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Abstract 25 

The number of individuals of species within communities varies, but estimating abundance, 26 

given incomplete and biased sampling, is challenging. Here, we describe a new occupancy 27 

model in a hierarchical Bayesian framework with random effects, where multi-species 28 

occupancy and detection are modeled as a means to estimate relative species abundance and 29 

relative population densities. The modelling framework is suited for occupancy data for 30 

temporal samples of fossil communities with repeated sampling including multiple species 31 

with similar preservation potential. We demonstrate our modelling framework using a fossil 32 

community of benthic organisms to estimate changing relative species abundance dynamics 33 

and relative population densities of focal species in 9 (geological) time-intervals over 2.3 34 

million years. We also explored potential explanatory factors (paleoenvironmental proxies) 35 

and temporal autocorrelation that could provide extra information on unsampled time-36 

intervals. The modelling framework is applicable across a wide range of questions on 37 

species-level dynamics in (palaeo)ecological community settings. 38 

(148 Words)  39 
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Introduction 40 

Understanding past and contemporary patterns and dynamics of populations and communities 41 

requires robust estimates of variation in abundance of organisms (Williams et al. 2002; 42 

Sutherland et al. 2013). While it is notoriously difficult to estimate absolute population sizes 43 

or densities due to the imperfect detection of individuals (Schwarz & Seber 1999), it is 44 

generally much easier to estimate relative differences/changes in population sizes/densities  45 

(Williams et al. 2002). Fortunately, such relative estimates are often sufficient for ecological 46 

inference. For example, community ecologists have long been interested in explaining 47 

distributions of relative species abundance (RSA; i.e., the abundance of a species relative to 48 

the abundance of other species) in communities (Fisher et al. 1943; MacArthur & Wilson 49 

1967). Likewise, it is often sufficient to model relative changes in population density 50 

(hereafter ‘relative population density’ (RPD)) over time (Royama 1992; Caswell 2001) due 51 

to the multiplicative nature of population dynamics. 52 

 While contemporary ecological data and fossil data reflect ecological and 53 

evolutionary processes at vastly different time-scales, sampling strategies and data structure 54 

may be similar. Like contemporary ecological data, fossil data often consist of detection 55 

records of species. Fossil records are often associated with geological formations (time-56 

intervals) of different ages, where low or zero detection frequencies in certain formations 57 

may be due to low (then) extant population densities and/or low preservation probabilities. 58 

When detection and non-detection of focal species in replicated samples have been recorded, 59 

it is possible to estimate both occupancy and the probability of detection, given occupancy 60 

(MacKenzie et al. 2002). Over the past decades a rich literature on such ‘species occupancy 61 

models’ has emerged (King 2014; MacKenzie et al. 2017). Originally, these models were 62 

developed to estimate the probability of true species presence, e.g. as a function of habitat 63 

variables. Later developments also linked detection probabilities to species abundance (Royle 64 
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& Nichols 2003). Multi-species expansions of these models have facilitated studies of 65 

community composition and species richness (Dorazio et al. 2006; Yamaura et al. 2011; 66 

Iknayan et al. 2014; Devarajan et al. 2020). 67 

 With an appropriate sampling design, occupancy models may be fitted to fossil data to 68 

address paleoecological questions (Liow 2013). Here, we develop a multi-species occupancy 69 

model, tailored for fossil occupancy data, aimed at estimating temporal patterns (over 70 

millions of years) of relative species abundance (RSA) and relative population density 71 

(RPD). As is typical for fossil data, preservation also influences detection probability, and the 72 

preservation can vary substantially among formations (Behrensmeyer et al. 2000). One way 73 

of tackling temporal variation in preservation is by incorporating random effects for 74 

formations. By incorporating data from multiple species, we aim to reduce the influence of 75 

preservation on abundance estimates by “filtering out” formation-specific random effects on 76 

detection probability common to all species. Importantly, random effects also allow us to 77 

estimate formation-specific RSA and RPD when data consists of multiple samples (sites) and 78 

sub-samples (replicates). In addition to formation-specific random effects, we also use those 79 

that capture the dynamics of individual species. All of these random effects allow us to 80 

“borrow strength” across species (e.g. Zipkin et al. 2010). 81 

 Using simulated data, we explore if ecological dynamics can be accurately inferred 82 

using our model, and then apply this model to a dataset of marine invertebrates (cheilostome 83 

bryozoans) that attach to hard substrates (shells) over 9 time-intervals (geological formations) 84 

spanning 2.3 million years from a marine basin in New Zealand.  We discuss the general 85 

utility of our model in paleoecological settings, and suggest venues for further development. 86 

  87 
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Materials and methods 88 

Study system 89 

The empirical example we use is a community of fossilized benthic organisms found in the 90 

