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Abstract 24 

The relative abundance of species is temporally varying, but estimating abundance, given 25 

incomplete and biased sampling is challenging. Here, we describe a new occupancy model, 26 

TRAMPOline (Temporal Relative Abundance-focused Multi-sPecies Occupancy model) in a 27 

hierarchical Bayesian framework, where occupancy and detection are modeled as a means to 28 

estimate relative abundance. TRAMPOline can be applied to temporal occupancy data with 29 

sub-samples. We demonstrate TRAMPOline using a fossil community of benthic organisms 30 

to estimate relative abundance dynamics of several focal species over 2.3 million years, by 31 

drawing on information provided by non-focal species observed in the same community. We 32 

expanded TRAMPOline by adding random effects of species and time-intervals (geological 33 

formations) and explored potential explanatory factors (paleoenvironmental proxies) and 34 

temporal autocorrelation that could provide extra information on unsampled geological time-35 

intervals. TRAMPOline is applicable across a wide range of questions on species-level 36 

dynamics in contemporary and palaeoecological community settings.  37 
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Introduction 38 

Occupancy modeling in statistical ecology (King 2014) seeks to tease apart true site-39 

occupancy and observations of species within sites by the explicit modeling of both 40 

ecological and detection processes (MacKenzie et al. 2017). Occupancy data are commonly 41 

collected as presence-absence data replicated within multiple sites. While occupancy 42 

probability is often the focus of occupancy modeling, it is also used to monitor the 43 

persistence of populations, estimate species richness, understand habitat preferences and to 44 

infer abundance (MacKenzie et al. 2017), the last of which is the our focus here.  45 

Understanding the complex drivers of population dynamics and their interactions 46 

require robust empirical estimates of changing abundance (Sutherland et al. 2013), Here we 47 

develop TRAMPOline, a Temporal Relative Abundance-focused Multi-sPecies Occupancy 48 

model that can be applied to communities where data are organized as sites in which sub-sites 49 

are observed for multiple species over multiple time-intervals. We will demonstrate our 50 

model with a fossil benthic community (see methods and SI) but our model is applicable to 51 

diverse systems and ecological disciplines, including contemporary sessile plant or marine 52 

benthic communities (Marine and Plant Ecology), other fossil data including pollen and 53 

microfossil communities (Archeology, Micropaleontology, Quaternary Science), as well as 54 

eDNA data (metagenomics) in which subsamples from sites are analysed separately, over 55 

several time-intervals. 56 

In TRAMPOline, local abundance (i.e. site-level abundance, given occupancy), is 57 

derived from detection through a point-process assumption. Here, the detection of a species 58 

in a sub-sample within a site is derived from a Poisson process with expected value 59 

proportional to local abundance. Through this, our aim is to estimate relative abundance of 60 

multiple species while drawing on information from other species within the same 61 

community and integrating information from multiple sites across time. In contrast, early 62 
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occupancy models were applied to single-species and did not include counts within sites 63 

(MacKenzie et al. 2002, 2003). Later, extra information harbored in data in the form of 64 

multiple-encounters within sites, were embraced by occupancy modelers. The first model that 65 

estimates abundance from occupancy data, including counts, for a single species, the Royle-66 

Nichols (RN)  model, assumed that detection probability increases with local abundance 67 

(Royle et al. 2005). Yamaura et al. (2010) then developed a model that combines the RN 68 

model with a multi-species approach (Dorazio et al. 2006), in order to infer the number of 69 

species in the community using data augmentation and by assuming that abundance affects 70 

detection. The model we develop here is different from previous hierarchical multispecies 71 

occupancy and abundance models (Iknayan et al. 2014; Devarajan et al. 2020) as these 72 

models are focused on estimating species richness (including those that are undetected), but 73 

leverage abundance for species richness estimation. Here we are conversely interested in 74 

abundance. We factorize sampling (i.e. detection) into shared (species-independent) and 75 

species-dependent components using random factors, such that the uncertainty for a given 76 

time-interval is informed by the variation found in others. These random effects handle time-77 

interval specific sampling differences, as well as fluctuations common to all species involved, 78 

i.e. components irrelevant to relative abundance. 79 

By describing how the relative abundance, and secondarily, the occupancy probability 80 

of various species have changed over time, TRAMPOline allows us to hypothesize the roles 81 

of potential drivers of ecological waxing and waning. In this methodological contribution, we 82 

briefly describe a empirical system to which TRAMPoline can be applied as an example, then 83 

develop a model to extract relevant (paleo)ecological parameters from this system. Using 84 

simulated data, we explore if ecological dynamics can be accurately inferred using our 85 

model. Last, we discuss the utility of our model for diverse systems and suggest venues for 86 

the expansion of our model. 87 
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Materials and methods 88 

