim [ w(-,tx) =0. (3.11)

k—o0 Q

Applying constant variation to the third equation of (2.2), we can yield that

t
we (-, 1) :e*&wo+/ e U E (ug) (-, s)ds.
0

However, by Lemma 2.2 we have for k € N

ty
/w(~,tk)=e_5tk/wo—|—/ /e‘é(t’“_s)u(-,s)
Q Q 0o Ja
tr
2/ e_‘s(t’“_s)ds/u(-,s)
0 Q

_ |Q|ﬂo(1 et (3.12)
0

> |Q(|;u°(1 —e™")

> 0.

Let k — oo at both ends of (3.12), it is contradictory to formula (3.11), hence v, = 0.

Claim 3: the statement holds.
From above we know that {v(-,x)} has a subsequence which convergence to 0 and combining ||v(-, )| e ()
is non-increasing by Lemma 2.3, then the conclusion is valid. [

4 Eventual boundedness and regularity

Combining Lemma 3.3 with (3.8) and Lemma 2.3, we obtain that not only the limit v but also its approx-
imations become conveniently small.

Lemma 4.1 For any § >0 there exist to(6) > 0 and €o(6) € (0,1) such that for all € € (&) en fulfilling
€ < e0(0), the solution of (2.2) satisfies

ve <6 in Q x (to(6),00).

Proof. Fixed § > 0, from Lemma 3.3 we obtain #; > 0 such that the limit v defined by Lemma 2.1
satisfies v < % in Q x (fg,00). Now (3.8) ensures that we can find some ¢, € (fo,fp + 1) such that
Ve(+,t0) = v(+,to) In L>®(Q) as € = ¢ \, 0, so that in particular ve(-,%p) < 0 in  whenever € € (&) en
is sufficiently small. Since from Lemma 2.3 we conclude that ¢ — ||vc(+, )|/ (q) does not increase, we
conclude that actually ve < § in Q x (¢g,00) for any such €, as desired. O

By using the sufficient small property of v, and the similar method in [17], the boundedness of u. in LP(2)
is obtained for any large p.

14



Lemma 4.2 Let p € (1,00). Then there exist t1(p) > 0, e1(p) € (0,1) and C(p) > 0 such that the solution
of (2.2) has the property

/ ul(,t) < C(p) for allt > t1(p) (4.1)
Q
whenever € € (g;)en and € < €1(p).

Proof. Given p € (1,00), we can fix ¢ > 0 with ¢ < p — 1, then let

p 4+ (p—1)*-(29) g+1
§=p-1-L. , oe (0,1,
PO =p 4 qlg+1)—pg-26 ( 2p)

satisfying
p  4¢  p—q-1

£, = > 0.
4 q(g+1) q+1

p(0) =p—
Since p(d) is continuous in (0, %), there exists ¢ so small in (0, %) such that
Cy :=p(d) > 0. (4.2)

We now let
o(s):=(20 —s)79, s€]0,20)

and take to(d) and ¢(8) as provided by Lemma 4.1. For the first equation in (2.2) multiplying pu?~t¢(v.)
at both ends and then integrating by parts, we can obtain

%/Qu’éw(vg) :P/glug—lw(vg)- [AuE —V-(UEFE/(UE)VUE)} _|_/Qup !(ve)(Ave — vow,)

= —plp=1) [ a0Vl
- [z ) = p ) ()] 9
Q
+p/ u;g_l [ - 290/(05) +(p— I)Fé(ue)gp(ve)} Vu, - Vo,
Q
— / wPweve¢' (ve)
Q
=J1i+Jo+J3+Jy forallt> t0(5).

Here we note that Jy <0, since ' (ve) = q(26 —v)" 7L > 0.
Using that 0 < F/(u.) = <landé < q+1 , we can yield that

1+s
Jo < = [ [ (o) = el @) [0
Q

and
¢ (ve) = e (ve) = (26 — ve) "7 2[g(q + 1) — pg(26 — vc)]
> (20 —v) "7 %q(q + 1 — 2pd)
>0 inQx (to(8),00).

