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Abstract

The purpose of this paper is to analyze a new kind of Hadamard fractional boundary value problem
combining integral boundary condition and multipoint fractional integral boundary condition on an
infinite interval. By the help of the Bai-Ge’s fixed point theorem, multiplicity results of positive
solutions are derived for the Hadamard fractional boundary value problem. In the end, to illustrative
the main result, an example is also presented.
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1 Introduction

Recently, fractional calculus and fractional differential equations have aroused a considerable atten-
tion of many scientists because of their capability to modelling real world phenomena in a variety
of fields such as physics, applied mathematics, control theory. We refer to excellent books on the
subject of fractional calculus and fractional differential equations, see [1, 2, 3, 4, 5]. As a significant
topic for the theory of fractional boundary value problems, the existence results of positive solutions
have been investigated comprehensively and a variety of results related to fractional boundary value
problems has been established with the aid of fixed point theory, monotone iterative method, upper
and lower solution technique. See [6, 7, 8, 9, 10, 11, 12, 13] and the references therein.

At the same time, Hadamard fractional differential equations with nonlocal boundary conditions
on an unbounded/bounded domain have evolved as an interesting subject of research. This area is
open for further development. Especially, Hadamard boundary value problems subject to integral
boundary conditions and m-point fractional integral boundary conditions are very popular fields.
But as far as we know many results are obtained for the Hadamard fractional boundary value
problem using either m-point fractional integral boundary condition or integral boundary condition,
see [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

In [15], Thiramanus et al. investigated the following boundary value problem:

{ HDY, u(t) + a(®fiu(t) =0, 1<g<2, te(1,+00),
(1) =0, HDI u(oo) = Y M I u(n),

where # DY, denotes the Hadamard-type fractional derivative of order «, € (1,400); # Ifi is the
Hadamard-type fractional integral of order 5; >0 (i = 1,2,...,m).
In [16], Zhang and Lui considered the following problem:

HD¢ x(t) + a(t)f(t, z(t) =0, n+— l<a<n, te(l,+00),
i dt
S =0, Do) = [ T, m =01, 2
1

where n € N, n >3, D¢, is the Hadamard-type fractional derivative of order «. By applying the
monotone iterative method, they obtained the minimal and maximal positive solutions of boundary
value problem.

Since many authors study Hadamard boundary value problem with integral boundary condition
and m-point fractional integral boundary condition, in this work, we are interested in investigating
Hadamard boundary value problem which include both integral boundary condition and m-point
fractional integral boundary condition on an infinite interval:



ADY u(t) + p(t) f(t,u(t),” folu(t)) =0, n—1<¥<n, te(l,+0),

m

~ dt |
WP (1) =0, 0<k<n—2 HD'u(oo)= / g(0u) 5 + DA Tu(o) (1.1)
1 i=1

where n € N, n > 3, # Df+ is the Hadamard-type fractional derivative of order o, ¥ Ilﬁ+ is the
Hadamard-type fractional integral of order 3; > 0 (i = 1,2,...,m), g € C([1,00),(0,00)) and \; >
0(i=1,2,...,m), ¢ € (1,+00) are given constants.

We are interested in the analysis of existence result of positive solutions for Hadamard fractional
boundary value problem on an unbounded domain. To the authors knowledge, due to the noncom-
pactness of an infinite interval, research on Hadamard fractional boundary value problems on the
half-line has little been discussed up to now. Hence, we attempt to study infinite interval Hadamard
fractional differential equation.

Our paper includes new features. Firstly, compared with [15, 16, 26], our nonlinear function f
involves Hadamard fractional derivative operator which makes the problem more complex. Secondly,
our boundary condition is more general than compared with [15, 16, 26]. Furthermore, the technique
is different from [16, 26].

2 Preliminaries

In this part, basic concepts, notations and related lemmas about the Hadamard-type fractional
calculus are given for the convenience of the readers.
Now, let us introduce two Banach spaces as below,

E{uEC([l,oo)): sup |u(t)|<oo},

te[l,00) 1+ (log t)o-1

F = {u e B DV uec(l,00)): t S[lllp : 1T DY u(t)| < oo} ,
€ll,00

[u(®)]

t

jo=r, and |Jullp = maz{||ul|z,supie)y o) "DV u(t)]}, re-

with norms ||ullz = SUP;e(1 0o) Trrog 17T

spectively.
Define the cone P C F by

P={uecF:u(t)>0,tc[loo)}.

