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Abstract: Saltwater intrusion has become one of the most concerning issues in the 13 

Vietnamese Mekong Delta (VMD) due to its increasing impacts on agriculture and food 14 

security of Vietnam. Reliable estimation of salinity plays a crucial role to mitigate the 15 

impacts of saltwater intrusion. This study developed a hybrid technique that merges 16 

satellite imagery with numerical simulations to improve the estimation of salinity in the 17 

VMD. The salinity derived from Landsat images and by numerical simulations was fused 18 

using the Bayesian inference technique. The results indicate that our technique 19 

significantly reduces the uncertainties and improves the accuracy of salinity estimates. The 20 

Nash-Sutcliffe coefficient is 0.73, which is much higher than that of numerical simulation 21 
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(0.69) and Landsat estimation (0.67). The correlation coefficient between the merged and 22 

measured salinity is relatively high (0.75). The variance of the ensemble salinity errors 23 

(2.57 ppt2) is lower than that of Landsat estimation (3.65 ppt2) and numerical simulations 24 

(8.69 ppt2). The proposed approach in this study shows a great potential to combine 25 

multiple data sources of a variable of interest to improve its accuracy and reliability 26 

wherever these data are available.  27 

 28 

1. Introduction 29 

The Mekong river with a basin area of 795,000 km2 and an annual volumetric flow 30 

of about 473 billion m3 is one of the largest rivers in the world. The river plays a crucial 31 

role in water supply for agricultural production and is an important waterway for 32 

transportation and business in Southeast Asia. The Vietnamese Mekong Delta (VMD) 33 

region is located in the downstream of the Mekong river and the southern end of Vietnam. 34 

The VMD has a great potential in agriculture, fisheries, and mangrove and is considered as 35 

the largest “rice bowl” of Vietnam, contributing up to 50% of the rice crop, 65% of 36 

aquaculture, and 70% of fruit production. Hence, the region plays a key role in ensuring 37 

the food security of Vietnam. However, situated in the downstream of the Mekong River, 38 

the VMD is highly vulnerable to the socio-economic activities at the upstream and in the 39 

region itself such as the development of hydro-electrical dams (Pearse-Smith et al., 2012; 40 

Kuenzer et al., 2013), excessive groundwater extraction (Minderhoud et al., 2017) and sand 41 

mining (Brunier et al., 2014; Eslami et al., 2019). In addition to climate change and sea 42 

level rise (Toan et al., 2014), these anthropogenic activities have caused severe problems 43 

for the VMD, namely, land subsidence (e.g., Erban et al., 2014), river bank erosion (e.g., 44 
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Lam-Dao et al., 2011; Brunier et al., 2014), land loss (e.g., Schmitt et al., 2017) and drought 45 

and saltwater intrusion (e.g., CGIAR, 2016). Among the abovementioned problems, 46 

saltwater intrusion is considered as one of the most severe issues, especially under the 47 

direct compound impacts of sea level rise, land subsidence, and reduction of upstream 48 

sediment.  49 

Saltwater intrusion has caused severe losses for the VMD in recent years. Kotera et 50 

al. (2008) showed that rice cropping intensities decreased with increasing salinity levels. 51 

Based on the interview approach, Bergqvist et al. (2012) found that the most profound 52 

consequences of saltwater intrusion are the reduction of the crops and yields and fruit 53 

production. They also showed that saltwater intrusion also causes a shortage of drinking 54 

water supply for local people. There have been several mitigation measures to reduce the 55 

impacts of saline water. For example, many regions in the VMD converted from salinity-56 

affected rice monoculture areas to integrated rice-fish or rice-shrimp aquaculture. 57 

However, this measure has negative impacts on the livelihoods of the farmers and the 58 

ecosystem (CGIAR, 2016). Another measure is to operate the sluice gates to take water 59 

from the river system to the irrigation channels when salinity is predicted at an acceptable 60 

level for drinking or irrigation. Nevertheless, these measures require quantitative 61 

information on salinity and saltwater water intrusion to better inform the decision-makers 62 

when each measure should be implemented. 63 

Salinity is often determined by in situ measurement of electrical conductivity (EC). 64 