We may invoke Young’s inequality to see that

— ’ ’ [ (ve) — pFL(uc)p (UE)}%

J3 = uP—2¢ (v, — 1) F(ue)e(ve)|Vue - Vg - £ T

s=p [ w2200 + (= Pl e e
2 [=2¢'(ve) 4 (p — 1) FL(u)p(ve)|?

Pl (vs) — pF.(ue)¢' (v v2p—2 uP~ e |2
< [ 1o w0 = pFlu)g ) Vo4 B [ a2 2R S P |

P [ 220 + - DR e
- ‘“4/ P00 — pFm) (o) Vel
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To estimate this, we use that 0 < F/ <1 to derive that

o Do(s) P [F20/(8) + (P = DFL(ue) - ols)]?
K(x,t,) = p(p = 1)e(s) = 7 7(5) = po/(5)
(z,t) € Q x (to(0),00), s € [0,20),

satisfies

K(z,t,s) =p(p—1)p(s) —

4 (s) —Ap — DFL(ue)p(s)@'(s) + (p — 1)*F2 (ue) p*(s)
¢"(s) — pp'(s)
4p(s) + (p = 1)%¢%(s)
@' (s) — py'(s)
B 4q2(25 —5)72472 4+ (p—1)%(26 — 5) "2
=P DR) = Ty RE 82— pa (26— )i
p 4¢° + (p—1)*(26 — s)
% =5 "{p == § o paar =) )

> p(p —1)p(s) —

=R =R =R

\/

hS]
|

p(
> p(26 — )" p(9)
> Cy:=C1p(20)~7 for all (z,t,8) € Q X (to(d),0) x [0,24)

by definition of p. Recalling (4.2), we thus obtain that
K(z,t,s) > Cy for all (z,t,5)inQ x (to(d),00) x [0,25).

In view of v. < ¢ in Q X (t(4), 00) for € < £9(d) by Lemma 4.1, this entails that
Jo =gt [ [plo=1p(00) = K(ait,00)] Ve 2
Q
<—Jp—J; — cz/ uP 2| Vue|?  for all t > to(9).
Q

Putting J1, J2, J3 and Jy into (4.3), we can yield that
d ¢
7 ngcp(vs) < —Cg/ﬂu§*2|Vus|2 = / |Vue |2 for all t > t¢(9). (4.4)

Since ¢(ve) <679, luc| g1 (o) < C for all t > () and the Gagliardo-Nirenberg inequality in [2], there exist
Cs, C4 > 0 such that

p
/ ulp(ve) < 07 |ug |22 q)
Q

< 3|V 5 2(21—01) C 512
IV By I+ Caluf 2

< 04(\\Vu§||§%(9) +1) forall t > to(6).
Due to 3 =a(3 — 1) + ?’2—”(1 — a), we can obtain a = 33%7:1) € (0,1). Therefore (4.4) shows that y.(t) :=
Jo uPo(ve)(-,t), t > to(0), satisfies
1
Ye(t) < —Cs(ye(t) = 1)5  for all t > to(J)
for some C5 > 0, and hence an integration yields

C5(1 - a)

a

ye (t) §1+{ (7:—150(5))}_ﬁ for all t > to(d).

Since @(ve) > (26)77 for all v, € [0,25), we thus conclude that

/ng?(.,t) < (26)q/ﬂu€<p(v5)(~7t):(26)qy5(t) < @011+ (M)ff} for all £ > t(6) + 1,

a

provided that € € (&) en is sufficiently small. This proves (4.1) upon the choice t;(p) :=to(p) +1. O
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Lemma 4.3 There exist T > 0 and a subsequence (g;,)ien of (€;)jen such that for any € € (g,)ien we have

[ue(, )l oy < C forallt > T, (4.5)
ue —u and v —v in Cpl (ﬁ X [O,oo)) ase=-¢ej, \, 0 (4.6)

and such that -
w, € CO’1<Q x [T,oo)).

