GENERAL DECAY FOR WEAK VISCOELASTIC EQUATION OF KIRCHHOFF
TYPE CONTAINING BALAKRISHNAN-TAYLOR DAMPING WITH NONLINEAR
DELAY AND ACOUSTIC BOUNDARY CONDITIONS

MI JIN LEE!, JONG YEOUL PARK?, JUM-RAN KANG?*

ABSTRACT. In this paper, we consider the general energy decay for weak viscoelastic equation of Kirch-
hoff type containing Balakrishnan-Taylor damping with nonlinear delay and acoustic boundary con-
ditions. By introducing suitable energy and Lyapunov functionals, we establish the general decay
estimates for the energy, which depends on the behavior of both o and g.

1. INTRODUCTION

The main purpose of this paper is to consider the general decay for weak viscoelastic equation of Kirch-
hoff type containing Balakrishnan-Taylor damping with nonlinear delay and acoustic boundary conditions
lue|Puee — (a+b]|Vul|* + 6(Vu, V) ) Au — Aug + o(t) /t g(t — 8)Au(s)ds
0
= |ulf?u in Q xR, (1.1)

u=0 on Ty xR, (1.2)

9 ou  Ouun B t _ ou(s) g1
(a+b]|Vull +6(Vu7Vut))$+ £ 0(75)/U g(t—s) £ ds + palue(z, )7 ug(x, t)

+pz|ue(x, t — )| ue(z,t — 7) = m(x)y: on Ty x RT, (1.3)
w + f(@)y: + h(z)y =0 on I'y x RT, (1.4)
w(z,0) = uo(z), we(z,0)=wu(z) in Q, (1.5)
y(z,0) = yo(z) on Iy, (1.6)
ug(x,t —7) = folz,t —7) on Ty, 0<t<T, (1.7)

where 2 be a bounded domain of R™",n > 1, with a smooth boundary I' = I'oc UT';. Here I'y and
T’y are closed and disjoint and v = (v1,ve,...,Vs) represents the outward normal to I'. The constants
p,a,b,8,p,q, 1, p2 > 0, the functions m, f, h : I'y — R are essential bounded, g represents the kernel of the
memory term. Moreover, 7 > 0 represents the time delay and wo, w1, yo, fo are given functions belonging

to suitable space that will be precisely later.
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The physical applications of the system (1.1)-(1.7) is related to the problem of noise control and suppres-
sion in practical applications [4, 7, 8, 9, 10]. Balakrishnan-Taylor damping which arises from a wind tunnel
experiment at supersonic speeds was introduced by Balakrishnan and Taylor [1]. Later, several authors
have investigated the existence and asymptotic behavior of solution for equations with Balakrishnan-Taylor
damping (see [11, 16] and references and therein). Also time delays arise in many applications because most
phenomena naturally depend not only on the present state but also on some past occurrences [3, 12, 14, 15].

Feng and Li [5] studied the nonlinear viscoelastic Kirchhoff plate equation with a time delay term
in the internal feedback. The authors established the general energy decay for a viscoelastic Kirchhoff
plate equation with a delay term. Recently, Lee et al. [6] proved the general energy decay of the system
(1.1)-(1.7) with o(t) =1 and ¢ = 1.

Motivated by previous work, in this paper, we study the general energy decay of the system (1.1)-(1.7)
for relaxation function g and potential o satisfying the suitable conditions.

To the best of our knowledge, the general decay of solution for weak viscoelastic equation of Kirchhoff
type containing Balakrishnan-Taylor damping with nonlinear delay and acoustic boundary conditions. The
outline of this paper is as follows. In Section 2, we give some preparations and hypotheses for our main
result. In Section 3, we establish the general decay result of the energy by using energy perturbation

method.

2. PRELIMINARY
In this section, we present some material that we shall use in order to preset our result. We denote by
V={ueH(Q):u=0 on I'o}

the closed subspace of H'() equipped with the norm equivalence to the usual norm in H'(Q). The

Poincare inequality holds in V, i.e., there exist a constant C such that

2N
full- < CullVull, 2<r< , Yuev, (2.1)
N -2
and there exists a constant C, such that
[ullrr, < CulVull. (2.2)