However, because this approach is time-consuming and labor-intensive, it cannot provide 65 

salinity with a high spatio-temporal resolution over a large spatial area. Recently, there 66 

have been increasing studies that use satellite imagery to estimate salinity for relatively 67 
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large area coverage and finer spatial resolution compared to the EC measurement. The 68 

theory underpinning this application of remote sensing is the negative correlation between 69 

salinity and the optical absorption coefficient of colored dissolved organic 70 

matter (CDOM), which can be derived from remote sensing. For example, Palacios et al. 71 

(2009) developed a linear multivariate relationship between salinity versus temperature and 72 

CDOM absorption (aCDOM) for the Columbia River plume. After that, the salinity can be 73 

obtained from aCDOM and temperature derived from the Moderate Resolution Imaging 74 

Spectroradiometer (MODIS) images. Molleri et al. (2010) used the absorption coefficient 75 

for dissolved and detrital material from Sea-viewing Wide Field-of-view Sensor 76 

(SeaWiFS) to investigate the spatiotemporal variations of salinity in the Amazon River 77 

plume. Bai et al. (2013) estimated salinity in the Changjiang River from satellite‐ derived 78 

CDOM and investigated its inter-annual variation.  Keith et al. (2016) used the Medium 79 

Resolution Imaging Spectrometer (MERIS) and the International Space Station (ISS) 80 

Hyperspectral Imager to estimate aCDOM, which were then used to determine the surface 81 

salinities in New England, Middle Atlantic, and Gulf Coast Estuaries. In the VMD, Nguyen 82 

et al. (2018) constructed several data-driven models between the reflectances from the 83 

Landsat-8 Operational Land Imager images and salinity levels measured in situ. A total of 84 

103 observed samples were divided into 50% training and 50% testing datasets using 85 

Multiple Linear Regression, Decision Trees, and Random Forest algorithms. The study 86 

found that the random forest approach provided the best-fitted model. Recently, Tran et al. 87 

(2019) developed a new Landsat-based satellite salinity index to investigate the annual 88 

salinity variations and the relationship between these variations with drought.   89 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012JC008467#jgrc20012-bib-0053
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Salinity can be also estimated by solving mathematical equations that simulate the 90 

dynamics of saline water in the river system using analytical or numerical solutions. For 91 

example, Nguyen and Savenije (2006) developed a predictive analytical approach for the 92 

quantification of salinity intrusion in multi-channel estuaries based on the tidal water level 93 

and discharge from the upstream, and then applied this approach to estimate the salinity in 94 

the VMD. Nguyen et al. (2010) also applied the abovementioned analytical approach for 95 

investigating the impacts of the upstream development scenarios on drought and salinity 96 

intrusion in the VMD. Duong et al. (2018) combined 1D and 2D hydrodynamic models to 97 

predict future flows, water level, and salinity intrusion in the Hau River—one main river 98 

branch in the Mekong Delta. Vu et al. (2018) applied a 1D model to assess the impacts of 99 

sea level rise on seawater intrusion in the VMD. The study showed that a combination of 100 

changes in temperature, rainfall and sea level rise significantly altered saltwater intrusion. 101 

Eslami et al. (2019) showed that under the impacts of decreased sediment from the 102 

upstream and sand mining in the downstream, tidal amplification and saltwater intrusion 103 

in the VMD increased by 0.2–0.5 PPT (parts per thousand). 104 

The above studies showed that although mathematical models and remote-sensing 105 

techniques have been widely employed to study saltwater intrusion in the Mekong river 106 

delta, each for these methods has its advantages and limitations. Numerical models can 107 

provide salinity with a high spatio-temporal resolution, but it is usually suffered from errors 108 

related to uncertainties of the inputs, model structures and parameterization. Moreover, for 109 

a complex and dense channel network of the VMD, saltwater intrusion modeling is 110 

challenging and suffered from large numerical errors. Meanwhile, remote sensing 111 
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techniques also have large errors caused by the non-uniqueness of the relationship between 112 

the reflectance and salinity as well as measurement errors of remote sensing.  113 

This study aims to present a hybrid approach that combines numerical modeling 114 

simulation and remote sensing estimation to improve the accuracy of salinity estimates in 115 

the VMD. Salinity simulated by a numerical model is merged with that obtained from 116 