Definition 2.1 ([4]) The Hadamard fractional derivative of fractional order v for a function c :
[1,00) — R is defined as

1 d\n ! t\n—vr-1 ds
Hpyv - (= / log — & -1 — 1
re(t) L(n—v) <tdt) 1 ( o8 s) o), nol<v<nn=[+1,

where [v] denotes the integer part of the real number v and log(:) = log,(+).

Definition 2.2 ([4]) The Hadamard fractional integral of order v for a function ¢ : [1,00) — R is
defined as ;
1 tyv—1 , . ds
H v
I c(t) = —— [ (log = o,
) = 5 [ (02 D) e v

S S

provided the integral exists.

Lemma 2.1 ([4]) If a,v,pu > 0, then

(12 og 1) (w) = o s (o 2401, (D o ")) = s (log 2



Lemma 2.2 Let k € C[1,00) with [~ k(s)% < oo, and T =T () — >, %(log g)UFhi—1

o dt
T, =7 —/ g(t)(logt)ﬁ—l7 >0,
1
then the function u € F is a solution of the Hadamard-type fractional differential equation
ApY u(t) +k(t) =0, n—1<9<n, te(l,+o0),

with the following boundary conditions

oo dt .
u® (1) =0, 0<k<n-2, "D lu(co)= / g(tyu(t)— + SO u(s),
1 ;

if and only if u satisfies the integral equation

u(t) = /100 G(t,s)k(s)%, tel,o00)
where
G(t,s) = Gi(t, s) + Ga(t, s),
and

Gi(t,5) = glt, 5 +ZTF1°§’fﬂ) (5.5),

o 9—1 o]
Go(t,s) = ag;i/l Gl(t»S)g(t)%

(t.5) 1 (logt)?~1 — (log £)"=1, 1<s<t< oo,
yS) = 7o
J T(9) | (log 1)’ ", 1<t<s< o0,

(c.5) (log ) A=t — (log £)"+Fi=1 1< s < ¢ < oo,
S, =
! (log )+, 1<¢<s< o0

Proof. (2.1) can be shown by

t
u(t) = —ﬁ/l (log z)ﬁ’lk(s)% + c1(logt)? ! + eo(logt)? =2 + ... + ¢, (logt)? ™™,

with

(2.3)

(2.4)

where c¢q, co, ..., ¢, € R. With the help of the boundary conditions u(k)(l) =0,k=0,1,....,.n—2, we

drive cg = c3 = ... = ¢,, = 0. As a result,

u(t) = —ﬁ/l (1ogf)ﬁ—1k(s)% + e1(log )1,

S

Lemma 2.1 results that
_ ds
HDer 1 ( = 01F / k‘

Using the second condition of (2.2), we have

a= g 00T+ [Tr0T =Y s [ o k) D),

i=1



Substituting (2.6) into (2.5), we get

o 9—1 o] s o v—1 [es} t s
) =S [T r D BEE [T oun T - s [ otk S

S S

logt N < 948;—1 ds
X Ty e O

s - ogt)V—t [ s ogt)’~! [
:(logt)/1 k(s)d—+(rw) )llog?) /1 k(S)dJr(lgt)/l s(0ul) 5

() s TF( ) s T t
1 ¢ t yo-1 "\ (logt)? ° S\ 9B — ds
- Z log 2 )0 +Pi—1k(g) 2
') /1 (log ) s (s ; 'Y+ B;) / (log 5) (s) s

_(logt) 71 7,y ds Ai(logt)”~ 1, ds
F(19)/1 k(5)8+¢_1W/1 (logs)"*? lk(s)?

o 9—1 o t s
+ BB [T owunF - 1 [ o5 D" )%

t s
(1 s d
—Zn‘?i@ Jronyrnr
[ ™\ (logt)? o0 ds (logt)?=1 [ dt
- [ ate Z Los 0 [" s + S [ gty

=1

/G1 4 Uost)™ ) [g(t)u(t)%

Hence,

[ a0u0f = [ow [ Gateomn T

dt > dt
19 1 haad
3 [ awosn t/l gty

/1mg(t)u(t)cit T/ /Glm dsdt

which provides

Then,

The proof is completed.
Lemma 2.3 The Green’s function G(t, s), given by (2.4) ensures the following properties:
(i) G(t,s) is continuous and G(t,s) > 0 for (t,s) € [1,00) X [1,00);

(ZZ)H_(CI’;(gt:)ﬂ r < 7 forall (t,s) € [1,00) x [1,00);

. G(t,s m i(log )’ 1gi(s,s
(441) ming<s<pe # =D i p(?gfgngr(lOi%ﬁzl) (T% — %) fork>1 and s € [1,00).