Study system 89 

To illustrate how TRAMPOline can be applied, we use an empirical system of fossilized 90 

benthic organisms spanning 2.3 million years found in the Wanganui Basin, (Carter & Naish 91 

1998; Proust et al. 2005; Pillans 2017) as detailed in the SI. We sampled 9 time-intervals in a 92 

total of 119 sites (see Fig. 1 for a schematic representation), in which the number of sub-93 

samples varied between 30-50 (see Table S1 and SI for details). We tabulated the observed 94 

presence of three focal species namely Antharcthoa tongima, Escharoides excavata and 95 

Arachnopusia unicornis (Fig. S1) in each subsample for all 9 time-intervals and 119 sites. We 96 

also introduce a fourth “species”, the superspecies, which represents all other bryozoan 97 

species excluding the three focal species. This superspecies information contributes to our 98 

estimates of relative abundance for the three focal species (see model description). Since the 99 

formations (time-intervals) were chosen because they are known to harbor bryozoans, the 100 

superspecies is assumed to always be present, i.e. occupancy probability=1.  In other 101 

applications, the occupancy probability of the superspecies can be estimated within the 102 

model. Note that there is ample among-formation, within-formation and among-species 103 

variation in the ratio of examined shells with observations of encrusting bryozoans, where 104 

non-observation includes both the lack of detection and non- occupancy (Fig. S2). 105 

 106 

Model description 107 

Our main objective is to estimate the temporal (i.e. formation-to-formation) dynamics of 108 

relative abundances for each focal species using presence/absence observations on sub-109 

samples (shells) from different sites (Fig.1, Fig. S1). There are two probabilities at play; the 110 

probability that a species occupied a given site i.e. the occupancy probability, Ψ, and the 111 

probability that a sub-sample has at least one observation of the focal species, given 112 
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occupancy, i.e., the detection probability, 𝑝. The probability that a species is found on a given 113 

sub-sample is thus Ψ𝑝, where Ψ operates on the site-level while 𝑝 operates on the sub-114 

sample-level. The occupancy and detection probabilities will be functions of various 115 

parameters and random factors, and can be specific to the site i belonging to a specific time-116 

interval, and the species, s. Thus, we will write Ψ!,#(𝜃) and 𝑝!,#(𝜃) for the occupancy and 117 

detection probabilities respectively, where 𝜃 is the set of top parameters and random 118 

variables of the model in question (Fig. 2). The relative abundances for the focal species and 119 

time-intervals will be derived from these two sets of probabilities as such: the site-dependent 120 

detection probability is decomposed into a time-interval-dependent component and a local 121 

fluctuation. Working on the time-interval-dependent scale, a Poisson process with intensity 122 

proportional to the local abundance, given occupancy, determines the detection probability. 123 

The abundance of a species in a given time-interval is then the expected local abundance 124 

(unconditioned on occupancy), or in other words, local abundance given occupancy times the 125 

occupancy probability. This is determined up to an unknown proportionality constant, but 126 

where the latter drops out when calculating relative abundance. 127 

We build our models in a step-wise fashion, starting with a standard occupancy model 128 

because it is the most familiar, then gradually adding complexity until we have a model with 129 

enough elements to allow for relative abundance estimates. The reason for this step-wise 130 

presentation is three-fold. The first is to put focus on each of the model components. Second, 131 

because MCMC convergence was possible to achieve only when we used the parameter 132 

estimates from a simpler model as the starting points for the next, more complex model. 133 

Thirdly, because we wanted to justify the model complexities we added, using the Bayes 134 

factor as measure of evidence (Jeffreys 1998). 135 

 136 

1. The basic occupancy model 137 
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The simplest occupancy model (MacKenzie et al. 2002) contains only occupancy and 138 

detection probabilities such that number of sub-samples at site 𝑖 with observations of species 139 

𝑠 is a zero-inflated binomial random variable. 140 

 141 

𝑦!,# ∼ 𝑧𝑏𝑖𝑛 -𝑁! , 𝑝!,#(𝜃) = logit$%(𝛽#), Ψ!,#(𝜃) = 𝐼(𝑠 = 𝑆) + 𝐼(𝑠 < 𝑆)logit$%(𝛼#)<   (1) 142 