Proof. We fix any p > 6 and then obtain from Lemma 4.2 some t; = t1(p) > 0, C; = C1(p) > 0 and 1(p) €
(0,1) such that
Hus(~,t)||Lp(Q) <(Cp forallt>t; (47)

and any € € (g;);en fulfilling € < e1(p). Using the standard regularity estimate in [6] and the variation-of-
constants formula for w,,

¢
we (-, 1) = e twy +/ et (us(-,8))ds, t>0,
0

we can yield ||we(-,t)||Lr(q) < Co, for all t > t; and € € (&) en. Applying V to both sides of the variation-
of-constants formula for v,

¢
0e(- 1) = eIA=Dy (L 4y — / =)A=V (. —1)u.(-,8)ds for all t > t1,

ty

recalling that [F.(uc)| < ue, ve < |[vg||L~(q) and the estimate of thermal semigroups we therefore obtain
C3 > 0 and C4 > 0 such that

t
V0=, ) Lo () < IV E Do (1) Loy + / Vet AD (w, — 1) (-, 5)|| 1o () ds
t1

t
< Cslloe (-, 1)l L) + Cs/ (t—s)"7e” ) (Jlwel| ooy + 1)ds
t1
SC4 fOI‘aHtZtQ ::t1+1.
By Hoélder’s inequality, this implies that
||uEVvE(~,t)||Lg(Q) < luellzr @) | Vel zr() < C1Cy for all t > to,

the variation-of-constants formula for u. in the form

t
e (1) = 122y (- 1) — / =92y (ueF.(uc)Voe) (-, s)ds  for all ¢ > to, (4.8)
ta
along with (4.7) allows us to estimate
||Be’u,5(-,t)||Lq(Q) < C5||u5(‘,t)||Lp(Q) < 0501 = C@ for all ¢ > t3 =19 + 1 (49)
and moreover
| Buc(-,t) — Bgu5(~,s)||Lq(Q) < Cglt — s|" for all t,s > t3 such that |t —s| <1 (4.10)

with some n € (0,1), 6 € (0,1) and ¢ > 1 large enough such that 26 — % > 0, where B? denotes the fractional
power of the realization —A + 1 in L?(€2) under homogeneous Neumann boundary conditions.
Along with the fact that the domain of definition of B? satisfies D(B?) < C?(Q) for all 8 € (0,26 — g), the

g
estimates (4.9) and (4.10) show that (uc).¢(e,),, is bounded in both L> (Qx (t3,00)) and in o (Qx[ts,00))

loc

for some 8 € (0,1) in [5]. Using standard parabolic Schauder estimates applied to the second equation
_ 8
in (2.2) yield boundedness of (v¢)z¢(z,);c, in both L™ ((ts,00); C?*8(Q))) and in 0120-5;13,1-5-2 (Q % [t4,00)) for

t4 :=t3+1in [10]. By a similar argument, entails boundedness of (ue)ee(e,),., in both L= ((t5, 00); C2+7'(Q))

fa 8
and in Ci:ﬁ A5 (Q x [ts,00)) for some ' € (0,1) and t5 := t4 + 1. The statement about u. and
ve can be completed by applying the Arzela-Ascoli theorem. Finally, the asserted regularity of w.
follows from it’s constant variation and the third equation of (2.2). [
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5 Long time behavior of u

We now aim at improving the rather weak stabilization result for v warranted by Lemma 3.1. As
a preparation, we assert that u; decays at least in some weak sense in the large time limit.

Lemma 5.1 There exists C > 0 such that for all € € (0,1) the solution of (2.2) satisfies

/0 [ Jedt < C. (5.1)

(W3a2(Q)
Consequently,

e Oy < C (5.

Proof. We fix ¢ € W32(Q) and test the first equation in (2.2) against 1 to obtain

/ ey = / Atgtp — / ! () Ve )

= —/ Ve - Vi + / U F (ue) Vo - Vi) 5:3)
Q Q
=11 +1y forallt>O0.
Here by Holder’s inequality, we can yield that
1 1
11 ‘vu5|2 %
< () | 2T2 — 5.4
< V6l (o] \zuo(/Q ) (54)
|Vue|?\ 3
=C .
()
Similarly,
1] < Vol [ welV
Q
< Co{ [ (ue — )| Vo] + wo| e} 55)
Q

g02(/Q|us—uo|3)§(/9|wg|3)5+02uo/9|w€|.

