Lana Austin

and 6 more

Mitonuclear interactions have been proposed as evolutionary drivers of sexual reproduction, sexual selection, adaptation, and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in a wild population with divergent sets of proposed co-adapted mitonuclear genotypes. Two lineages have been identified in the eastern yellow robin Eopsaltria australis - putatively climate-adapted to ‘inland’ and ‘coastal’ climates. The lineages differ by ~7% of mitochondrial DNA positions, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial genes. This pattern can be explained by female-linked selection accompanied by male-mediated gene flow across the narrow hybrid zone in which the two lineages coexist. It remains unknown whether lineage divergence is driven by intrinsic incompatibilities (particularly in females, under Haldane’s rule), extrinsic incompatibilities, or both. We tested whether non-random mating with respect to partners’ mitolineages or Z-linked variation could facilitate lineage divergence. We used field data, Z-linked and mitolineage genetic markers from two locations where the lineages hybridize, to test whether females choose to mate with (1) males of their own mitolineage and/or bearing similar Z-linked variation, as might be expected if hybrids experience intrinsic incompatibilities, or (2) putatively locally-adapted males, as expected under environmental selection. Comparisons of field observations and simulations present no evidence of non-random mating: the observed reduced female gene flow likely operates via post-mating isolation. Future studies testing for female-biased mortality at different life stages and female habitat selection should clarify the mechanisms of selection.

Diana Robledo-Ruiz

and 6 more

Identifying sex-linked markers in genomic datasets is important, because their analyses can reveal sex-specific biology, and their presence in supposedly neutral autosomal datasets can result in incorrect estimates of genetic diversity, population structure and parentage. But detecting sex-linked loci can be challenging, and available scripts neglect some categories of sex-linked variation. Here, we present new R functions to (1) identify and separate sex-linked loci in ZW and XY sex determination systems and (2) infer the genetic sex of individuals based on these loci. Two additional functions are presented, to (3) remove loci with artefactually high heterozygosity, and (4) produce input files for parentage analysis. We test these functions on genomic data for two sexually-monomorphic bird species, including one with a neo-sex chromosome system, by comparing biological inferences made before and after removing sex-linked loci using our function. We found that standard filters, such as low read depth and call rate, failed to remove up to 28.7% of sex-linked loci. This led to (i) overestimation of population FIS by ≤ 9%, and the number of private alleles by ≤ 8%; (ii) wrongly inferring significant sex-differences in heterozygosity, (iii) obscuring genetic population structure, and (iv) inferring ~11% fewer correct parentages. We discuss how failure to remove sex-linked markers can lead to incorrect biological inferences (e.g., sex-biased dispersal and cryptic population structure) and misleading management recommendations. For reduced-representation datasets with at least 15 known-sex individuals of each sex, our functions offer convenient, easy-to-use resources to avoid this, and to sex the remaining individuals.

Alexandra Pavlova

and 7 more

Sex-specific ecology has management implications, but rapid sex-chromosome turnover in fishes hinders development of markers to sex monomorphic species. Here, we use annotated genomes and reduced-representation sequencing data for two Australian percichthyids, the Macquarie perch Macquaria australasica and the golden perch M. ambigua, and whole genome resequencing data for 50 Macquarie perch of each sex, to detect sex-linked loci, identify a candidate sex-determining gene and develop an affordable sexing assay. In-silico pool-seq tests of 1,492,004 Macquarie perch SNP loci revealed that a 275-Kb scaffold, containing the transcription factor SOX1b gene, was enriched for gametologous loci. Within this scaffold, 22 loci were sex-linked in a predominantly XY system, with females being homozygous at all 22, and males being heterozygous at two or more. Seven XY-gametologous loci were within a 146-bp region. Being ~38 Kb upstream of SOX1b, it might act as an enhancer controlling SOX1b transcription in the bipotential gonad that drives gonad differentiation. A PCR-RFLP sexing assay, targeting one of the Y-linked SNPs, tested in 66 known-sex Macquarie perch and two individuals of each sex of three confamilial species, and amplicon sequencing of 400 bp encompassing the 146-bp region, revealed that the few sex-linked positions differ between species and between Macquarie perch populations. This indicates sex-chromosome lability in Percichthyidae, also supported by non-homologous scaffolds containing sex-linked loci for Macquarie- and golden perches. The resources developed here will facilitate genomic research in Percichthyidae. Sex-linked markers will be useful for determining genetic sex in some populations and studying sex chromosome turnover.

Alexandra Pavlova

and 7 more

Understanding sex-specific biology can aid conservation management. But understanding genomic sex differences of monomorphic fish species and developing molecular sexing assays is challenged by their diverse sex-determination systems. To facilitate research on Percichthyid fish, predominant in the Australian freshwater biota, we report whole genome sequences and annotations of the endangered Macquarie perch Macquaria australasica and its sister species, the golden perch M. ambigua. To identify sex-linked loci, we conducted whole genome resequencing on 100 known-sex Macquarie perch. In-silico pool-seq comparisons revealed few sex differences, but a 275-Kb SOX-containing scaffold was enriched for gametologous loci- homozygous in females, heterozygous in males. Within this scaffold we reconstructed X- and Y-linked 146-bp haplotypes containing 5 sex-linked SNPs, ~38 Kb upstream of SOX, and developed a PCR-RFLP sexing assay targeting the Y-linked allele of one SNP. We tested this assay in a panel of known-sex Macquarie perch, and smaller panels of three other confamilial species. Amplicon sequencing of 400 bp encompassing the 146-bp region revealed that the few sex-linked positions differ interspecifically, and within Macquarie perch such that its sexing test approached 100% reliability only for the populations used in assay development. Similarly, Macquarie- and golden perch genome-wide DArTseq SNPs revealed different sex-linked loci across non-homologous scaffolds. Overall, we identified 22 sex-linked SNPs in Macquarie perch in a predominantly XX/XY system in which females are homozygous at all 22, and males are heterozygous at 2 or more. The resources here will facilitate multi-locus sexing assays for both species and research on Percichthyid biology.