For our study of problem (1.1)-(1.7), we will need the following assumptions

(H1) p and g satisfy

0<p,q< N if N>3, p,g>0 if N=1,2, (2.3)

and p satisfies

0<p< if N>3, p>2if N=1,2. (2.4)
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(H2) g, o : Ry — Ry are nonincreasing differentiable functions such that g is a C? function and o is C*
function satisfying

oo t
g(0) > 0, / g(s)ds =lp < o0, o(t) >0, a— U(t)/ g(s)ds >1>0, Vt>0, (2.5)
0 0

and there exists a nonincreasing differentiable function ¢ : RT — R™ with

(>0, ¢ < ~cwgw), viz0. m 20 o, (2.6)
(o(t) /tg(s)ds)l > 0. (2.7)
0
(H3) There exist three positive constants m1, fi and h; such that
m1 <m(z), fi<f(z), hi <h(z), z€eTli. (2.8)
As in [13], let us introduce the function
z(x, k,t) = w(x,t —7k), z€Q, ke (0,1), Vt>D0. (2.9)

Then problem (1.1)-(1.7) is equivalent to

t
[ue|Puee — (a+ bl|Vaul]> + 6(Vu, Vur) ) Au — Autt+0(t)/ g(t — s)Au(s)ds
0

= |[ulP72u in Q x RT,
u=0 on I'g xR,

t
(o U Vul? + 5V, Vu)) 5+ S — o) [ gt =) 25 s 4 s, O e,
0

ov  Ov ov
2| z(z, 1,8)|7  2(x, 1,t) = m(z)y: on Ty x (0,1) x RT, (2.10)
T2e (2, k,t) + 2 (2, k,t) =0 on Ty x (0,1) x R,
ue + f(x)ye + h(x)y =0 on Ty x RT,
u(z,0) = uo(z), ut(z,0) =ui(x) in Q,
y(m,O) :yO(-T) on I'y,
z(z,k,0) = fo(z,—7k) on T'1 x (0,1).

By combining with the argument of [2], we now state the local existence result of problem (2.10), which

can be established.

Theorem 2.1. Suppose that (H1)-(H3) hold and that (uo,u1) € (H*(Q) NV) xV, yo € L*(T'1) and
fo € L*(T'1 x (0,1)). Then for any T > 0, there exists a unique solution (u,y, z) of problem (2.10) on [0,T)]
such that

we L0, T; H*(Q)NV), u € L=, T; V)N LT (T, x (0,T)),

m'?y e L>=(0,T; L*(I'1)), m" %y, € L*(0,T; L*(T1)).
3. MAIN RESULT

In this section, we shall state and show our main result. For this purpose, we define

1

It = 2 (a—o(t) [ g)ds)IVa®I” + 2IVu@Il* + S IFu®IP + o (t)(go Vu)()
2 o 4 2 2
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§ g 1 5 1 »
+§/F1/0 29 (@, b, t)dkdT + 5 . h(x)m(x)y~ (t)dl — EHu(t)Hp7 (3.1)

and

16) = (a=a(0) | o)) IV + FIVa(O)]* + [Vuc(t)|? +o(0)(g o V) (1)

IS

ﬁﬂlﬁﬂ“u&wwﬁ+/hmmmfmﬁ—mmﬁ, (3.2)

where (gou)(t) = / g(t — s)|Ju(t) — u(s)|*ds. From direct calculation, we find that
0

o005+ ww) = =L - | o000 - ([ ateas)luol|

20 0w+ TP gone - 22 [ gastuol? (33)

and

t
1
(g% u,u) < 2( / g(s)ds) @I + +(g 0 u)(e), (3.4)
0
t
where (g xu)(t) = / g(t — s)u(s)ds. Now we denote the modified energy functional F(t) associate with
0

problem (2.10) by

B0) = S5t + 5 (a0 [ o) )ITuOF + FITu@* + SITu))f

p+2
—|—; (#)(go Vu)(t 5/1‘1/ q+1 (z,k,t)dkdl + = 5 /1‘1 h(:r)m(:r)yz(t)df— %Hu(t)”g
1 p+2
= mHut( oES + J (1), (3.5)

where £ is positive constant such that

27 p2q 27p1(q + 1) — 27p2
<& .
g+1 g+1

(3.6)

Lemma 3.1. Let pu2 < p1 and assume that (H2) hold. Then for the solution of problem (2.10), the energy
functional defined by (3.5) satisfies

B0 < -Gy, - Ca [ (e 10 ar - o( 3 GIu0l)
-0 oy - %(/ o5 ) V01" + 75 (g ¥
2050 vu) - | m(@)f @) 0dr <o, (3.7)

where C1 and C2 are some positive constants.