 143 

Here, 𝑁! is the total number of sub-samples examined at site i. I() stands for the indicator 144 

function, which takes value 1 when the statement inside is true and 0 if it is false. The 145 

unconditional probability of detection is 𝑝!,#(𝜃)Ψ!,#(𝜃). We express both occupancy and 146 

detection probabilities using a logit-transform, i. e. logit(𝑟) ≡ log	( &
%$&

)	, where 𝑟 is a 147 

probability, for the convenience of expanding the model in the next sections. The two 148 

parameters, 𝛼# and 𝛽#, (see Fig. 2) give regional (i.e. within the Wanganui Basin in our 149 

application) occupancy and detection probabilities for each species respectively, regardless of 150 

time-interval (formation). The parameter set is 𝜃 = {𝛼%, ⋯ , 𝛼'$%, 𝛽%, ⋯ , 𝛽'}, where S is the 151 

number of species (focus species plus superspecies). Even though we are currently describing 152 

a time-intervals-independent model, we write Ψ!,#(𝜃) and 𝑝!,#(𝜃), since occupancy and 153 

sampling will be derived from parameters that are both species-dependent and site-dependent 154 

(or in practice, time-interval dependent) later. Note however, that 𝛼#(' does not appear in the 155 

model, as we assume that the superspecies is always present (leaving us with 2 × 𝑆 − 1 156 

parameters).  157 

 158 

2. Including site-dependent random factors through overdispersion 159 

Fluctuations in the local abundance of a species can be modelled by a per site, per species 160 

random factor. Here, site-dependent detection probability is allowed to vary around the 161 

median regional detection probability. If this random factor was normal on the logit-scale, 162 



 8 

one could either estimate the random factors in a hierarchical Bayesian model or integrate 163 

over the logit-normal distribution, yielding an over-dispersed version of the binomial 164 

distribution (e.g. Harrison 2014). The latter option gives the logit-normal binomial 165 

distribution and simplifies the model, as it removes explicit site-dependency. This 166 

distribution does not, however, have a closed analytical expression (e.g. Schmettow 2009). If 167 

the random effects are instead beta-distributed, we can use the zero-inflated beta-binomial 168 

distribution, which does have an analytical expression. 169 

 170 

𝑦!,# ∼ 𝑧𝛽𝑏𝑖𝑛 -𝑁! , 𝑝!,#(𝜃) = logit$%(𝛽#), 𝜅#, Ψ!,#(𝜃) = 𝐼(𝑠 = 𝑆) + 𝐼(𝑠 < 𝑆)logit$%(𝛼#)< 171 

                                                         (2) 172 

Here, 𝜅# describes the species-dependent overdispersion. The parameters set is now 𝜃 =173 

{𝛼%, ⋯ , 𝛼'$%, 𝛽%, ⋯ , 𝛽', 𝜅%, ⋯ , 𝜅'}. The detection and occupancy probabilities depend on the 174 

identity of the time-interval that site belongs to, rather than the site itself, as the 175 

overdisperson account for the variation among sites (at this point no time-interval 176 

dependency has been added).  This also holds for later models presented here. The probability 177 

of 𝑦 observations out of 𝑛 sub-samples from the zero-inflated beta-binomial distribution with 178 

detection probability, 𝑝, overdispersion parameter, 𝜅, and zero-inflation, Ψ, is defined as: 179 

 180 

𝑃)*+!,(𝑦|𝑛, 𝑝, 𝜅, Ψ)= 181 

(1-Ψ)𝐼(𝑦 = 0) + Ψ
-(,/%)-12/!"3-1,$2/

#$!
" 3-1#"3

-(2/%)-(,$2/%)-1,/#"3-1
!
"3-1

#$!
" 3

     (3) 182 

 183 

The first term of the right hand-side of Eqn (3) up to (but not including) the fractional 184 

expression, describes the zero-inflation, while the second, fractional part describes the beta-185 

binomial distribution. 186 
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3. Including species- and formation-dependent random factors 187 

We now introduce temporal dynamics by using time-interval-dependent random factors (e.g. 188 

Pacifici et al. 2016) that are species-independent, i.e. they summarize dynamics common to 189 

all species in the community. For the detection probability, the random effects imply 190 

fluctuations in the sampling as well as in average density of the community of species in 191 

question. For occupancy, the random effects allow fluctuations in the overall presence of 192 

species in question. The time-intervals with richer data can thus inform estimates for those 193 

with sparser data. The model is now: 194 

 195 

𝑦!,# ∼ 𝑧𝛽𝑏𝑖𝑛 -𝑁! , 𝑝!,#(𝜃) = logit$%M𝛽# + 𝑢4(!)O, 𝜅#, Ψ!,#(𝜃) = 𝐼(𝑠 = 𝑆) + 𝐼(𝑠 <196 