Wanganui Basin (Carter & Naish 1998; Proust et al. 2005; Pillans 2017). We examined 91 

subsamples (= shells) in 119 sites within 9 geological formations rich in fossil marine 92 

deposits representing time-intervals from 2.29 to 0.30 million years ago (Fig. 1), in which the 93 

number of shells varied between 30-50 (Table S1). By assuming that species’ abundances in 94 

sampled sites are representative for the region at the time they were preserved, we can make 95 

regional estimates for each time-interval. We tabulated the observed presence of any 96 

fossilized individuals of three focal species namely Antharcthoa tongima, Escharoides 97 

excavata and Arachnopusia unicornis (Fig. S1) on each shell. There is ample among-98 

formation, within-formation and among-species variation in the detection ratio, i.e. the 99 

number of shells with focal species of encrusting bryozoans observed divided by the total 100 

number of shells examined (Fig. S2). We also introduce a fourth “species”, the superspecies, 101 

which represents all other encrusting bryozoan species in the community, excluding the three 102 

focal species.  In doing so, we can utilize observations from other species in the same 103 

community without collecting detailed species-level data in a species-rich system, to improve 104 

parameter estimates (see Model Description). In addition, by including the superspecies, 105 

estimated species abundances will be relative to all bryozoan species, rather than only the 106 

sum of the included focal species. Since the formations were chosen because they are known 107 

to harbor bryozoans, our superspecies is assumed to always be present, i.e. occupancy 108 

probability=1. In other applications, a superspecies can be excluded or the occupancy 109 

probability of the superspecies can be estimated within the model.  110 

  111 
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Model description 112 

Our main objective is to estimate the temporal (i.e. formation-to-formation) dynamics of RSA 113 

and RPD (we refer to both as “relative abundance” for short until section 6) for each focal 114 

species using detection/non-detection observations on subsamples (shells in our empirical 115 

example) from different sites (Fig.1, Fig. S1). We begin with a standard occupancy model, 116 

where the probability that a species occupied a given site i.e. the occupancy probability, Ψ, 117 

and the probability that a subsample has at least one observation of the focal species, given 118 

occupancy, i.e., the detection probability, 𝑝𝑝. The probability that a species is found on a given 119 

subsample is thus Ψ𝑝𝑝, where Ψ operates on the site-level while 𝑝𝑝 operates on the subsample-120 

level. The occupancy and detection probabilities will be functions of various parameters and 121 

random effects, and can be specific to the site i belonging to a specific time-interval, f, and 122 

the species, s. Thus, we write Ψ!,#(𝜃𝜃) and 𝑝𝑝!,#(𝜃𝜃) for the occupancy and detection 123 

probabilities respectively, where 𝜃𝜃 is the set of top level parameters and random variables of 124 

the model in question (Fig. 2). The relative abundances for each focal species will be derived 125 

from these two sets of probabilities.  126 

We proceed in a step-wise fashion, adding complexity to a standard occupancy model 127 

until it has enough elements for relative abundance estimates. We do this for three reasons. 128 

The first is to put focus on each of the model components. Second, because MCMC 129 

convergence was achieved only when we used the parameter estimates from a simpler model 130 

as the starting points for the next, more complex model. Thirdly, because we wanted to 131 

justify adding model complexity, using the Bayes factor as measure of evidence (Jeffreys 132 

1998). 133 

  134 
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1. The basic occupancy model for number of detections per site 135 

In a basic occupancy model (MacKenzie et al. 2002), 𝑦𝑦!,# is the number of subsamples at site 136 

𝑖𝑖 with observations of species 𝑠𝑠, is a zero-inflated binomial random variable. 137 

𝑦𝑦!,# ∼ 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 -𝑁𝑁!, 𝑝𝑝!,#(𝜃𝜃) = logit$%(𝛽𝛽#), Ψ!,#(𝜃𝜃) = 𝐼𝐼(𝑠𝑠 = 𝑆𝑆) + 𝐼𝐼(𝑠𝑠 < 𝑆𝑆)logit$%(𝛼𝛼#)<   (1) 138 

𝑁𝑁! is the total number of subsamples examined at site i. I() stands for the indicator 139 

function, which takes value 1 when the statement inside is true and 0 if false. The 140 

unconditional probability of detection is 𝑝𝑝!,#(𝜃𝜃)Ψ!,#(𝜃𝜃). We express both occupancy and 141 

detection probabilities using a logit-transform, i. e. logit(𝑟𝑟) ≡ log	( &
%$&

)	, where 𝑟𝑟 is a 142 

probability, for the convenience of expanding the model (see next sections). The two 143 

parameters, 𝛼𝛼# and 𝛽𝛽#, (Fig. 2) give regional (i.e. within the Wanganui Basin in our 144 

application) occupancy and detection probabilities for each species, regardless of time-145 

interval (formation). The parameter set is 𝜃𝜃 = {𝛼𝛼%,⋯ , 𝛼𝛼'$%, 𝛽𝛽%,⋯ , 𝛽𝛽'}, where S is the 146 

number of species (focal species plus superspecies). The subscript i is included for clarity 147 

although sites are not considered in this section. 𝛼𝛼#(' does not appear, as we assume that the 148 

superspecies is always present.  149 

 150 

2. Including site-dependent random effects for number of detections per site through 151 

overdispersion 152 

Variation in abundance among sites is expected in natural systems. Since detection is linked 153 

to true abundance, the detection probability of a given species is expected to fluctuate from 154 

site to site. Fossil preservation can also influence detection probabilities on the site-level. 155 

Observations in our dataset consists of one summary data point per site (tabulated from the 156 

subsample replicates) per species, and we thus use overdispersion for modelling instead of a 157 

per observation random effect (Harrison 2014). This is because including random effects for 158 

each of these would radically and unnecessarily increase model complexity.  Hence, to 159 
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facilitate extensive simulations, we use the beta-binomial distribution which has an analytical 160 

expression, namely 161 

	𝑃𝑃)*!+(𝑦𝑦|𝑛𝑛, 𝑝𝑝, 𝜅𝜅)=
,(+.%),01.!"2,0+$1.