Since W32(Q2) — W'°°(Q) and hence ||Vz|p) < Cslzllwszq) for all z € W?*(Q) and some
Cy>0,Cy >0, (5.3), (5.4) and (5.5) show that

Juee )1 uens|

we2@)" T yewsa), ||¢||W32(Q<1‘/

4 2 2
gch/ [Vue " +4c§ /|u5—u0|3 3</|w5|3)3+4c§ug(/ ]Vve\)
Q Q
\V4 4
<26’1/’ ug\ —i—202 /]ue—u0| /\Vva\?’)S
/|u€_u0| +4C3 /|VU€|
gch/’ e’ +2022]Q|§ /|u5—u0\2 S/yvvgﬁ
%
/’Ue—uo| +actapiat ([ Vel
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Hence, in view of (2.14), (2.15) and (3.1) yield (5.1). From lower semicontinuity of the norm in the
Hilbert space L?((0,00); W*2(Q)*) with respect to weak convergence, we can obtain (5.2). O

Lemma 5.2 The weak solution of (1.5) obtained from Lemma 2.1 satisfies
u(-,t) =g in L>®(Q) as t — oo, (5.6)
where Ty = ﬁ Jq wo-

Proof. Let us suppose on the contrary that (5.6) be false. Then we can extract a sequence of times
t;. — oo such that

inf l[u(-,tk) — UollL= (@) >0, (5.7)

where we may assume without loss of generality that t;, < tx11 < tx+1 and t, > T for all £k € N with
T as provided by Lemma 4.3. Since then {u(-, ) }ken is relatively compact in L*°(2) according to
(4.5) and the Arzela-Ascoli theorem, we can extract a subsequence denoted by (¢x)ren such that

u(tytg) = s in L(Q) as k— oo (5.8)

is valid with some non-negative us, € L*°(2). By the Cauchy-Schwarz’s inequality, we obtain

[ et~ e tsyti= [ [t sias|
Ue () —ue (-t , LAt = Uet(+, S)ds ) t
" € € k (W3:2(Q)) " " et (W3:2(02))*
tht1 t 2
g/ (N ) lwoz(yy-ds) at
th th

tet1 t )
< /t ( Hust('v 5)|’(w3,2(9))*d8 : (t — tk)dt
k

ty

g/t et ) 2y -dsfor all & € (0,1)
k

and according to Lemma 5.1, we can yield

o

tkt1
/ (-, 8) = (s ) [Fps - dt S/t e (-5 )| Frs - ds
k

tg
—0 ask— oo.

Due to the fact that L>°(Q) — (W?32(Q))* and (5.8), this ensures that
0 < lultk) — usoll(ws2@y < Cillu(st) — ool Lo ()
—+0 as k— oo.

From the Integral mean value theorem, it yields that

tr4+1
/ (-, £) = e s gyt = (s ) — too By (e — t)
tk (5.9)

< ||u(7t;§) - uoo||?w3,2(9))* —0 as k— oo.

On the other hand, since also L%(Q) — (W32(Q))* and Lemma 3.1 asserts that

o0

[ )~ ol < € [0~y <o

and thus in particular
tet+1 -
/ [u(- ) = Uoll(ys.2(qy)-dt — 0 as k— oo.

173

Clearly, (5.9) is possible only if us, = %o, which contradicts (5.6) and (5.7). O
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Lemma 5.3 The weak solution of (1.5) obtained from Lemma 2.1 satisfies

o
5
Proof. Let € > 0. According to Lemma 5.2 we may choose t; > 0 such that

w(-,t) — =wy in L*(Q) fort — oc. (5.10)

J
(-, t) — ol Lo (o) < % for all t > t;.

Moreover, there exist to,t3 > 0 such that

6_6tHw0HL°°(Q) < g for all t >t
and ‘ ol
U — Ugl| o0
[t~ Tollit@xtond -st-) < € gor il 1> 1,
0 3
Let

wK%QQm)%R,(Lﬂhﬂ%@j%j?U—GJW

then we have for ¢ > to := max{t1, t2, 3} by the representation formula of w
! —4
(0 = el t) = [0 aads oo
0
& ! 4
< e Jwol| oo () +/ e || Fo(ue (-, 8)) — Tol| oo (0 ds
0

€ t1 o t (s B
< +/ e 8)||Fs(us(w$))—UOHLw(Q)dH/ e Juc (-, 8) = To| oo (0 ds

3 0 ;
—6(t—t1)
t1
e € e
37373
e.