𝑆)logit$%M𝛼# + 𝑣4(!)O<           (4a) 197 

𝑢4 ∼ 𝑁(0, 𝜎56), 𝑣4 ∼ 𝑁(0, 𝜎76),                 (4b) 198 

 199 

where 𝑓(𝑖) is the time-interval that site 𝑖 belongs to, 𝑢4 and 𝑣4 are the new time-interval-200 

dependent random effects and 𝜎7 and 𝜎5 are the standard deviations of these effects, for 201 

detection and occupancy, respectively. Now, 𝜃 =202 

{𝛼%, ⋯ , 𝛼'$%, 𝛽%, ⋯ , 𝛽', 𝜅%, ⋯ , 𝜅', 𝜎5, 𝜎7 , 𝑢%, ⋯ , 𝑢8 , 𝑣%, ⋯ , 𝑢8}, where F is the number of 203 

time-intervals (geological formations in our empirical example). 204 

While this model (Eqn 4) does allow for dynamics due to time variations in the whole 205 

set of species in the region, the probabilities vary in sync for the different species. In order to 206 

facilitate dynamics that permit fluctuations in the relative species-dependent abundances, we 207 

need random effects that depend on species and formation combinations. When doing so, we 208 

have: 209 

 210 
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𝑦!,# ∼ 𝑧𝛽𝑏𝑖𝑛 -𝑁! , 𝑝!,#(𝜃) = logit$%M𝛽# + 𝑢4(!) + 𝜀4(!),#O, 𝜅#, Ψ!,#(𝜃) = 𝐼(𝑠 = 𝑆) +211 

𝐼(𝑠 < 𝑆)logit$%M𝛼# + 𝑣4(!) + 𝛿4(!),#O<                                                     (5a) 212 

𝑢4 ∼ 𝑁(0, 𝜎56), 𝑣4 ∼ 𝑁(0, 𝑠𝜎76), 𝛿4,# ∼ 𝑁M0, 𝜎9,#6 O, 𝜀4,# ∼ 𝑁M0, 𝜎:,#6 O                        (5b) 213 

 214 

where 𝜀4,# and 𝛿4,# are the new time-interval- and species-dependent random effects and 𝜎:,# 215 

and 𝜎9,# are the standard deviations of these effects, for detection and occupancy, 216 

respectively. Our inferred abundances are averages over time as well as space, so it can is 217 

better described as being proportional to an temporally-averaged density and is hence 218 

continuous rather than integer-valued.  219 

The time-interval dependent random effects (𝑢4 and 𝑣4) introduced in Eqn. (4) do not 220 

affect the estimation of relative overall abundances (since these are estimated for each 221 

formation), but will take away pure formation dependencies from the species- plus time-222 

interval dependent random variables, thus removing possible source of bias and make our 223 

uncertainty estimates more precise. 224 

The parameter set is now 𝜃 = {𝛼%, ⋯ , 𝛼'$%, 𝛽%, ⋯ , 𝛽', 𝜅%, ⋯ , 𝜅', 𝜎5, 𝜎7 , 225 

𝜎9,%, ⋯ , 𝜎9,'$%, 𝜎:,%, ⋯ , 𝜎:,', 𝑢%, ⋯ , 𝑢8 , 𝑣%, ⋯ , 𝑢8 , 𝛿%,%, ⋯ , 𝛿8,', 𝜀4,#, ⋯ , 𝜀8,'}. Specifically, our 226 

top parameters (as opposed to the random factors) are 227 

U𝛼%, ⋯ , 𝛼'$%, 𝛽%, ⋯ , 𝛽', 𝜅%, ⋯ , 𝜅', 𝜎5, 𝜎7 , 𝜎9,%, ⋯ , 𝜎9,'$%, 𝜎:,%, ⋯ , 𝜎:,'V. We log-transformed all 228 

positive-valued parameters including the standard deviations and over-dispersion parameters, 229 

so that the re-parametrized parameter set allows values along the entire real line. With 3 230 

species and one super-species (S=4), our application has 20 (5×S) top-parameters. In 231 

addition, the inference also needs to handle 81 ((2S+1)×F) random variables (Eqn 5b). We 232 

call Eqn (5) the “full model” i.e. TRAMPOline, since it has all the necessary component for 233 

estimating the dynamics of relative abundance (shown in Fig. 2). 234 
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4. A step-wise approach for improving estimation 235 

Because the full model is fairly complex and required hierarchically arranged random effects, 236 

we utilized Markov chain Monte Carlo (MCMC) sampling for inference (SI section “MCMC 237 

for statistical inference”). We used common estimated parameter values from a simpler 238 

model when starting a more complex model, in a step-wise fashion (i.e. from Eqn 1 to 2 239 

to …5) as preliminary analyses often failed when starting from a random place in the 240 

parameter space. In doing so, we also tested if each increasingly complex model explained 241 

the data better, using Bayes factors.  242 

 243 

5. Incorporating explanatory variables 244 

We expanded our full model (Eqn 5) by including temporal explanatory variables – in our 245 

empirical example pertaining to paleoclimate, as well as auto-correlated processes by using 246 

an Ornstein–Uhlenbeck  process (SI sections “Model expansions that include explanatory 247 

variables” and “Introducing correlations in the random effects”) although results from these 248 

are not detailed in the main text. Our motivation for examining and testing these expansions 249 

was to develop extended models that predict relative abundances in unmeasured time-250 

intervals with more precision than just using the time-interval-independent median values 251 

derived from 𝛼# and 𝛽#. We impose a quadratic term for our explanatory variables (on 252 

detection probability, occupancy probability or both) as each species should thrive at an 253 