#$!
" 2,0#"2

,(1.%),(+$1.%),0+.#"2,0
!
"2,0

#$!
" 2

,       (2) 162 

where 𝑦𝑦 out of 𝑛𝑛 is the outcome, 𝑝𝑝 the detection probability and 𝜅𝜅 the overdispersion 163 

parameter where 𝜅𝜅 = 0 means no overdispersion (see SI for details). This specifies the 164 

distribution of detections given occupancy. Thus, the zero-inflated (un-conditioned on 165 

occupancy) beta-binomial distribution is: 166 

𝑃𝑃3)*!+(𝑦𝑦|𝑛𝑛, 𝑝𝑝, 𝜅𝜅, Ψ)=(1-Ψ)𝐼𝐼(𝑦𝑦 = 0) + Ψ
,(+.%),01.!"2,0+$1.

#$!
" 2,0#"2

,(1.%),(+$1.%),0+.#"2,0
!
"2,0

#$!
" 2

   (3) 167 

where Ψ is the zero-inflation and the likelihood is:  168 

𝑦𝑦!,# ∼ 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 -𝑁𝑁!, 𝑝𝑝!,#(𝜃𝜃) = logit$%(𝛽𝛽#), 𝜅𝜅#, Ψ!,#(𝜃𝜃) = 𝐼𝐼(𝑠𝑠 = 𝑆𝑆) + 𝐼𝐼(𝑠𝑠 < 𝑆𝑆)logit$%(𝛼𝛼#)<	(4) 169 

𝜅𝜅# describes the species-dependent overdispersion, while the other terms are as in Eqn 170 

1. The parameter set is now 𝜃𝜃 = {𝛼𝛼%,⋯ , 𝛼𝛼'$%, 𝛽𝛽%,⋯ , 𝛽𝛽', 𝜅𝜅%,⋯ , 𝜅𝜅'}. The detection and 171 

occupancy probabilities depend on the identity of the time-interval that the site belongs to, 172 

rather than the site itself, as the beta-binomial distribution accounts for the overdispersion 173 

among sites. At this point no time-interval dependency has been added. 174 

 175 

3. Including species- and formation-dependent random effects 176 

We now introduce temporal dynamics by using time-interval-dependent random effects that 177 

are species-independent, i.e. they summarize dynamics common to all species in the 178 

community. For the detection probability, the random effects imply fluctuations in the 179 

preservation as well as in average abundance of all species in the community. For occupancy, 180 

the random effects allow fluctuations in the overall presence of the set of species in question. 181 

The time-intervals with richer data can thus inform estimates for those with sparser data. The 182 

model is now: 183 
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𝑦𝑦!,# ∼ 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 -𝑁𝑁!, 𝑝𝑝!,#(𝜃𝜃) = logit$%I𝛽𝛽# + 𝑢𝑢4(!)K, 𝜅𝜅#, Ψ!,#(𝜃𝜃) = 𝐼𝐼(𝑠𝑠 = 𝑆𝑆) + 𝐼𝐼(𝑠𝑠 <184 

𝑆𝑆)logit$%I𝛼𝛼# + 𝑣𝑣4(!)K<           (5a) 185 

𝑢𝑢4 ∼ 𝑁𝑁(0, 𝜎𝜎56), 𝑣𝑣4 ∼ 𝑁𝑁(0, 𝜎𝜎76),                 (5b) 186 

where 𝑓𝑓(𝑖𝑖) is the time-interval that site 𝑖𝑖 belongs to, 𝑢𝑢4 and 𝑣𝑣4 are the new time-interval-187 

dependent random effects and 𝜎𝜎7 and 𝜎𝜎5 are the standard deviations of these effects for 188 

detection and occupancy respectively. Now, 𝜃𝜃 =189 

{𝛼𝛼%,⋯ , 𝛼𝛼'$%, 𝛽𝛽%,⋯ , 𝛽𝛽', 𝜅𝜅%,⋯ , 𝜅𝜅', 𝜎𝜎5, 𝜎𝜎7, 𝑢𝑢%,⋯ , 𝑢𝑢8, 𝑣𝑣%,⋯ , 𝑢𝑢8}, where F is the number of 190 

time-intervals. 191 

While Eqn 5 does allow for dynamics due to time variations in the whole set of 192 

species in the region, the species probabilities are in sync. To facilitate dynamics that permit 193 

fluctuations in the relative species-dependent abundances, we need random effects that 194 

depend on species and formation combinations. When doing so, we have: 195 

𝑦𝑦!,# ∼ 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 -𝑁𝑁!, 𝑝𝑝!,#(𝜃𝜃) = logit$%I𝛽𝛽# + 𝑢𝑢4(!) + 𝜀𝜀4(!),#K, 𝜅𝜅#, Ψ!,#(𝜃𝜃) = 𝐼𝐼(𝑠𝑠 = 𝑆𝑆) +196 

𝐼𝐼(𝑠𝑠 < 𝑆𝑆)logit$%I𝛼𝛼# + 𝑣𝑣4(!) + 𝛿𝛿4(!),#K<                                                   (6a) 197 