Proof. We can easily see that (i) holds. Next, we show that (i7) and (ii7) hold. To prove (i), for
(t,s) € [1,00) X [1,00), we have



G(t, s) Gt s) Ga(t,s)
1+ (logt)?-1 1+ (log 75)19—1 1+ (log 15)19—1

_ Z IOgt gz(§7 )
1+ logt19 1 TT( 19+61 14—(logt)19 )

(logt
t,
+T( logtﬂl/ Gilt,s)g

1 Ai(logg)?HAi=1 1 o0 B
= T() +; YT (I + Bi) +T1F(,9)/1 (logt)"~'g(t)—

1 < \(logn)?+Ai—1 /°° 91 . dt
— —_— logt t)—
+T1; TO(W+53) )i (log ) g()t

_ 1 ~ Ai(log¢)" i1 1 >
O YT + 3, Tlrw)/(

i=1

o0 moy. og n)?+Bi—1

T /)
1 " T (09) (log g)?HAi—1 1

t

B (@) " i=1 YT ()9 + B;) + T1T(9) /1 (logt)ﬁflg(t)?

+

1 e dt

1 v—1 b

e A L
1

= Tl'
To prove (ii7), for (t,s) € [1,00) x [1,00) and k > 1, we have,

min G(t,s) _ min Z Xi(logt)?=1g;(s, s)
s<t<hks 1+ (logt)?—1  c<t<ks |1+ logt YT+ 8;)(1 + (logt)?—1)

logt dt
t,
+T(1+logt191/ Gt 8)g ]

(logt)?
> mi G4 (t,
= Sigke Ty (1+ (logt)?—1 / 1t 5)g

(logg)?—1 (logt)? dt
T1(1+ (logs)d—1 / ZTF (9 + Bi) 9i(s; S)g(t)?

i Ai(log<)"1g; (s, 5) 1 1)

(0 + 6;)(1 + (log <)~ 1)(?1_1{ '

v

=1
The proof is completed.

Remark 2.1 By using (2.3), we get

"Dl = [ 6ok

where
G*(t,s) = k(t,s +ZW/\£%92( 5) + Fg)/l Gl(t,S)g(t)%a

and



Remark 2.2 It is easy to see that if u is a solution of fractional differential equation (2.1) — (2.2),
we have, for s,t € [1,00), G*(t,s) is continuous, G*(t,s) > 0 and

T D) dt
G(ts)—kts+27TF19+ﬂl)g T1 / e
- 9)(logg)?*Thi—1 1 dt
— log t t)—
2} TF0+@) 1 " (log 1)~ Yg(t)
( ) .= Ai(logn)?+Bi—1 dt

T | test" 0T

SR Cohalt /w(logt)ﬂ_lg(t)%(T + Zm: ML (9)(log )" 7

T TY, pr 'Y+ 6i)
_TW)
=,
In view of Lemma 2.2, we introduce T : P — F', by
o _ ds
0= [ Gl (su(s). DI u() T (29)

Then, the fixed point of the operator T is the solution of the problem (1.1).

Lemma 2.4 [17] Let U C F be a bounded set. Then U is relatively compact in F if the following
conditions hold:

(i) for any u(t) € U, % and Hfolu(t) are equicontinuous on any compact interval of
[1,00).

(i) for any € > 0, there exists a constant T = T(e) > 1 such that

1+(12§tt11))1’*1 - 1+(1th22))‘9*1 < and [ DY u(ty) = DY Mults)| < e

for any t1,to > T and u € U.