(different) optimal climate, with a given tolerance width. For demonstration, we use two 254 

related but different paleoclimate proxies, namely the global ∂18O data (data from Lisiecki & 255 

Raymo 2005) and the North Atlantic magnesium/calcium (Mg/Ca) ratios (data from Sosdian 256 

& Rosenthal 2009), both based on measurements from benthic foraminiera, as explanatory 257 

variables. These contain complex signals of sea temperature, ice-volume and sea-level 258 

changes, all of which potentially affect both the population growth rates (through optimal 259 
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temperatures and the availability of substrate species) and detection probabilities (through 260 

sea-level changes) of our focal species. Whether other applications of TRAMPOline will 261 

benefit from such model extensions is naturally context-dependent.. 262 

 263 

6. Estimating relative abundances 264 

In this section we estimate the relative abundance estimates of a given species in a given 265 

formation. The relative abundance of a species is proportional to the sum of its local 266 

abundances given occupancy, 𝜆!,#, times its occupancy probability Ψ!,#. For the ease of 267 

reading, we suppress denoting that the elements described are all functions of the model 268 

parameter set in this section. Since our model does not contain any site-dependent 269 

components (except that absorbed by overdispersion), relative abundance estimate Af,s can be 270 

expressed using formation (time-interval) indexes (f) instead of site indexes (i) as such: 271 

 272 

A4,# ∝ Ψ4,#𝜆4,#.                                  (6) 273 

 274 

However, the detection probability, 𝑝4,#, and the local abundance, 𝜆4,#, do not scale 275 

proportionally to each other. This is because while detection probability has an upper limit, 276 

local abundance (i.e. counts of individuals of a given species in a defined area at a given 277 

time) does not. To obtain relative abundances, a link between the inferred detection 278 

probability of a species in a given formation, 𝑝4,#, and the time-averaged abundance, 𝜆4,#, 279 

must be formulated. Here we assume that the number of individuals of a species in each sub-280 

sample can be described by a Poisson process, where the Poisson parameter is proportional to 281 

the time-averaged abundance. Thus 282 

 283 
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𝑃(at	least	one	individual	of	species	𝑠	is	found	in	the	sub −284 

sample	in	an	occupied	site	in	time − interval	𝑓) = 𝑝4,# = 1 − 𝑒$;<%,'   285 

                   (7) 286 

 287 

where 𝑘 is the proportionality constant. In our application, 𝑘 will be affected by the 288 

preservation probability of bryozoans in the formation, which will in turn affect the time-289 

interval-dependent random effects in Eqns (4-5). In other systems, “preservation” is simply a 290 

common observational filter that may or may not be necessary. If such a filter is unnecessary, 291 

the time-interval dependent and random effects may be excluded. The time-interval-292 

dependent random effects and 𝑘, are also affected by species-independent fluctuations in the 293 

regional overall abundance. We assume that k is species-independent (i.e. we assume that 294 

individuals, regardless of their species identity, in a given time-interval have equal chances of 295 

getting preserved). Eqn (7) ensures that while the temporally-averaged abundance of species 296 

s can be any positive real number larger than zero, the detection probability will be between 297 

zero and one. Up to the proportionality constant, 𝑘, Eqn (7) is Eqn (1) in (Yamaura et al. 298 

2010). In most, if not all previous occupancy models that incorporate counts, spatial area is 299 

strictly defined and the time window of sampling so short that one can assume the counts of 300 

individuals (integers) inhabiting that area do not vary over the given study. In contrast, the 301 

abundances we are interested in are averaged over both time and space such that they must be 302 

represented by positive real numbers rather than integers. We now calculate the relative 303 

abundance, R4,# using Eqs. (6) and (7): 304 

 305 

R4,# =
=%,'

∑ =%,'()
'(*#

= ?%,'<%,'
∑ ?%,'(<%,'()
'(*#

= ;?%,'<%,'
∑ ;?%,'(<%,'()
'(*#

= ?%,'@AB	(%$D%,')
∑ ?%,'(@AB	(%$D%,'()
)
'(*#

  (8) 306 

 307 
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Note that the proportionality constant in Eqn. 7 cancels out. Thus, the relative abundance of a 308 

focal species can be estimated from the components of the occupancy model.  309 

For an alternative modelling approach to estimate relative abundance, built-up from 310 

the local abundance-related parameters, 𝜆4,#, rather than detection probabilities, see SI 311 