𝑢𝑢4 ∼ 𝑁𝑁(0, 𝜎𝜎56), 𝑣𝑣4 ∼ 𝑁𝑁(0, 𝜎𝜎76), 𝛿𝛿4,# ∼ 𝑁𝑁I0, 𝜎𝜎9,#6 K, 𝜀𝜀4,# ∼ 𝑁𝑁I0, 𝜎𝜎:,#6 K                                 (6b) 198 

where 𝜀𝜀4,# and 𝛿𝛿4,# are the new time-interval- and species-dependent random effects and 𝜎𝜎:,# 199 

and 𝜎𝜎9,# are the standard deviations of these effects, for detection and occupancy, 200 

respectively. As 𝑝𝑝!,# and Ψ!,# only depend on sites in the time period, 𝑓𝑓, we label them as 𝑝𝑝4,# 201 

and Ψ4,# in the following sections. 202 

The parameter set is now 𝜃𝜃 = {𝛼𝛼%,⋯ , 𝛼𝛼'$%, 𝛽𝛽%,⋯ , 𝛽𝛽', 𝜅𝜅%,⋯ , 𝜅𝜅', 𝜎𝜎5, 𝜎𝜎7, 203 

𝜎𝜎9,%,⋯ , 𝜎𝜎9,'$%, 𝜎𝜎:,%,⋯ , 𝜎𝜎:,', 𝑢𝑢%,⋯ , 𝑢𝑢8, 𝑣𝑣%,⋯ , 𝑢𝑢8, 𝛿𝛿%,%,⋯ , 𝛿𝛿8,', 𝜀𝜀4,#, ⋯ , 𝜀𝜀8,'}. We choose 204 

independent and wide priors for each parameter (see SI section “Prior distribution for the full 205 

model”).  All positive-valued parameters including the standard deviations and 206 
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overdispersion parameters are log-transformed so that on re-parametrization, they fall on the 207 

real number line. With 3 species and one superspecies we now have 20 (5×S) top level 208 

parameters and 81 ((2S+1)×F) random variables (Eqn 6b). We call Eqn 6 the “full model”, 209 

since it has all the necessary components for estimating relative abundance dynamics (Fig. 2), 210 

which we detail in section 6.  211 

 212 

4. A step-wise approach for improving estimation 213 

Because the full model is fairly complex and required hierarchically arranged random effects, 214 

we utilized Markov chain Monte Carlo (MCMC) sampling for inference (SI section “MCMC 215 

for statistical inference”). We used common estimated parameter values from a simpler 216 

model when starting a more complex model, in a step-wise fashion (i.e. from Eqn 1 to 4, 5, 217 

then 6) as preliminary analyses often failed when starting from a random place in the 218 

parameter space. In doing so, we also tested if each increasingly complex model explained 219 

the data better, using Bayes factors.  220 

 221 

5. Incorporating explanatory variables 222 

We expanded Eqn 6 by including temporal explanatory variables – in our empirical example 223 

pertaining to paleoclimate, as well as auto-correlated processes by using an Ornstein–224 

Uhlenbeck process (SI sections “Model expansions that include explanatory variables” and 225 

“Introducing correlations in the random effects”) although these results not detailed in the 226 

main text. Our motivation for examining and testing these expansions was to predict relative 227 

abundances in unmeasured time-intervals with more precision than just using the time-228 

interval-independent median values derived from 𝛼𝛼# and 𝛽𝛽#. We impose a quadratic term for 229 

our explanatory variables (on detection probability, occupancy probability or both) as each 230 

species should thrive at an different optimal climate, with a given tolerance width. We use 231 
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two related but different paleoclimate proxies, namely the global ∂18O data (data from 232 

Lisiecki & Raymo 2005) and the North Atlantic magnesium/calcium (Mg/Ca) ratios (data 233 

from Sosdian & Rosenthal 2009), both based on measurements from benthic foraminiera, as 234 

explanatory variables. These contain complex signals of sea temperature, ice-volume and sea-235 

level changes, all of which potentially affect both the population growth rates (through 236 

optimal temperatures and the availability of substrate species) and detection probabilities 237 

(through sea-level changes) of our focal species. Whether other empirical applications of will 238 

benefit from such model extensions is context-dependent. 239 

 240 

6. Estimating relative species abundance (RSA) and relative population densities (RPD) 241 

Detection entails observing a species that is present. In typical fossil data, detection 242 

requires preservation and successful sampling and taxonomic identification of fossilized 243 

organisms. Preservation and hence taxonomic identifiability is often strongly associated with 244 

the formation the sample belongs to (Behrensmeyer et al. 2000). For the purpose of 245 

estimating RSA and RPD, we introduce corrected detection probabilities 𝑝𝑝4,#∗ (𝜃𝜃) ≡246 

logit$%I𝛽𝛽# + 𝜀𝜀4,#K, where the purely time-interval-dependent random factors, 𝑢𝑢4,  are 247 

subtracted from the detection probability estimates. This is done with the assumption that the 248 