Landsat images using the Bayesian inference technique. This merging approach not only 117 

increases the accuracy of salinity estimates but also reduces its uncertainties. 118 

2. Methods and materials    119 

2.1. Methods 120 

2.1.1. Estimation of salinity by numerical modelling  121 

In this study, the 1-D hydrodynamic (HD) and advection-dispersion (AD) modules of the 122 

MIKE 11 package developed by the DHI Water and Environment (www.dhigroup.com) 123 

were used to simulate saltwater intrusion in the VMD and estimate the salinity along with 124 

the river system. The HD module simulates the water hydrodynamics in the channels by 125 

solving the 1-D Saint-Venant equations. The AD module simulates the dynamical process 126 

of salinity by numerically solving the advection-dispersion equation. By combining the 127 

HD and AD modules, we can simulate the dynamics of salinity in the river system. 128 

2.1.2. Estimation of salinity from remote sensing 129 

Salinity was estimated from Landsat-8 images using the linear multivariate regression 130 

method. Accordingly, the relationship between the salinity (S) in channels and Lansat-8 131 

reflectances was formulated as below: 132 

  𝑆 = 𝑎0 + 𝑎1𝑑 + 𝑎2𝐵2 + 𝑎3𝐵3 + 𝑎4𝐵4 + 𝑎5𝐵7   (1) 133 
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in which d is the distance from the sea to the location that we estimate the salinity; B2, B3, 134 

B4, B7 are the Landsat-8 bands. Nguyen et al. (2018) showed that these Landsat bands were 135 

the most sensitive to the river water salinity. However, unlike Nguyen et al. (2018), in this 136 

study, we used the distance from the sea instead of the latitude and longitude coordinates 137 

to represent the geographical location where salinity is estimated. Coefficients ak 138 

(k=1,…,5) are the coefficients of the linear regression equation. These coefficients were 139 

obtained by the least square method using historical measurements of salinity at 10 140 

locations (Figure 1) and Landsat-8 bands at these locations as well as their distances from 141 

the sea.  142 

2.1.3. Bayesian inference 143 

We applied the Bayesian inference technique to combine salinity in the VMD obtained by 144 

numerical model and remote sensing, which is expected to improve the salinity estimate. 145 

Bayesian inference is a merging technique based on Bayes' theorem which constructs the 146 

probability density distribution (pdf) of a variable of interest, which is salinity in this study, 147 

from multiple sources of information. According, assuming that the salinity (𝑠) has a prior 148 

pdf 𝑝(𝑠), which was formed from the modeling simulations. If the salinity derived from 149 

remote sensing is available, it can be used to construct the posterior pdf using the 150 

Bayesian’s theorem as below: 151 

  𝑝(𝑠|𝑆 = 𝑹𝑺) =
𝑝(𝑠)𝑝(𝑆=𝒚|𝜃)

𝑝(𝑆=𝑹𝑺)
      (2) 152 

in which 𝑝(𝜃|𝑆 = 𝑹𝑺) is the posterior (conditional) pdf of salinity given the salinity 153 

derived from remote sensing RS dataset; 𝑝(𝑠) is the prior pdf representing the prior 154 

distribution of salinity based on modeling simulations; 𝑝(𝑆 = 𝑹𝑺|𝑠) is the likelihood 155 
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function, which was constructed from the salinity derived from the remote sensing.  When 156 

doing inference, the normalizing constant of Bayes’ theorem 𝑝(𝑆 = 𝑹𝑺) was not 157 

considered. As a result, Equation (2) can be rewritten as: 158 

  𝑝(𝑠|𝑆 = 𝑹𝑺) ∝ 𝑝(𝑠)𝑝(𝑆 = 𝑹𝑺|𝑠)     (3) 159 

As shown in Equation (3), in order to estimate the posterior pdf 𝑝(𝑠|𝑆 = 𝑹𝑺) of salinity, 160 

we need to determine the prior pdf and the likelihood function. The detailed process of 161 

construction of the posterior pdf of salinity was presented as below: 162 

- Construction of prior pdf: The prior pdf was assumed to follow a normal distribution as 163 