“Description of the local abundance focused model”.  312 

 313 

7. Simulations 314 

We performed two sets of simulations. The first “parameter-focused simulation study” was 315 

performed to check how well estimated parameters and derived quantities (occupancy 316 

probabilities, detection probabilities and relative abundances) can be inferred from data. The 317 

second “occupancy dynamics-focused simulation study” was performed to check under what 318 

sampling regimes we could detect occupancy probability dynamics when the parameters were 319 

as estimated in the empirical data.  320 

 321 

For the parameter-focused simulation study, we generated 100 datasets from a 322 

common parameter set that reflects idealized but plausible scenarios for the four species, and 323 

analyzed each dataset separately. All simulations used 10 sites per formation, closer to the 324 

lower end of our empirical data (Table S1) and 60 shells per site, closer to the maximum of 325 

our empirical data, the upper limit of what is reasonable in the field. We varied the species-326 

dependent constants for occupancy and detection among the species. For instance, species 3 327 

(SI Figs. S16, S17) is assigned an elevated detection but lower occupancy probabilities 328 

compared to estimates from our actual dataset. This would decrease estimation uncertainty 329 

compared to our actual data, thus making bias easier to detect and occupancy easier to 330 

untangle from detection. Species 1 was assigned occupancy dynamics (SI Fig. S16) and 331 

species 2 was assigned detection dynamics (SI Fig. S17). While it might have been ideal to 332 
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simulate all combinations of parameters, it is not computationally realistic. We urge future 333 

users of TRAMPOline to run simulations to verify estimates specific to their needs, such as 334 

we have done here. See SI section “Parameter-focused simulation study” for further details.    335 

 336 

For the occupancy dynamics-focused simulation study, we generated data under different 337 

sampling intensisites (10, 20, 30, 50, 100 and 1000 sites per formation and 60, 100, 200, 400 338 

and 1000 shells per site) and analyzed these data using the model and parameter estimates 339 

developed for our empirical data data. Here, we were specifically interested in checking 340 

whether occupancy dynamics are detectable under different sampling scenarios (see SI 341 

“Occupancy dynamics-focused simulation study”). 342 

 343 

Results  344 

Empirical findings 345 

We found that including both the time-interval-dependent (i.e. formation-dependent) random 346 

effects (introduced in Eqn 4) and the time-interval- and species-dependent random effects 347 

(introduced in Eqn 5) improved the description of our empirical data (SI Table S2). In other 348 

words, the full model described in Eqn (5) (Fig. 2) was preferred based on Bayes Factors, 349 

implying that the occupancy and detectability of the different bryozoan species varied with 350 

time-intervals (formation). However, including paleoclimate explanatory variables or auto-351 

correlated random effects did not improve our model (SI Table S2). In other words, we 352 

currently do not have any component in our models that allow us to predict relative 353 

abundance for unmeasured time-intervals using information beyond the median detection and 354 

occupancy probabilities given by 𝛼# and 𝛽# for our empirical data. The Bayes factor did not 355 

resolve the choice between the “local abundance focused model” and the full model, and it 356 

gave highly similar estimates of relative abundances (see SI).  357 
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The overdispersion parameters, 𝜅#,were estimated to 0.09, 0.05, 0.04 and 0.07 for 358 

Antharcthoa tongima, Escharoides excavata and Arachnopusia unicornis and the 359 

superspecies, respectively (see Table S3 for credibility bands), where 𝜅# = 0 means no 360 

overdispersion. While these estimates are very close to zero, they represent overdispersion 361 

that effectively double the variance, compared to no overdispersion (see SI Fig. S6).  362 

  The uncertainty surrounding the occupancy probability of each of the focal species is 363 

quite large (Fig. 3), where we cannot establish that occupancy is well below 1.0 for any 364 

combination of species and formation. Detection probabilities estimated from our full model 365 

are also shown in Fig. 4. Note that the relative changes in detection probabilities are similar 366 

to the dynamics of the raw data (Fig. S2).  367 

By combining occupancy and detection probabilities, we can estimate the relative 368 

abundance using Eqn (8) (Fig. 5 and SI Figs. S5 and S11). The relative abundances of the 369 

superspecies and A. tongima are estimated with relatively high precision and vary 370 

significantly over time.  The relative abundances of E. excavata and A. unicornis are 371 

estimated with much greater uncertainty.  372 

Simulation results 373 

The parameter-focused simulation study shows a spread of the estimates around the 374 

true values for both parameters (SI Figs. S12-15) and the derived quantities of occupancy 375 

probabilities (SI Fig. S16), detection probabilities (SI Fig. S17) and relative abundances (Fig. 376 