Proof. Multiplying in the first equation of (2.10) by u: integrating over 2, using (3.3), we have

Gtz + 5 (a =0t ()ds)nwmn + 2T+ LIV ?

50000 T = ol + 5 [ Ay o)
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=l O, = [ 1ot 101 e = 53 IV )~ gV
S ot Jivuol + T v + G oV - [ m@saiomr. @

Multiplying the equation in the fourth equation of (2.10) by £|z|7 'z and integrating the result over
I'1 x (0,1), we obtain

1
g;t/ / |z(z, k, )| 9T dkdl = — / / —|z(z, k, 1)|" dkdD

_ 25 |z(x,1,t)|q+1dr+5/ e ()] 1T, (3.9)
ry

By using Young’s inequality, we get

i |z<x,17t>|q*1z<x7Lt)ut(wr‘

I
H29 q+1 H2 q+1
< z(x,1,t dl’ + we (T dr'. 3.10
< ot [ o B [ ) (3.10)
Thus from (3.8)-(3.10), (2.7) and definition of E(t), we obtain
’ € at1 (& meq a+1
B <~ (- & - )n wOte, = (57 - 2%) [t 1
1d O'/(t) t 2
(5 rwuorr) - “Dowieuon® - 7L ( [ oo )ivuol
o' (t o(t ,
+ 70 g0 vun) + %(y ovu)(1) — [ ml@) @)y (0T,
Iy
Using (2.7) and (3.6), we take C1 = p1 — % — 24 >0and O = 7 — £21 > 0, which implies the desired
inequality (3.7). a

Lemma 3.2. Suppose that (H1)-(H2) holds. Let (u,y,z) be the solution of problem (2.10). Assume that
I(0) > 0 and

_C?(2pE(0)\ T
b (l(p—z)) <1 (3.11)

Then I(t) > 0 fort € [0,T], where I(t) is defined in (3.2).

Proof. Since I(0) > 0 and continuity of u(t), then there exists 7" < T such that
I(t) > 0, (3.12)

for all ¢t € [0,7™]. Then (2.5), (3.1), (3.2) and (3.12) give

_pP— 2 K 2 b 4 2

JO) ==~ e=o@® | g(s)ds J[Vu@” + 5IVa@I” + [IVu )" + o (t)(g 0 Vu)(?)
0
1
+g/ / 2 (2, k, t)dkdD +/ h(z)m(x)y® (t)dl | + lI(t)
r; Jo ry p

> %lHVu(t)Hz, Vi € [0,T"]. (3.13)
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Thus from (3.5), (3.7) and (3.13), we arrive at

2p 2p 2p x
U Vu@®)|]* < J(t E(t E(0), Vtelo,T]. 3.14
I ()Il_p (t) < p2() p—Q() [0,77] (3.14)
Applying (2.1), (2.5), (3.11) and (3.14), we have

t

lu@®)ly < C2IVu®)|” < ol Vu®)]|* < (a - U(t)/ 9(8)d8> IVu(®)l*, vt e 0,17].

0

Consequently, we get

16) = (a=o(0) | o)) IV + FIVu(O]* + [ Vu(t)|? +o(0)(g > Tu)(0)

1
+£/ / 2 (@, k, t)dkdD + [ h(x)m(x)y®(t)dD — |lu(t)||5 >0, Vte€[0,T7].
r,Jo I

By repeating this procedure, and using the fact that

p—2
CY (2pE(t) \ =
< 1
t=T | (l(p72) sash
T* is extended to T. Thus the proof is complete. (]

We state the global existence result, which can be obtained by the arguments of [3, 6, 16, 17].

Theorem 3.1. Let p2 < p1 and suppose that (H1)-(H3) hold. Let (uo,u1) € (H*(Q)NV) xV, yo €
L3(T4), fo € L*(T'1 x (0,1)). If I(0) > 0 and satisfy (3.11), then the solution (u,y,z) of (2.10) is bounded

and global in time.

Now we will establish the general decay property of the solution for problem (2.10) in the case p2 < p1.

For this purpose, we define the functional
L(t) = ME(t) + eo(t)®1(t) + o(¢)P2(2), (3.15)
where M and e are positive constants which will be specified later and

,0—|—1/|Ut Pug(t ()deerVu i +/Vut YVu(t)dx

+ /1“1 m(z)u(t)y(t)dl + § m(z)f(z)y®(t)dT, (3.16)

Ty

and
Dy(t) = p+1/‘ut Pug(t /g(t—s)(u(t)_u(s))dsdz
,/ Vut(t)/ g(t — 8)(Vu(t) — Vu(s))dsdz. (3.17)
Q 0

Before we show our main result, we need the following lemmas.