below: 164 

𝑝(𝑠) =
1

√2𝜋𝜎0
2
𝑒𝑥𝑝 {−

(𝑠−𝜇0𝑡)
2

2𝜎0
2 }    (4) 165 

in which 𝜇0𝑡 is the mean and 𝜎0
2 is the variance, which were computed as: 166 

𝜇0𝑡 = 𝛽𝑆𝑡 + 𝛼       (5) 167 

   𝜎0
2 =

∑ (𝑂𝑡−𝛽𝑆𝑡−𝛼)
2𝑛

𝑡=1

𝑛−1
      (6) 168 

in which 𝑂𝑡 and 𝑆𝑡 are the measured and modeled salinity at time t, respectively; n is the 169 

length of measured and modeled salinity dataset;  𝛼 is the y-intercept coefficient and 𝛽 is 170 

the slope coefficient of the best-fitted linear regression relationship between measured and 171 

modeled salinity: 172 

   𝑂 = 𝛼 + 𝛽𝑆       (7) 173 

Using the least-square method, 𝛼 and 𝛽 can be computed from the of measured and 174 

simulated salinity dataset as: 175 
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 𝛼 = 𝑂̅ − 𝛽𝑆̅      (8) 176 

 𝛽 =
∑ (𝑂𝑡−𝑂̅)
𝑛
𝑡=1 (𝑆𝑡−𝑆̅)

∑ (𝑆𝑡−𝑆̅)2
𝑛
𝑡=1

              (9) 177 

in which 𝑂̅ and 𝑆̅ represent the average values of measured and modeled salinity, 178 

respectively. It is noting that while the mean of the prior pdf changes with time t, the 179 

variance was fixed and computed from the whole measured and modelled dataset.  180 

- Construction of likelihood function: The likelihood function was established from salinity 181 

derived from remote sensing under the normal distribution assumption as: 182 

   𝑝(𝑌 = 𝑦|𝜃) =
1

√2𝜋𝜎𝑟𝑠
2
𝑒𝑥𝑝 {−

(𝑅𝑆𝑡−𝜃)
2

2𝜎𝑟𝑠
2 }   (10) 183 

in which 𝑅𝑆𝑡 is the salinity data derived remote sensing at time t; 𝜎𝑟𝑠
2  is the error variance 184 

of salinity estimated by remote sensing. This variance was estimated based on the Landsat-185 

derived and measured salinity as below: 186 

𝜎𝑟𝑠
2 =

∑ (𝑂𝑡−𝑅𝑆𝑡)
2𝑛

𝑡=1

𝑛−1
      (11) 187 

- Construction of posterior distribution: Insert Equation (4) and Equation (10) into (3), the 188 

posterior pdf becomes: 189 

𝑝(𝑠|𝑆 = 𝑹𝑺) =
1

√2𝜋𝜎𝑠
2
𝑒𝑥𝑝 {−

(𝑠−𝜇𝑠𝑡)
2

2𝜎𝑠
2 } ∝

1

√𝜎0
2𝜎𝑟𝑠

2
𝑒𝑥𝑝 {−

(𝑠−𝜇0𝑡)
2

2𝜎0
2 −

(𝑠−𝑅𝑆𝑡)
2

2𝜎𝑟𝑠
2 }  (12) 190 

Because both of the prior pdf and likelihood function are normally distributed, the posterior 191 

pdf is a normal distribution. The mean (𝜇𝑠𝑡) and variance (𝜎𝑠
2) of this posterior pdf were 192 

calculated as: 193 



10 
 

   𝜇𝑠𝑡 =

1

𝜎0
2

1

𝜎0
2+

1

𝜎𝑟𝑠
2

𝜇0𝑡+

1

𝜎𝑅𝑆
2

1

𝜎0
2+

1

𝜎𝑟𝑠
2

𝑅𝑆𝑡     (13) 194 

   𝜎𝑠
2 =

𝜎0
2𝜎𝑟𝑠

2

𝜎0
2+𝜎𝑟𝑠

2        (14) 195 

It is worth noting that the mean of the posterior pdf is a weighted average of the numerical 196 

estimation 𝜇0𝑡 and the remote sensing estimation 𝑅𝑆𝑡 in which the weighting factors are 197 