As next step, we consider that the assumptions below are satisfied.
(C1) f € C([1,00) x [0,00) x [0,00),[0,00)), f(£,0,0) # 0 on any subinterval of [1,c0), when u
and v are bounded, f(t, (1 + (logt)"~!)u,v) is bounded on [1,0c0).

(C3) p:[1,00) = [0,00) does not identically vanish on any subinterval of [1, c0) and

° d
0</ p(s)—s<oo.
1 S

Lemma 2.5 Suppose that (C1) and (Cy) hold. ThenT : P — P is a completely continuous operator.

Proof. Now, we present the proof with four steps.

(Ay) For any u € P, it is clear that Tu(t) > 0 for all ¢t € [1,00) i.e., T : P — P. We show
that T is continuous. Let u,, — v as n — oo in P, then there exists a constant ky > 0 such that
supnen|[unl|F < ko. Let By, = sup{f(t, (1 +logt)’ = u,v)|(t,u,v) € [1,00) x [0, ko]?}. By (C1) and
(C1), We get

| G a0 DI () S < [0 D ()

Bk & ds
< 0 —
<3 [ a0t <o,




L < T [ s a7 DY ()

< M/mp(s)ﬁ < oo0.

S

and
/ Gt 5)p(3) £ (5, n ()7 DP~un(s))

!
by

The Lebesgue dominated convergence theorem and continuity of f guarantee that
ds

: * G(ts) H yo—1
7}1_{20 ) Wp(s)f(saun(s)? DYy U (s)) s

ds

[ e ) D (o)

and

[ 66155 DY ()
- /loo G*(t, s)p(s) f (s, u(s),” Df;lu(s))f

S
Hence,

*  G(ts) H pyo—1 ds
Tu, —T = —_— ,un(s),” D n —
T = Tullp = swp [ GO (6o, o). DY )

— p(3)f(5,u(3), " DI ()| =0 (n s 00),

and

sup |HDf:1Tun A Df;lTu| =0 (n— o0),
te(l,00)

which shows T is continuous.

(A2) We prove that T is uniformly bounded on P. Let © be any bounded subset of cone P,
then there exists a constant k1 > 0 such that ||u||r < k1 for all u € ©. Let By, = sup{f(¢, (1 +
log t)?~tu, v)|(t,u,v) € [1,00) x [0,k;]?}. From Lemma 2.4, Remark 2.2,

> G(t,s) H -1 ds
T = —_— D —
Tl = swp [ G (o) o, (s, DL )|
1 > _ ds
<o [ ) (s (). DI ()|
1J1 S
Bk & ds
< L —
<3 [ <.
and
_ < . _ ds
sup ["DTTu(t)] = swp [ G (68 lp(o)f s ue). 7 DY )
te[l,00) tefl,00) J1 S
W) [ _ ds
< 2 [ )5 s) DY ()|
1 J1 S

(9B, [ ds
< — — .
ST /1 p(s) . < 00

for all w € ©. So T'© is uniformly bounded.



(A3) We show that T and # Df; T are equicontinuous on any compact interval of [1,00). Let
L C [1,00) be any compact interval. For Vt,ts € L, t; < t2, and u € © mentioned above, we have

1+ (logt2)?=1 1+ (logty)9—1

lo, G t1,8 . ds
‘/ (1+ logtzil9 L 1+(1E>gt1§19—1>p(s)f(8’“(5)’H DY Mu(s)

‘ Tu(ts) Tu(ty)

G(ta, s) G(t1, ) ds
<B - &
= ’“1/1 1+ (logta)?=1 1+ (logty)?—1 P(s)
o G(ta, s) G(t1,8) ds
B _ b
+ B /t2 ‘ 1+ (logtz)?=1 1+ (logty)?-1 p(s) s
b2 G(ta,s) G(t1,s) ds
<B : - : —
= Tk /1 1+ (logtz)?=1 1+ (logty)?—1 p(s) s
B, [~ log ty)?~1 (logt;)?—! ds
* / ( 2 9—1 - 9—1 p(s)—
T 1+ (logts) 1+ (logtq) s

G(t,s) (logt)”~
1+(logt)?=1° 1+(logt
L, respectively, we obtain:

Since the functions )19 r are uniformly continuous on any compact set L x L and

Tu(ts) . Tu(t1)
1+(logta)?—1 1+(logtq1)?—1

— 0, uniformly as t; — ts.