Lemma 3.3. Let u € L>=([0,T]; H} () and suppose that (H1) holds, then we get

/Q (a(t) /Ot g(t = s)(u(t) - U(8))ds> p+2dm

< (a1 aro(t)(go Vu)(t), (3.18)
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2
12 2pE(0)) 2
where a1 = C¥ (pr 2>) .

Proof. From (2.1), (2.5), (3.14) and Hélder’s inequality, we can derive

/ﬂ (a(t) /Ot g(t —s)(u(t) — U(S))ds> p+2d$
< /Q (O(t) /Otg(ts)dsy’“(g(t) /Otg(t—s)\u(t) *U(S)|p+2ds)dx

< (a—rHice ( i ) S o(t)(g 0 Vu)(t).

O

Lemma 3.4. Let (u,y,z) be the solution of (2.10) and suppose that (H1)-(H3) hold, then there exist two

constants 1 and B2 such that

BiE(t) < L(t) < B2E(t), Vi > 0.

Proof. Using (2.1), (2.2), (2.8), (3.14) and Young’s inequality, we obtain

! p p+2 [e%1 9
RS we ()| Pue (t)u(t)dz| < —QIIut(t)npiﬁmnw(t)H 7
/QVut(t)Vu(t)dx < JIVu @I + 3 IVu(o)?,

A m(m)u(t)y(t)dr]s oz [ hamia)?() < vuo

Similarly, using (2.1), (2.5), (3.18) and Young’s inequality, we can deduce

7 | @) [ gt = 9(ut) ~ u(s)dsda

p+2

< A3+ g [ (00 [ o= 900 - uteas) s

< 20 o3 + =0 g0 vy
T pt2 72 (p+2)(p+1) ’
and
‘ —/ch(t)Vm(t)/O g(t — s)(Vu(t) — Vu(s))dsdz| < ?HVut(t)HQ + %Oa(t)(goVu)(t).

Combining (3.15)-(3.17), (3.20)-(3.24) and using (H2), we get

IL£(t) = ME(t)| < ea(t)|®1(t)] + o (t)|P2(t)]

< (Z(i‘; 1) (e (t )Hzig + WHVW(U\F +eo(t) <(p+2€;% 02* + %) ||Vu(t)||2

(3.19)

(3.20)
(3.21)

(3.22)

(3.23)

(3.24)

m||so . 2 a—DPay
+eo(t) (Z|\Vu(t)|\4 + W/F h(z)m(z)y (t)dF) + (((L + %))a(t)(g o Vu)(t)

p+2)(p+1)
< CE(t),

where C' is some positive constant. Choosing M > 0 sufficiently large and € small, we obtain (3.19).

O
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The following theorem is our main result.

Theorem 3.2. Let u> < p1 and suppose that (H1)-(H3) and (3.6) hold. If (uo,u1) € (H*(Q)NV) XV, yo €
L3(T'1), fo € L*(T'1 x (0,1)) and satisfying (3.11). Then for any t > to, there exist positive constants K
and K such that the energy of the solution for problem (2.10) satisfies

B(t) = Ke "lio 765 gy > 4 (3.25)

Proof. From Lemma 3.4, it suffices to prove that we obtain the estimate of L(¢). For this purpose, first

we estimate @7 (¢). It follows from (3.16) and (2.10) that

/\ut Paug (t ()dm—l—m/m |p+2dx+5/Vu YW (t dm/Vu YWVu(t)dz

+/9Vutt(t)Vu(t)dx+/ﬂ\Vut(t)| dx + m(x)u(t)y(t)dl + m(x)u(t)y: (t)dl

T Ty

+ [ m(@)f(@)y(t)y:(t)dl

Iy

=— (a + bHVu(t)||2) /Q |Vu(t)|*dx + ; Vu(t)o(t) /0 g(t — s)Vu(s)dsdz + [ |u(t)|Pdx

Q

—m / )" e (udr — i [ ol 1,01 2,1, Oudr + —
T P

+/Q|Vut(t)|2dx—|—2 g m(x)u(t)y: (t)dl — g h(z)m(x)y®(t)dr. (3.26)

In what follows we will estimate the right hand side of (3.26). By using (2.1), (2.2), (2.5), (2.8), (3.5),