6). Although these estimates are spread quite evenly around both sides of the actual values, 377 

minute biases, expected given our informative priors and non-linear transformations, were 378 

found, but not cause for worry (see the SI section on the parameter-focuses simulation study).  379 

The results of occupancy dynamics-focused simulation study that is specific to our 380 

empirical study indicate that even large volumes of data cannot distinguish occupancy 381 
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dynamics (Table S4) within or among the focal species with the possible exception of 382 

Escharoides excavata (see SI for details). 383 

 384 

Discussion 385 

Ecologists are interested in estimating changing relative abundance because it is a 386 

prime window into population dynamics (Sutherland et al. 2013). On a shorter time scale, 387 

understanding how environmental attributes and species traits affect population changes 388 

within communities are not only key to ecological understanding but also conservation 389 

management (Bowler et al. 2018). On a longer time scale, the changing the relative 390 

abundance of fossil taxa have, in addition, the potential for supplying direct information on 391 

the evolution of phenotypes and changing ecological interactions (e.g. Liow et al. 2019) to 392 

enable linking paleoecological dynamics to evolutionary changes. However, estimating 393 

abundance or density in nature is challenging, regardless of the characteristics of organism 394 

(e.g. sessile or motile, small-bodied or large-bodied), the type of data (e.g. direct counts, 395 

capture-recapture data), or the time-scale involved (e.g. seasonal, yearly or paleoecological 396 

data). Occupancy modeling, which explicitly models sampling probabilities when estimating 397 

parameters of biological interest, including changes in relative abundance, is one powerful 398 

way of incorporating different sources of data heterogeneity and uncertainty. While 399 

occupancy modeling is increasingly widespread in “traditional” ecological studies (Bailey et 400 

al. 2013), is yet to be applied regularly in eDNA or metagenomics surveys (Da Silva Neto et 401 

al. 2020; McClenaghan et al. 2020) and also lags behind in paleoecology (Liow 2013). We 402 

believe TRAMPOline has broad applicability in many systems where sub-samples within 403 

sites are surveyed with relative ease and where relative abundance rather than species 404 

richness is of interest. 405 
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To briefly elaborate on the applicability of TRAMPOline in paleoecological settings, 406 

we emphasize that fossil sampling probability is far from one, not least because preservation 407 

is far from guaranteed (Kidwell & Holland 2002). Traditionally in paleoecology, however, 408 

there is an underlying assumption, usually implicit, that preservation (and hence the sampling 409 

of preserved organisms) is comparable across samples and sites, sometimes even across time-410 

intervals, as long as sampling is standardized. Here, what we termed “detection ratios” are 411 

usually presented as estimates of relative abundance (Kidwell 2002; Currano et al. 2008; 412 

Espinosa et al. 2020) . However, we know from simulations and ecological studies that this 413 

assumption is problematic (Iknayan et al. 2014; MacKenzie et al. 2017). Not only is it 414 

important to progress beyond tabulations of paleoecological data for improved inferences, 415 

parameters estimated using fossil data should be as comparable as possible with the those 416 

estimated using living organisms. This will allow us to infer historical baselines for 417 

conservation applications and to gain a better understanding of changing biota over longer 418 

timescales for which we may have analogue crisis situations (Harnik et al. 2012).   419 

Instead of using the observed presence or absence of species, we could have instead 420 

used the counts of the number of individuals of a given species in each sub-sample. If we 421 

used the latter, we would have built a model similar to an N-mixture model (Royle 2004). 422 

However, the sub-samples in our example (shells or fragments thereof) varied in volume and 423 

these differences are expected to affect the number of individuals (colonies in our case). But 424 

shell size (i.e. sub-sample size) was not quantified, hence a random factor for sub-samples 425 

would be needed to account for this variation. This inclusion, however, would massively 426 

increase model complexity while introducing an uncertainty that would make the extra 427 

information (counts per shell in our case) of little relevance. Since the computational cost 428 

would dramatically increase while the outcome was intuitively not expected to improve 429 
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significantly, we decided against this route for our empirical demonstration. However, in 430 

other applications, sub-sample size can be standardized or controlled for. 431 

We note several extensions to our models that can be considered, with regards to our 432 

empirical system. First, there are other sources of variation that we did not take into account, 433 

including the species of the shell substrate (e.g. some were cockles and others were scallops) 434 

and their size as mentioned above, both of which may be selected by the bryozoan species 435 

involved and/or preferentially preserved. The information can be potentially collected in 436 

future studies that could improve the estimates. Second, we could potentially handle the 437 

number of colonies observed for each focal species per shell, since this could give an extra 438 

indication of the local abundance of each species. However, in addition to more time-439 

consuming data collection, one would also have to introduce a random variable per shell, as 440 

mentioned above. Third, there are huge spans of time in which we are not able to sample 441 

bryozoans because suitable material was not deposited. We used two paleoenvironmental 442 

proxies (∂18O and Mg/Ca ratios) as covariates in expanded models (SI) in hope that they 443 

contained predictive information we could use on unsampled time-intervals. While neither of 444 

the two we had published data for were informative, it is possible that other 445 

paleoevironmental proxies, published or yet to be collected, could be used for this purpose. 446 