𝑢𝑢4(!) terms are mainly affected by the preservation rather than common biological dynamics 249 

among species. For our empirical data, preservation is unlikely to affect the time-interval-250 

dependent random factors for occupancy, 𝑣𝑣4, thus we assume Ψ4,#∗ ≡ Ψ4,#.  When detection 251 

probabilities are low, moderate correlations between detection and occupancy probabilities in 252 

the joint posterior distribution could mean that preservation dynamics influenced inferred 253 

occupancy probabilities. However, we expect that these indirect effects on such inferred 254 

occupancy probabilities to be small compared to common occupancy dynamics.  255 
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We link the average observable abundance per subsample given occupancy, 𝜆𝜆4,#, to 256 

the corrected detection probability. Assuming a point process, 𝑝𝑝4,#∗  is then given by the 257 

Poisson distribution: 258 

𝑝𝑝4,#∗ = 𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	𝑜𝑜𝑜𝑜	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0) = 1 − 𝑒𝑒$<%,'.   (7) 259 

We can hence derive 𝜆𝜆4,# from an estimate of 𝑝𝑝4,#∗  (main analyses) or derive 𝑝𝑝4,#∗  from 260 

𝜆𝜆4,# (simulations and SI). Breaking the Poisson distribution assumption due to overdispersion 261 

of number of colonies per subsample, only imperceptibly (in our case) affect the abundance 262 

estimates much (see SI). Note that Yamaura et al. (2011) assumed detection to be the result 263 

of sampling from a binomial distribution and the Poisson distribution is a limit of the 264 

binomial distribution and Eqn 7 is in fact equivalent to Eqn 1 in Yamaura et al. (2011), given 265 

a re-parametrization. 266 

While we subtract the random factors representing the common preservation 267 

dynamics in detection, the average preservation rate over time is unknown. Thus, is a 268 

proportionality coefficient, 𝑘𝑘4,#, between the average true and observable abundance per 269 

subsample given occupancy, such that  270 

𝜆𝜆4,# = 𝑘𝑘4,#Λ4,#,          (8) 271 

where Λ4,# is the average true abundance per subsample. 272 

We first assign both species- and time-interval dependency on 𝑘𝑘4,# to make explicit 273 

the assumptions we later use. In an ideal world, our subtraction of the effects of preservation 274 

dynamics when constructing 𝑝𝑝4,#∗  makes the proportionality coefficient both species- and 275 

time-interval-independent, i.e. 𝑘𝑘4,# = 𝑘𝑘.   276 

The average true abundance per subsample (unconditioned on occupancy) is;   277 

A4,# = Ψ4,#∗ Λ4,#=Ψ4,#𝜆𝜆4,#/𝑘𝑘4,#.        (9) 278 
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We can now define the relative species abundance (RSA) as the true abundance per 279 

subsample of a species normalized to the sum over all species of a given time-interval (R4,#). 280 

Under the assumption that preservation is the same for all species in question and that 281 

nothing else affects 𝑘𝑘4,#, then the proportionality coefficients will be species-independent, i.e. 282 

𝑘𝑘4,# = 𝑘𝑘4.  𝑘𝑘4 then drop outs when calculating the RSA: 283 

R4,# ≡
=%,'

∑ =%,'()
'(*#

= ?%,'<%,'/A%
∑ ?%,'(<%,'(/A%)
'(*#

= ?%,'<%,'
∑ ?%,'(<%,'()
'(*#

=
?%,'BCD	(%$F%,'

∗ )

∑ ?%,'(BCD	(%$F%,'
∗ ))

'(*#
   (10) 284 

For an alternative modelling approach, built-up from the average observable 285 

abundance per subsample given occupancy, 𝜆𝜆4,#, rather than detection probabilities, see SI 286 

“Description of the abundance-focused model”.  287 

We define the relative population density (RPD), 𝑄𝑄4,#, as the true abundance for the 288 

species at a given time interval relative to the true abundance of the same species averaged 289 

over all time intervals. We normalize 𝑄𝑄4,#	to the temporal mean rather than to a specific time-290 

interval (e.g. the first available), as it is less sensitive to uncertainty and estimates near zero. 291 

As long as the proportionality coefficients are independent of time interval, 𝑘𝑘4,# = 𝑘𝑘#, we can 292 

relate this to observed quantities such that: 293 

𝑄𝑄4,# ≡
=%,'

#
,
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#
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.        (11)  294 

𝑄𝑄4,#	will vary around the value 1 and is comparable within species, but not among 295 

species (unlike R4,#). 296 

 297 

7. Simulations 298 

We performed two sets of simulations. The “abundance-specified simulation study” 299 

demonstrates how well occupancy probabilities, abundance per subsample and other 300 

variables (e.g. detection probabilities and relative abundances) can be estimated. The 301 
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“occupancy dynamics-focused simulation study” presents the sampling regimes under which 302 

we might plausibly detect occupancy probability dynamics (i.e. non-overlapping 95% 303 

credibility intervals) when the parameters were as estimated in our empirical data.  304 

The simulated data of the abundance-specified simulation study was generated by 305 

specifying the Ψ4,#′𝑠𝑠	and λ4,#′𝑠𝑠. Eqn. 7 was used for back-transforming into detection 306 

probabilities and the data was then generated using Eqn. 3. We let species 1 have dynamics in 307 

Ψ and species 2 have dynamics in λ.  308 

For the occupancy dynamics-focused simulation study, we generated data under 309 

different sampling intensisites (10, 20, 30, 50, 100 and 1000 sites per formation and 60, 100, 310 

200, 400 and 1000 shells per site) and analyzed these data using the model and parameter 311 

estimates from our empirical data. See SI for more details on both sets of simulations. 312 