inversely proportional to the variances of salinity calculations using numerical models and 198 

remote sensing. This implies that if one estimation is more reliable (smaller variance) than 199 

the other, then it will be assigned a larger weight. The variance of the posterior pdf (𝜎𝑠𝑡
2 ) is 200 

always smaller than those of both prior pdf and likelihood function, which indicates that 201 

the merging helps to increases the reliability of salinity estimation.  202 

2.1.4. Evaluation metrics  203 

In order to evaluate the accuracy of calibration and validation results of different methods, 204 

the following criteria were used in this study: 205 

  𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑀𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)
2𝑁

𝑖=1

     (15) 206 

  𝑟 =
∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)(𝑀𝑖−𝑀𝑖̅̅̅̅ )
𝑁
𝑖=1

√∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)
2𝑁

𝑖=1 √∑ (𝑀𝑖−𝑀𝑖̅̅̅̅ )2
𝑁
𝑖=1

   (16) 207 

  𝐵𝐼𝐴𝑆 =
|∑ |𝑂𝑖|−∑ |𝑀𝑖|

𝑁
𝑖=1

𝑁
𝑖=1 |

∑ |𝑂𝑖|
𝑁
𝑖=1

× 100%   (17) 208 

In which NSE, r and BIAS are the Nash-Sutcliffe, Pearson correlation and bias coefficients, 209 

respectively. Oi and Mi denote the measured and estimated values at time ith; N is the length 210 

of the dataset.  211 
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2.2. Materials 212 

2.2.1. Study area 213 

The study area is the VMD with an area of 39,400 km2 and a population of around 17 214 

million people. With a flat topography, the VMD has an average elevation of 0.7-1.2 m 215 

above the sea level, except several high hills and mountains in the northern plain of An 216 

Giang province. Along the Cambodian border, the elevation ranges from 2.0 to 4.0 m, then 217 

gradually reduce to 1.0-1.5 m at the plain center, and only 0, 3-0.7 m at the coastal area. 218 

The river network in the VMD is extremely complicated with two main rivers (Tien and 219 

Hau rivers) and multiple channels that are interconnected (Figure 1).  220 

The VMD has a tropical monsoon climate in which the dry season usually occurs from 221 

June to November, while the wet season begins in December and ends in May. During the 222 

wet season, the delta is inundated due to a large amount of flow from the upstream and 223 

high in-situ precipitation. In the dry season, due to lack of in-situ rainfall and low flow 224 

from the upstream, saltwater intrudes into the rivers and channels, which strongly 225 

influences agricultural production, especially in drought years. In the context of climate 226 

change and land subsidence, the problem of saltwater intrusion has become more severe, 227 

which threats the sustainable development of the VMD and the food security of Vietnam. 228 

Hence, finding solutions to cope with saltwater intrusion is an urgent demand in the VMD. 229 

2.2.2. Data availability 230 

Observed data: Water level data at Tonle Sap and discharge at Kratie station were used as 231 

the upper boundary conditions for the HD model that simulates the spatio-temporal 232 

variation of water level and discharge in the VMD river system. Water level data at Tan 233 
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Chau, Chau Doc, My Tho, Can Tho were used for calibrating and validating the HD model. 234 

As for the AD model, which simulates the saltwater intrusion, salinity was set to zero at 235 

the upstream boundaries and 33 ppt (equal to sea salinity) at the downstream boundaries. 236 

The salinity data were collected at two stations in the Hau river and eight stations in the 237 

Tien river (Figure 1) for calibrating and validating the AD model. All data collected during 238 

the dry seasons from 2013 to 2016 with an hourly time step.  239 

Remote sensing data: Landsat-8 images were used to estimate the salinity. To match with 240 

the numerical model simulation time, we collected Landsat images during the dry seasons 241 

from 2013 to 2016 in the whole VND. The Landsat-8 images has a revisit span of 16 days 242 

and spatial resolution of 30 m. Only images with cloud cover less than 10% were collected 243 

and processed for salinity derivation. These datasets were obtained from the Google Earth 244 