As € > 0 is arbitrary, we conclude that

Jim (@] (@) = 0

and therefore

< i t) — — < - *5tH =0.
0< Jim [lw(-1) 5Hmm Jim (0l (o + Jim || %2 RS

our main result can now be obtained by simply collecting what we have found so far.

Proof of Theorem 1.1. The statement on eventual boundedness and regularity immediately
result from Lemma 4.3 and Lemma 2.1. The convergence results in Theorem 1.1 have already been
proved in Lemma 3.3, 5.2 and 5.3. ([l

Acknowledgements The author is very grateful to Professor Zhaoyin Xiang for his valuable sug-
gestions. This work was partially supported by the Fundamental Research Program of Sichuan
Province no.2020Y J0264.

20



References

[1]
2]
3]

[4]

1]
12]
13]
[14]
15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

D. G. Aronson, The porous medium equation in Nonlinear Diffusion Problems, Lect. 2nd (1985).
A. Friedman, Partial Differential Equations, Holt, Rinehart Winston, New York, (1969).

M. Fuest, Analysis of a chemotaxis model with indirect signal absorption, J. Differential Equation 2672
(2019) 4778-4806.

Y. Giga and H. Sohr, Abstract LP estimates for the Cauchy problem with applications to the Navier-Stokes
equations in exterior domairns. J. Funct. Anal. 102 (2012) 72-94.

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin. (1981).

D. Horstmann and M. Winkler, Boundedness vs.blow up in a chemotazxis system, J. Differential Equation
215 (2005) 52-107.

M. Hieber and J. Priiss, Heat Kernels and mazimal LP — LY estimates for Parabolic evolution equations,
Comm. Part. Diff. Eqs 22 (2003) 1647 -1669.

L. Johannes and Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemo-
taxis system with consumption. Discrete Contin. Dyn. Syst. 37 (2017) 6099-6121.

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria; a theoretical analysis, J. Theor.
Biol. 30 (1971) 235-248.

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi-Linear FEquations of
Parabolic Type, Amer. Math. Soc, Providence, (1968).

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a Parabolic system
of chemotazis, Funkcial. Ekvac. Ser. Int. 40 (1997) 411-433.

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial.
Ekvac. 44 (2001) 441-469.

H. Sohr, The Navier-Stokes Equations. An elementary function analytic approach. Basel: Birkhduser,
2001.

T. Senba and T. Suzuki, Parabolic system of chemotazis: blow up in a finite and the infinite time,
Methods Appl. Anal. 8 (2001) 349-368.

R. Teman, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl, vol. 2, North-
Holland, Amsterdam, 1977.

Y. Tao and M. Winkler, Fventual smoothness and stablization of large-data solutions in a three-

dimensional chemotaxis system with consumption of chemo-attractant, J. Differential Equations. 252
(2012) 2520-2543.

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl.
381 (2011) 521-529.

Y. Tao and M. Winkler, FEventual smoothness and stabilization of large-data solutions in a three-

dimensional chemotaxis system with consumption of chemo-attractant, J.Differential Equcations. 252
(2012) 2520-2543.

Y. Tao and M. Winkler, Boundedness in a quasilinear Parabolic-Parabolic Keller-Segel system with
suberitical sensitivity, J. Differential Equation 252 (2012) 692-715.

H. W. Alt, Linear Functional analysis, fifthed, Springer, Berlin, Heidelberg, (2006).

M. Winkler, Absence of collapse in a Parabolic chemotaxis system with signal-dependent sensitivity,

Math. Nachr. 283 (2010) 1664-1673.

M. Winkler, Aggregation vs global diffusive behavior in the higher-dimentinal Keller-Segel model, J.
Differential Equation 248 (2010) 2889-2905.

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swim-
ming in fluid drops, Partial Differential Equations, in press.

21



[24] M. Winkler, Finite-time blow up in the higher-dimentional Parabolic-Parabolic Keller- Segel system, J.
Math. Pures Appl. 100 (2013) 748-767.

[25] M. Winkler, Stablization in a two-dimensional chemotazis-Navier-Stokes system, Arch. Ration. Mech.
Anal. 211 (2014) 455-487.

22