 313 

Results  314 

Empirical findings 315 

We found that including both the time-interval-dependent (Eqn 5) and the time-interval- and 316 

species-dependent random effects (Eqn 6) improved the description of our empirical data (SI 317 

Table S2). In other words, the full model (Eqn 6, illustrated in Fig. 2) was preferred over 318 

simpler models, based on Bayes Factors (see the SI section on “MCMC for statistical 319 

inference” for details), implying that the occupancy and detectability of the different 320 

bryozoan species varied significantly with time-intervals (formation). However, including 321 

paleoclimate explanatory variables or auto-correlated random effects did not improve our 322 

model (SI Table S2). In other words, for our current data, we are not able to predict relative 323 

abundance for unmeasured time-intervals beyond the median. The Bayes Factor did not 324 

resolve the choice between the alternative “abundance-focused model” and Eqn 6, and the 325 

models gave highly similar estimates of relative species abundances (see SI Fig. S4).  326 
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The overdispersion parameters, 𝜅𝜅#,were estimated to 0.09, 0.05, 0.04 and 0.07 for 327 

Antharcthoa tongima, Escharoides excavata and Arachnopusia unicornis and the 328 

superspecies, respectively (see Table S3 for credibility bands), where 𝜅𝜅# = 0 means no 329 

overdispersion. While these estimates are close to zero, they represent overdispersion that 330 

effectively doubles the variance, compared to no overdispersion (see SI Fig. S5).  331 

The standard deviation parameters of the random effects have large uncertainty (Table 332 

S3), except for the formation-dependent but species-independent random effect (𝜎𝜎5) used for 333 

detection probability. However, the model testing suggests that all random effects were 334 

necessary to obtain an acceptable model fit.   335 

  The uncertainty surrounding the occupancy probability of each of the focal species is 336 

quite large (Fig. 3), where we cannot establish that occupancy is well below 1.0 for any 337 

combination of species and formation. Note that the relative changes in modelled detection 338 

probabilities (Fig. 3) are similar to the dynamics of detection ratios (Fig. S2).  339 

The relative species abundance (RSA; R4,#) of the superspecies and A. tongima are 340 

estimated with relatively high precision and vary significantly over time, while that of E. 341 

excavata and A. unicornis are estimated with greater uncertainty (Fig. 4, see SI Figs. S4 and 342 

S10 for alternative RSA’s). The relative population density (RPD; Q4,#) estimates (Fig. 5) are 343 

also fairly uncertain, but some patterns are evident. Although the RSA of the superspecies 344 

fluctuates noticeably over time (Fig. 4), its RPD is remarkably constant (Fig. 5). This 345 

suggests that even though the abundance of single species may fluctuate substantially over 346 

long time-scales, the abundance of the bryozoan community is rather stable, at least during 347 

the time frame of this study (spanning c. 2 million years). Note that A. tongima and E. 348 

excavata are about equally abundant in the oldest formations (Fig. 4), but E. excavata 349 

becomes noticeably less abundant in the younger formations, at least relative to its own 350 
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average abundance over time (Fig. 5). The abundance of A. unicornis is reduced from the first 351 

to the second time interval, and then remains relatively low. 352 

 353 

Simulation results 354 

The abundance-specified simulation study shows a spread of the estimates around the 355 

true values for input parameters (SI Figs. S11-14) and the quantities that in our modelling are 356 

derived, namely occupancy probabilities (SI Fig. S15), detection probabilities (SI Fig. S16) 357 

and relative species abundances (Fig. 6). These estimates are spread quite evenly around both 358 

sides of the actual values. Minute biases were expected (and found) given our informative 359 

priors and non-linear transformations, but not cause for worry (see “abundance-specified 360 

simulation study” in SI).  361 

The occupancy dynamics-focused simulation study was designed for investigate if 362 

sampling strategies can be improved for the same focal species and region. This simulation 363 

indicated that occupancy dynamics are challenging to detect given our chosen species (see 364 

“occupancy dynamics-focused simulation study” in SI for details).   365 

 366 

Discussion 367 

Ecologists are interested in estimating changing relative species abundance (RSA) and 368 

population density (RPD) because it is a prime window into population dynamics (Sutherland 369 

et al. 2013). On a shorter time scale, understanding how environmental attributes and species 370 

traits affect population changes within communities are not only key to ecological 371 

understanding but also conservation management (Bowler et al. 2018). On a longer time 372 

scale, the changing of the relative abundance of fossil taxa have, in addition to acting as a 373 

baseline for conservation (Barnosky et al. 2017), the potential for supplying direct 374 

information on the evolution of phenotypes (Hannisdal 2006) and changing ecological 375 
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interactions (e.g. Liow et al. 2019) to enable linking paleoecological dynamics to 376 

evolutionary changes. However, estimating numbers of individuals in nature is challenging, 377 

regardless of the characteristics of organism (e.g. sessile or motile, small-bodied or large-378 

bodied), the type of data (e.g. direct counts, capture-recapture data), or the time-scale 379 

involved (e.g. seasonal, yearly or paleoecological data). Occupancy modeling, which 380 

explicitly models detection probabilities when estimating parameters of biological interest, 381 

including changes in relative abundance, is one powerful way of incorporating different 382 

sources of data heterogeneity and uncertainty. While occupancy modeling is increasingly 383 

widespread in “traditional” ecological studies (Bailey et al. 2013), is yet to be applied 384 

regularly in paleoecology. We believe our modelling framework has broad applicability e.g. 385 

among lake or deep-sea drill cores and fossil outcrops where subsamples within sites can be 386 

surveyed, and where relative species/taxon abundance rather than taxon richness is of 387 

interest. 388 

To briefly elaborate on the applicability of our modelling framework in 389 

paleoecological settings, we emphasize that fossil detection probability is far from one, not 390 

least because preservation is far from guaranteed (Kidwell & Holland 2002). Traditionally in 391 

paleoecology, however, there is an underlying assumption, usually implicit, that preservation 392 