2
e (0123

(3.14) and Young’s inequality, for any 1 > 0, we have

/QVu(t)o(t) /Ot g(t — s)Vu(s)dsdx

/QVu(t)a(t)/O g(t — s)(Vu(s) — Vu(t))dsdz

+o(t / ds/|Vu )|*dx

o(t
< (e = DIaI* + G2 (g o V), (327)
Ml/ |ut(f)|q71ut(t)u(t)df‘ < panaz||Vu@)||* + mCyllwe (D121 1, (3.28)
'y
pe | lz2(=, 1,07 2 (e, 17t)u(t)df‘ < panaz||Vu(®)||* + p2Cy (2, 1,0)[1117 r, (3:29)
I
and
| m(m)u(t)yt(wdr\ <nC2vu@l + 21 [ s, (3.30)
r, nf1 r,
where ap = CIT! (?&E%)) . Choosing 1 small enough such that

~ l
n(a—l—i—Cf—!—ulOzz—FuzOéQ) <z

[\]

and substituting of (3.27)-(3.30) into (3.26), we obtain

l
®1(t) < —5 | Vu®)|* - blIVu®)* + lueON53 + IVue (@) + u)]}

1
p+1
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o(t
+7 (g0 Va)(®) + i Collur®EE v, + maCallz(e 1045,

“?% [ m@ @0 - [ n@myor. (3.31)

Next, we would like to estimate ®5(t). Taking the derivative of ®2(t) in (3.17) and using (2.10), we get
(1) = (a+ b||Vu(t Nk / Vu(t / g(t — s)(Vu(t) — Vu(s))dsdz

+6/ Vu(t)Vue(t dm/ Vu(t / (t — s)(Vu(t) — Vu(s))dsdz

—/Qa(t)/o g(t — s)Vu(s)ds /0 g(t — s)(Vu(t) — Vu(s))dsdz

—/ ()P 2u(t) / t—s)(u(t)—u(s))dsda:—/QVut(t)/o g (t — $)(Vu(t) — Vu(s))dsdz
Y / [we (8)|°ue (t) / (t — s)(u(t) — u(s))dsdx

= [ (m@) = el 1,07 o, 1,8) = a0 1)) [ 3)utt) = () dsar
/ Vue(t / (t — 8)Vu(t)dsdx — 7/ e (8)])Pue (¢ )[) g(t — s)u(t)dsdz

=B+ Bt By — / 9(s)ds|[Vue(0)]* - ﬁ( / g(s)ds ) [[ur (01513 (3.32)

From now we will estimate the right hand side of (3.32). By (2.1), (2.2), (2.5), (2.8), (3.7), (3.13), (3.14)

and Young’s inequality, for any v > 0, we derive the following inequalities

/Q (a+ 20 (g)))Vu(t) /0 gt — $)(Vult) — Vu(s))dsda

Ei| <
1l < lp

s o 2bpE(0)\ 2
<AV + 2 (a+ 70 =5)) (90 Vo), (3.33)
|Es| < 752(/9Vu(t)Vut(t)dx> [|[Vu(t)])® + %/Q </0 g(t — s)(Vu(t) — Vu(s))ds) dz
< —2?fpr2()())E’( )+ %(goVu)() (3.34)

B < [ ot [ gt — $)(IVu(t) - Vu(s)] + |Vu<t>|>ds)2dx

7/ (/ (t — 8)|Vu(t) — (s)ds)2d9c

< (2v+ —) (a = 1)(g 0 V) (1) + 2v(a — Dlo||Tu(t)|?, (3.35)
Bl < [ P Vde + S (g0 9u)(0) < raa U + 2 (g0 V), (3.30)
Bl < 7IVu* - L2 (g 0 Vo), (337
Y4 2 9(0)03 /
150 € 22 V) — 22 00 Vo), (339)
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~2
el < Wlee [ ) plapg2 ar + S22 (g 0 Tu) @), (3.39)

bil r, 4y
|Es| < ypallz(x, 1,217 1, + n2Chifaz(g o Vu)(t), (3.40)

and
Cc?l

|Bo| < ypras||Vue(8)]* + ‘“To(g o Vu)(t), (3.41)
where ag = CYP~Y (322QN)772 ) = C20HD (22ED) P and a5 = C29(2229)) 71 Thus from (3.32)-(3.41),

we conclude that

1 t t
#4(0) < = ([ 9 ol ([ aeas =2 (1 4 mas + 20) ) ITu?
_g(0) c? / B 2v8%pE(0) ., g+l
+0xtg0 700 - 2 (14 -C1 )i 0 vu0) - ZELEDE 0 + allete 10N,
(120 = o+ ) [V + V2= [ o)yt yar. (3.42)
1
where Cs = L {lo(a+ Z2Z0)* 4+ (892 + 1)(a — 1) + lo(1 + C2 + C2 + 11 C?) + dyp>C 1 }. Similarly to