Tu(t . L
ul) s equicontinuous on L.

Hence, it has been ensured that THlog H)7=T

Consider that
ds

DL = [ 6 e sple) S svu(s) DY )

Here, the Green’s function G*(¢, s) € C([1,00) X [1,00)) does not depend on ¢. Then, we can obtain
that 7 fo 'Tu(t) is equicontinuous on L.

(A4) We show that T and HijlT are equiconvergent at oo. For any u € ©, by (C3) we have

lim Tu(t)

) < G(t,s) ds
— | = lim
t—oo |1 + (log t)

A ) WW s)f(s,u(s),” D?flu(s))\;

B e d
M Jim / p(s)—s < 0.
1

Tl t—o0 S

\ /\

Thus, 7O is equiconvergent at oo.
From Remark 2.2, for any u € ©,

H
. - . X _ ds
tlgrolo‘ Df+ 1Tu(t)‘ = tlggo : G*(t,8)|p(s) f(s,u(s)," Df+ 1u(s))|?
<=7 — .
ST Am ) peg e

Then, we prove that ¥ Df: T is equiconvergent at co. Applying Lemma 2.5, from the above steps,
1t is obvious that T : P — P is completely continuous. The proof is completed.

Now, let us use the fixed point theorem by Bai and Ge to the operator T" so that we have proper
existence conditions for the problem (1.1).

Let p > a >0, N > 0 be given constants and { be a nonnegative continuous concave functional
and v, 8 be a nonnegative continuous convex functional on the cone P. Bounded convex sets are
given by

PP, pN)={ue P: (u) <p, B(u) < N},
PP, pN)={ue P: ¢(u) <p, Blu) < N},



PP, BN, Ca) = {u € P: 9(u) <p, B(u) <N, ((u) > a},
PP, BN, ¢a) ={u € P: ¢(u) <p, B(u) <N, ¢(u) > a}.
Here, v, 8 on cone P ensure
(E1):There exists M > 0 such that ||u|| < Mmaz{y(u), f(u)} for all u € P;
(Er): Q={ueP:¢(u) <p, B(u) < N} #0, for any p >0, N > 0.
Now, we introduce the below fixed point theorem which we will apply to main result.

Theorem 2.1 [27] Let B be a Banach space, P C B be a cone andps > d >b>p; >0, Ny > Ny >
0 be given. Assume that ¢, are nonnegative continuous convex functionals on P, such that (E)
and (Es) are satisfied, ¢ is a nonnegative continuous concave functional on P, such that ((u) < ¢ (u)
for allw € P(y"2, 3™2) and let A : P(yP2, fN2) — P(pP2, fN2) be a completely continuous operator.

(B1) {uc P(y% BN?,() : C(u) > by # 0, and ((Au) > b for u € P, N>, ),
(B2) (Au) < p1, B(Au) < Ny, for all u € P(yPr, fN1),
(B3) ((Au) > b, for all u € P(ypP2, N2 () with ¢¥(Au) > d.
Then T has at least three fived points uy,us,us in P(yP2, BN?) with
ur € P(yP, M), ug € {P(y?2, 87, ¢) + ¢(u) > b},
ug € P(yP2, BN2)\ (P(yP2, 872, () U P(gPr, M) .

For the readers convenience, let us denote

i 10g §)219+/37'—2 1 B l) /k< (s)ﬁ o 2[1 + (logg)ﬁ_l])

i—1 19 + Bz 1+ (IOgC)I9 1) Tl T < p S ’ - (10g§)1971 )
1 > ds B rw) [ ds

Al—ﬂrl/1 p(s) Ay = T /1 p(s)

3 Existence theorem

Theorem 3.1 Assume that there exist constants épg >b>p; >0, Ny > Ny >0 such that
N.
P2 { P2 2 } and Pb < %. Assume

— < min

Do

Ar’ Ay
(a) £(t, (1 + (log ) Vyu,v) < min { 52, 52} for t € [1,00), u € [0,p2], v € [0, Na].
(b) £(t, (1 + (log )’ V)u,v) > & fort € ¢, ks, u € [b,Bb], v € [0, Ny

(¢) f(t, (1 + (logt)?~Vyu,v) < min{f; 0 }fort € [1,00), u € [0,p1], v € [0, N1].