(and hence the detection of preserved organisms) is comparable across samples and sites, 393 

sometimes even across time-intervals, as long as sampling is standardized. Here, detection 394 

ratios (see Methods: Study System) are usually presented as estimates of RSA (Kidwell 2002; 395 

Currano et al. 2008; Espinosa et al. 2020). However, we know from simulations and 396 

ecological studies that this assumption is problematic (Iknayan et al. 2014; MacKenzie et al. 397 

2017). Not only is it important to progress beyond tabulations of paleoecological data for 398 

improved inferences, parameters estimated using fossil data should be as comparable as 399 

possible with the those estimated using living organisms. This will allow us to infer historical 400 
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baselines for conservation applications and to gain a better understanding of changing biota 401 

over longer timescales for which we may have analogue crisis situations (Harnik et al. 2012; 402 

Barnosky et al. 2017).   403 

Instead of using the observed detection or non-detection of species, we could have 404 

instead used the counts of the number of individuals of a given species in each subsample. If 405 

we used the latter, we would have built a model similar to an N-mixture model (Royle 2004). 406 

However, the subsamples in our example (shells or fragments thereof) varied in size and 407 

these differences are expected to affect the number of individuals (colonies in our case). As 408 

shell size was not quantified, a random effect for subsamples would be needed to account for 409 

this variation. This inclusion would massively increase model complexity while introducing 410 

an uncertainty that would make the extra information (counts per subsample in our case) of 411 

little use. Since the computational cost would dramatically increase while the outcome was 412 

not expected to improve significantly, we decided against this route for our empirical 413 

demonstration. However, in other applications, subsample size can be accounted for. 414 

The accuracy of the RSA and RPD estimates depends on how close the assumptions 415 

concerning the proportionality coefficients are to reality. The estimates of RSA assume that 416 

the proportionality coefficients do not vary among species, and the estimates of RPD assume 417 

that the coefficients do not vary among formations for each species (i.e., both RSA and RPD 418 

are only accurate at the same time if the proportionality coefficients are constant across both 419 

species and formations). Our estimates of RSA apply only to the shell substrates that we have 420 

sampled; likewise the unit for our RPD is density per shell. Hence, if it is desirable to 421 

interpret the estimates given a different unit (e.g. per area sea bottom), one would have to 422 

make additional assumptions. Such assumptions depend on the application. For our data, the 423 

recruitment of encrusting bryozoans to substrates is thought to be largely limited by the 424 

availability of adults, although substrate orientation, the presence of biofilms and substrate 425 
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types (e.g. hard substrates versus soft substrates like sea grass or kelp) may also influence 426 

larval attachment and subsequent growth (Taylor & Wilson 2003) and may have species 427 

specificity. We have purposefully limited our data collection to bivalve shells, the most 428 

abundantly available and preserved substrate, which is always represented in our Pleistocene 429 

system (Beu 2012). In addition, while bryozoans might be selective of habitats, e.g. the 430 

strength of currents, coarse of sediments in the habitat affects their filter-feeding abilities, 431 

(Wood et al. 2013) the same bryozoan species can be found on varied substrates, i.e. different 432 

species of bivalves, rocks, gastropods and echinoderms (Rust & Gordon 2011). This 433 

empirical knowledge encouraged us to estimate RPD (𝑄𝑄4,#) assuming that the availability of 434 

suitable substrate for any bryozoan species in our dataset is not limiting. 435 

When estimating RPD, we removed the formation-specific random effects on 436 

detection probability belonging to all species. This has a strong impact on the RPD estimates 437 

since the standard deviations of these random effects are estimated to be quite substantial. 438 

This random component is probably mostly reflecting variation in preservation in our study 439 

system with similar bryozoan species encrusting the same shells. In other applications, 440 

however, the time-specific random effects may reflect true fluctuations in the community 441 

level abundance, and hence should not be removed. 442 

One lesson learnt from our empirical modelling is that while we are able to estimate 443 

the dynamics of relative species abundance (Fig. 4) and relative population density (Fig. 5), 444 

the dynamics of occupancy are challenging to grasp in our empirical system. For our study, 445 

the biggest driver of relative abundance is the dynamics of detection and thus of average 446 

observable abundance per subsample given occupancy, while inferred occupancy probability 447 

and its estimated uncertainty are estimated to be quite high for all species and formations, 448 

thus revealing little dynamics (Fig. 3). This is because site-observations are high for all three 449 

focal species even though subsample detection probabilities are relatively low. The 450 
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occupancy dynamics-focused simulations study showed that reliably getting occupancy 451 

estimates that vary from formation to formation requires unfeasibly intense sampling 452 

protocols for our choice of species, with the possible exception of Escharoides excavata. 453 