One lesson learnt from our empirical modelling is that while we are able to estimate 447 

the dynamics of relative abundance (Fig. 5), the dynamics of occupancy are challenging to 448 

grasp in our system. Our occupancy dynamics-focused simulations show that reliably getting 449 

occupancy estimates that vary from formation to formation requires unfeasibly intense 450 

sampling protocols for our choice of species, with the possible exception of Escharoides 451 

excavata though the requirements there were also quite demanding (see SI). The estimated 452 

occupancy probabilities are high while the detection probabilities are relatively low (Figs. 3 453 

and 4), a reason why occupancy probabilities and hence dynamics were elusive. In retrospect, 454 



 20 

if we had chosen species that were more selective of the sites they choose settle in, the 455 

occupancy dynamics may have been easier to estimate. Detecting occupancy dynamics was 456 

not the principal goal of the study, but in studies where this is of principal concern, such 457 

issues should be considered before extensive data collection.   458 

 459 

With our work, we hope that more paleoecologists will consider occupancy modeling 460 

as a means to estimate relevant ecological parameters; ecological modelers will pick up 461 

where we left off to improve the inference of biologically relevant parameters using a 462 

challenging but rich fossil record; and that biologists with very different types of data but 463 

similar data structure and questions, such as those analyzing site-specific eDNA to 464 

understand relative abundance, will find use for TRAMPOline. 465 

 466 

Code 467 

The code and data for all analyses are provided at 468 

https://github.com/trondreitan/TRAMPOline 469 
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Figure captions 554 

Figure 1: Each thick bordered open rectangle represents a time-interval (two are illustrated 555 

more fully, the first time-interval, T1, and the nth time-interval, Tn). Within each time-556 

interval, Sites (dotted rectangles) are sampled (two are more fully illustrated in each). Within 557 

each site, there are subsamples (smaller, solid bordered rectangles) in which different species 558 

(solid shapes) are observed. The open circle represents the super species, which in our case, 559 

we assume to be present in all sites, even if not sampled in all subsamples. 560 

 561 

Figure 2. This figure summarizes our full hierarchical occupancy model, TRAMPOline, 562 

composed of top parameters and random factors that describe their overdispersion (Eqn 5). 563 

Data are denoted as triangles where N are the number of sites and y the shells from site i 564 

where species s is observed. Black circles denote occupancy parameters, white circles denote 565 

detection parameters and grey circle denotes the overdispersion parameter. An arrow from an 566 

element A (i.e. circle, triangle or rectangle) to another B, denotes that B is conditioned on A 567 

either by a function or a distribution (see text for details).  568 

 569 

Figure 3. Estimates are from our full model where black lines join the species posterior 570 

median occupancy for each formation (time-interval) plotted in the middle of the age range of 571 

the given formation. Grey lines show 95% posterior credibility intervals for the estimates. 572 

Note that the superspecies is not plotted here as its occupancy is assumed to be 1 throughout. 573 

 574 

Figure 4: Estimated detection probabilities. Estimates are from our full model where black 575 

lines join the species median detection probabilities (plotted on log scale) for each formation 576 

(time-interval). Grey lines show 95% posterior credibility intervals for the estimates. 577 
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 578 

Figure 5: Estimated relative abundance. Estimates are from our full model where black 579 

lines join the species mean relative abundance (plotted on a log scale, except for the 580 

Superspecies for visibility) for each formation (time-interval). Grey lines show 95% posterior 581 

credibility intervals for the estimates.  582 

 583 

Figure 6: Relative abundances from the parameter-focused simulation study. Solid lines 584 

show the true relative abundances for the various species and formations, while the points are 585 

estimates from the 100 simulated datasets.   586 
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Figure 1: A schematic diagram to show the sampling scheme for TRAMPOline 587 
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Figure	2:	TRAMPOline:	Full	hierarchical	occupancy	model	to	estimate	relative	591 

abundance 592 
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Figure 3: Estimated occupancy probabilities for the three focal species. 596 
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Figure 4: Estimated detection probabilities.  599 
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Figure 5. Estimated relative abundance. 602 
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Figure 6: Relative abundances from the parameter-focused simulation study. 605 
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