(d) f(tv (]' + (logt)ﬁ_l)u,v) > %29 fOT’t € [§7k§], u e [baPZ]’ v € [OvNQ]
Then the problem (1.1) has at least three positive solutions u; (i = 1,2,3) with

uy () Hpyd—1
0< sup ————=———<py, sup D7 ui(t) < Ny
tefl,00) 1 + (logt)?=1 telloo) L
: us(t) us(t) Hpyo—1
b< min ——————< sup ————— <p2, su D77 ua(t) < Na;
s<t<ks 1 + (logt)?=1 = te[l,Eo) 1+ (logt)?=t = b2 te[l,zo) 2() < Nz
us(t) H yo—1
sup —————~—— <po, sup ' Di; usg(t) < Ns.
tefl,00) 1 + (logt)?=1 telloo) 1



Proof. Let P and T be defined as above. Define ¢, 8 and ( by

¥(u) = sup ﬁ, B(u) = sup ’HDH u(t)|,

te[l,00)
u(®)]

C(u) - cgtnﬁr}cc 1+ (log t)ﬁfl ’

for w € P. Obviously, ¢, 8 : P — [0,+00) are nonnegative continuous convex functionals, ¢ is
nonnegative continuous concave functional with {(u) < ¥(u) for all u E F. For any p > 0 and N > 0,
let u*(t) = (55 (logt)?~1!, where 0 < ¢ < min{p, N}. Then u*(t) = NGl (logt)?=1 € P(yP,BN) £ 0.
Thus, (E), (E2) are satlsﬁed. Then ¢ (u), B(u), ¢(u) satisfy the conditions in Theorem 2.1. Now,
let us show that the operator T ensures all conditions in Theorem 2.1, which will prove the existence
of three fixed points of T. By Lemma 2.6, T is completely continuous. First of all, we show
that T : P(yP2, fN2) — P(yP2, fN2). If u € P(yP2, 3N2), then ¢(u) = sup % < pa,
te[l00) 1 + (logt)?—1
B(u) = sup |HDf+_1u(t)| < N;. Using condition (a),

t€[l,00)
ftu,v) = f(t, (1+ (logt)ﬁ_l)+ v) < min P2 Mo . (3.1)
o ’ (1+ (logt)?=1)" 7~ Ap7 Ay
Hence,
|Tu(t)|
Y(Tu sup ——————
(Tu) = te[l00) 1 + (logt)?=
= sw ;\ [ Gt .. DY (o) S (32)
telloc) 1+ (log )=t ’ , ’ 1 5 ‘
D2 o ds
< —_—
< T1A1/1 p(s)— =12,
and
B0 = swp DY) = sw | [T 60 sple)f(svuls)? DY )
te[1,00) tell, oo) S (3.3)
() ds .
< = .
< Y4, /1 p(S)S Ny

Thus, we have T : P(y2,3N?) — P(yP2, 8V2). With assumption (c) using above case, we can
obtain that T : P(yP1, V) — P(yPr, BN1). Therefore, condition (B2) in Theorem 2.1 is satisfied.
As following step, we show that conditon (B1) of Theorem 2.1 holds. Then, choose the function

u(t) = %(log t)?=1 for any t € [1,00). It can be easily get

1 2b[1 + (log)" '] 91| _ 2b[1+ (logc)” ]
_ log t ‘ < — &b,
V)= D T Tog 0?1 (oge)i T (DTS T igggy
2b[1 + (log<)"~] _ 2b[1 + (log <)~ |T(9)
H 19 1
= s Dy logt < No,
fw) te[lilgo)‘ (log¢)?-1 (log )"~ (log¢)?-1 ?
and
. 1 20[1 + (log <)~ 9-1
C(u) = %Iglgr}cc 1+ (logt)?-1 ‘ (log )91 (log?) > b

10



Then, it can be seen that u € P(»®", 32, () and ((u) > b. So {u € P(¢®, 8N2, () : ((u) > b} # 0.
For any u € P(y®° BN2 (), we get

b < u(t)

and 0 < Df:lu(t) < Ny, t € [1,00). In view of assumption (b), we get

0]
s<t<ks 1 + (logt)?-1

Rt G(t, s)
/1 <ZtSke 1+ (logt)?—1

m o 9—1 0 s
> e e G~ ) [ o o) (o) DY)