Luckily, detecting occupancy dynamics was not the primary goal of the study, but in studies 454 

where this is of principal concern, such issues should be considered before extensive data 455 

collection.   456 

We note several extensions to our models that can be considered, with regards to our 457 

empirical system. First, other sources of system-specific variation might be taken into 458 

account. In our example this includes the species of the shell substrate (e.g. some were 459 

cockles and others were scallops) and their body size, both of which may be selected by the 460 

bryozoan species involved and/or preferentially preserved. Second, we could potentially 461 

handle the number of colonies of each species observed for each subsample, since this could 462 

give an extra indication of the local average abundance per shell, although this is demanding 463 

data collection-wise as well as computationally for our dataset (as mentioned in the paragraph 464 

above). Third, in typical paleontological datasets, there are often time intervals in which we 465 

are not able to sample fossils because suitable material was not deposited. In our empirical 466 

example, we used two paleoenvironmental proxies (∂18O and Mg/Ca ratios) as covariates in 467 

expanded models (SI) in hope that they contained predictive information we could use on 468 

unsampled time-intervals. While neither of the two we had published data for were 469 

informative, it is possible that other paleoevironmental proxies given other paleoecological 470 

occupancy datasets, could be explored for this purpose. 471 

We hope that more paleoecologists will consider occupancy modeling as a means to 472 

estimate relevant ecological parameters and that modelers will pick up where we left off to 473 

improve the inference of biologically relevant parameters using a challenging but rich fossil 474 

record. 475 
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Code 476 

The code and data for all analyses are provided at 477 

https://github.com/trondreitan/TRAMPOline 478 

The name of the code package is called TRAMPOline based on an earlier acronym for the 479 

project, Temporal Relative Abundance-focused multi-sPecies Occupancy model. 480 
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Figure captions 573 

Figure 1: A schematic diagram to show the sampling scheme. Each thick bordered open 574 

rectangle represents a time-interval (two are illustrated more fully, the first time-interval, T1, 575 

and the nth time-interval, Tn). Within each time-interval, Sites (dotted rectangles) are sampled 576 

(two are more fully illustrated in each). Within each site, there are subsamples (smaller, solid 577 

bordered rectangles) in which different species (solid shapes) are observed. The open circle 578 

can represent a superspecies (see main text), which in our example is assumed to be present 579 

in all sites, even if unsampled. 580 

 581 

Figure 2. Full	hierarchical	occupancy	model	to	estimate	relative	abundance.	This 582 

figure summarizes our full hierarchical occupancy model for estimating relative abundane 583 

(RSA or RPD) composed of top level parameters and random effects that describe their 584 

overdispersion. Data are denoted as triangles where N are the number of sites and y the shells 585 

from site i where species s is observed. Black circles denote occupancy parameters, white 586 

circles denote detection parameters and grey circle denotes the overdispersion parameter. An 587 

arrow from an element A (i.e. circle, triangle or rectangle) to another B, denotes that B is 588 

conditioned on A either by a function or a distribution (see text for details).  589 

 590 

Figure 3. Estimated occupancy and detection probabilities. Estimates are from our full 591 

model where black lines join the species posterior median occupancy for each formation 592 

(time-interval) plotted in the middle of the age range of the given formation. Grey lines show 593 

95% posterior credibility intervals for the estimates. Note that the occupancy for superspecies 594 

is not plotted as it is assumed to be 1 throughout and that the y-axes for occupancy and 595 

detection are different. 596 
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Figure 4: Estimated relative species abundance (RSA). Estimates are from our full model 597 

where black lines join the species mean relative species abundance, R, (plotted on a log scale, 598 

except for the superspecies for visibility) for each formation (time-interval). Grey lines show 599 

95% posterior credibility intervals for the estimates and medians. A relative species 600 

abundance of 0.1 (for a given species in a time-interval given) means that every tenth 601 

bryozoan colony in the region was of this species. The inset on the right (“Combined”) shows 602 

the estimates combined for the four species/superspecies from their separate plots (note the 603 

different scale used for visual clarity). 604 

 605 

Figure 5: Estimated relative population density (RPD). Estimates are from our full model 606 

where black lines join the species mean relative population density, Q, for each formation 607 

(time-interval). Grey lines show 95% posterior credibility intervals for the estimates. 608 

Formation specific values are divided by the mean across formations. Hence, a value of 0.1 609 

means that the abundance is 10% of the mean across formations for the given species 610 

(horizontal stippled lines at value 1)  611 

 612 

Figure 6: Relative species abundances from the abundance-specified simulation study. 613 

Solid black lines show the true relative species abundances for the various species and 614 

formations, while the points are estimates from the 100 simulated datasets. We show 615 

estimates from 5 examples runs in each panel (light grey lines)  616 
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Figure 1: A schematic diagram to show the sampling scheme.  617 
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Figure	2:	Full	hierarchical	occupancy	model	to	estimate	relative	abundance	 621 
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Figure 3: Estimated occupancy and detection probabilities. 625 
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 Figure 4. Estimated relative species abundance (RSA). 628 
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Figure 5: Estimated relative population density (RPD).  631 
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 633 
Figure 6: Relative species abundances from the abundance-specified simulation study. 634 
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