Lemma 3.4, for any A > 0, we obtain

o 1(0) < =T 0513 - i OITuI - T [Tuo)

/ /
T gu(pyt ~ Tl £ W) [ p ey yar (3.43)
4 2h r
and
/ )\U/(t) p+2 ’ 2 ’
o' (t)Pa(t) < — P [ut @) 1572 — Ao” (D) [Vue(B)]]” — Cs07 () (g © Vu)(t), (3.44)
_ 1 éf ay _ C>\l09+1a1 lo . . Y.
where C4 = 5 + &= + SIS and Cs = ey T o Since g is positive, we have, for any to > 0,

fo s)ds > fto g(s)ds := go > 0, for all t > to. Applying (3.7), (3.31) and (3.42)-(3.44), we see that for

any t > to,
£(8) = ME'(0) + 20/ (00 (1) + 2o()@4 (1) + o' (0122(1) + o ()2 (1)

s—aa)(g;;fﬂ(j;;"f @l - o0 (b2 + 2 D) Ivutol
fa(t)((%+;’ tt))/ ds)M+EC4" +%lf'y(l+2(afl)lo+a3))|\Vu(t)H2
~o(0) (0 -1+ mas + -2) — e+ EXZEO ) [9u 0 + cotllutol
rolt)( ot 4 270 - BT 1 ¢ ) g0 a0 - o0 T -y ) w0l
~o(0)( L3~ ey n et 1,005, + 00~ A2 (14-55) )i 0 Ve
—o(t) <a+ (t)(H;l'l':’(J)’ “wa)) /Fl h(w)m(z)y” (t)dr —a(t)%E'(t)
() (5 — o= = =) [ o (3.45)
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a’'(t)

At this point, we choose ¢ and ~ sufficiently small, M sufficiently large and then since lim;_, o5 = 0,
we can choose to > 0 sufficiently large such that
go—e  (e+Nd'(t)
M, = + >0,
p+1 (P +2)o(t)
O NN )
My = (% + 5t / ds) M + +2 (1 +2(a — Do + az) >0,
2\)o
M3:g07'y(1+,u1a5+7) L()t)()>0’
Mdo'(t) eo(t) Cso'(t) Ci1M
My = — Cs >0, Ms= —euCy >0
4 20 (t) 4n o(t) tCs >0, 5 o(t) et >0,
CoM M g(0) C?
5= 50 en2Cn —p2 >0, Mz = . + or1)” 0,
and
M elmlls _ Allmlle
Mg = —— — — > 0.
o(t) nf1 fi
Then for any ¢t > to, using (3.5) and (3.45), we deduce that
275°pE(0
L' (t) < =Moo (t)E(t) + Moo (t)(g o Vu)(t) — o(t) 7( P () 20 PEQ) ). (3.46)

where My and Mo are some positive constants. Multiplying (3.46) by ((¢) and using (2.6), (3.7) and
(3.14), we obtain for any ¢ > to,

CHL(t) < =Moo (t)C(H) E(t) — Mioo(t)(g' o Vu)(t) — Miio(t)¢(t) E' (t)
< =Moo (1)C(H)E(t) — 2MioE'(t) — Muo(t)¢(1) E' (1)
— Moo (t)C(H)E(t) — (2Mio + M11o()C(t)E' (), (3.47)

where M = % Now, we define

G(t) = C()L(t) + (2M10 + M11a(t)C(1)) E(t).

Using the fact that ¢ and o are nonincreasing positive functions and ¢’(¢) < 0 and o'(t) < 0, (3.47) implies
that

() < ~Mao(H)C(DE() < —ro(t)C(HC(E)

where k is a positive constant. Integrating the previous inequality between to and t gives the following

estimation for the function G(¢)
G(t) < Glto)e ™o 7B vy > 4.
Again, employing that G(t) is equivalent to E(t), we deduce
B(t) < Ke ™o 7@ vy sy

where K is a positive constant. Thus the proof of Theorem 3.2 is completed. g
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