)
A (log¢)?—1 1 1
)

((Tu) =

p(s)f(s,u(s),” Df;lu(s))@

S

v

I \%

:l a 1 ds
= ; L9+ B;)(1+ (logs)?—1) (?1 N T)/g 9i (s, 8)p(s) f (s, u(s),” fo u(s))?

m i (log ¢)20+8i—2 1 1 ke » "
> ; T(9 + 6;)(1 + (logs)?—1) (Tl - T)/g p(s)f(s,u(s),? Df+ u(s))?

o~ Ai(logq)?HAie 1 1.0 ds
>ZF(79+51)(1+(10gg)19 niTy T)g/ p(s)?

1

)

So, ((Tu) > b for u € F(i//qf, N2, (). Finally, we show that the last condition of Theorem 2.1 is
satisfied. Assume that u € P(yP2, 3V, () with ¢)(Tu) > ®b. Then, in view of the definition of ¢,
we get

- | Tu(t)] —~_ Ai(logg)Hai 11 L1y d
«Zitke 1+ (log )71 = z:: T+ B)(1 + (log)?— 1)( - T)/g p(s)f (s, u(s), DV; u(s)—
TN Ai(log ) HAi—2 1 1.ps [™ . ds
> 2 T )G+ Gog el 0 Ts r@[ ()
>8> Mg”) > b,

Hence, ((Tu) > b, for all u € P(yP2, 372, (;). That is condition (B3) of Theorem 2.1 holds.
Consequently, Theorem 2.1 yields that the operator T has at least three positive solutions u;,
(i =1,2,3) with

ur € P(yP*, BN, up € {P(yP2, B2, ¢y) = ((u) > b},
uzg € P(yP2, BY) \ (P(y2, 8%, ¢) U P(yPr, M) .

Example 3.1 Consider the problem

HDiu(t) + %f(t,u( ),H Dﬁu( )) =0, t € (1,+00),

2
g > 10 dt 3 (34)
)=u'(1)=0, "D? = ———u(t)— AT (et
wn=w) =0, "Dhueo = [ gy - ATl
where ¥ = %, m=2n=3 A\ =X =28 ¢=el, p(t) = %, g(t) = 71951?0%’
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~loat 0.15
e + v +L5, u € [0,140],
1000 140(1 4 (logt)z) 10
—logt 2. _14 1
flt,u,v) = 1000 10(1 + (logt)2) 105
s Uy - eilogt 05(U — 150) + 10350 + L = [150 3600]
1000~ 3450(1 + (logt)z) ~ 10°7 »3600],
o - - 3600
+ + 115 u Z ,
1000 2(1+ (logt)s)  10°

fort € [1,00),v € [0,00). By easy calculation, we get o ~ 67.8491 for k = 105 and A; ~ 833.3333,
As ~ 1107.4999, & = 18. Choosing p; = 140, b = 150, p, = 3600, N1 = 2000, Ny = 4000 and for
®b = 2700, one gets

i.e.,

F(t, (1 + (log ) Mu,v) < min{%7 %} ~ 3.6117, for t € [1,00], u € [0,3600], v € [0,4000],
b ,
F(t, (14 (logt)?Yu,v) > — ~ 2.2107, for t € [e%,10%7], u € [150,2700], v € [0,4000],
0
F(t, (1 + (log )M, v) < min{f‘—ll, %} ~ 0.168 for t € [1,00], u € [0,140], v € [0,2000],
ft, (1 + (logt)?~Yu,v) > 55~ 2.9477 for t € [e7,10%e1], u € [150,3600], v € [0,4000].

f holds the conditions of Theorem 3.1. By using Theorem 2.1, the problem (3.4) has at least

three positive solutions u; for i € {1,2,3} with

t 3
L)s <140, sup HDf+u1(t) < 2000;
tel,00) 1 + (logt)2 te[1,00)

t t 3
150 < min L):, < sup L)s <3600, sup D2 us(t) < 4000;
et<t<105et 1+ (logt)?  te[i,00) 1 + (logt)? te([1,00)

t 3
L)s <3600, sup D2, ug(t) < 4000.
te[1,00) 1 + (logt)2 te[1,00)

0<
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