Engine platform (https://developers.google.com/earth-engine/datasets/catalog/landsat), 245 

which allows to quickly retrieve and process Landsat datasets for the region of interest 246 

comparing to other traditional methods. 247 

3. Results 248 

3.1. Calibration and validation of MIKE 11 model 249 

Figure 2 shows the schematic river network that was constructed in MIKE 11 model to 250 

simulate the saltwater intrusion. In this river network, the HD boundary conditions are the 251 

hourly time-series of water level at the Tonle Sap Lake and discharge at the Kratie station 252 

(Figure 2). The AD boundary conditions at these locations are zero salinity.  There are 253 

multiple downstream boundaries at the downstream ends of the Mekong river system. The 254 

HD boundary conditions at these locations are the hourly tide water level and the AD 255 

boundary conditions were set at a salinity of 33 ppt, which is the salinity of seawater in the 256 

https://developers.google.com/earth-engine/datasets/catalog/landsat
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VMD. Both HD and AD modules were calibrated and validated using water level and 257 

salinity at different locations along with the river system as shown in Figure 1. In this study, 258 

parameters including the Manning roughness coefficient of the HD module and the 259 

dispersion coefficient of the AD module were obtained using the trial-and-error method.  260 

Water level and salinity data in the 2013 and 2014 dry seasons were used for model 261 

calibration and those in the 2015 and 2016 were used for model validation. The calibration 262 

and validation processes are presented as below. Firstly, we calibrated and validated the 263 

HD module using the water level data at the Tan Chau, Chau Doc, My Thuan, My Tho and 264 

Can Tho stations. Then, we calibrated and validated the AD module using the salinity data 265 

at the Can Tho, Hoa Binh and Dai Ngai stations.  266 

Table 1 shows the criteria that evaluate the accuracy of modeled water level at the five 267 

stations Tan Chau, Chau Doc, My Thuan, My Tho and Can Tho, whereas Figure 3 268 

compares measured and simulated water level at Tan Chau and My Tho stations. There is 269 

a good agreement between modeling and measurements in both calibration and validation 270 

stages. For calibration, the Nash-Sutcliffe coefficient ranges from 0.6 at the Tan Chau 271 

station to 0.96 at the My Tho station. The modeled and modeled water levels are highly 272 

correlated with correlation coefficients greater than 0.83. The bias errors of all stations are 273 

lower than 3%. For validation, the agreement between measured and modeled water level 274 

is lower than that for calibration. The RSE coefficients are lowest at the Tan Chau (0.62) 275 

and highest at the My Tho station (0.92). The correlation coefficients of all stations are 276 

greater than or equal to 0.81. The bias ranges from 1.1% at the Chau Doc to 3.2% at the 277 

Can Tho station. Comparing to the Can Tho, My Thuan and My Tho stations, the water 278 
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level simulations at Tan Chau and Chau Doc are less accurate. This could be attributed to 279 

the lack of detailed channel cross-sections of the river system in the Cambodia territory.  280 

 281 

As for the calibration and validation results of the AD module, Table 2 presents the Nash-282 

Sutcliffe, Pearson correlation and bias coefficients at 10 stations in the Tien and Hau rivers. 283 

Figure 4 compared the simulated and measured salinity at the Hoa Binh and Dai Ngai 284 

stations in 2014 (calibration) and 2016 (validation) for illustration. For the calibration 285 

period, the correlation between modeling and measurement at both stations is relatively 286 

good (correlation coefficient ranges from 0.75 at the Dai Ngai to 0.9 at the Hoa Binh 287 

station). However, the absolute difference between measurement and modeling is relatively 288 

high, especially at the Dai Ngai station. The NSE and bias coefficients at this station are 289 

0.44 and 17%, respectively. The validation was obtained with similar accuracy as the 290 

calibration. The NSE values range from 0.63 at the Hoa Binh down to 0.4 at the Dai Ngai 291 

station and their correlation coefficients are 0.83 and 0.74, respectively. The bias criterion, 292 

which is greater than 8% at all stations, is relatively high. The differences between 293 

modelling and measurement mainly comes from the errors of both hydrodynamics and 294 

advection-diffusion modeling. In addition, due to the lack of salinity measurements at the 295 

downstream boundaries, we used the salinity at the sea for the downstream boundary 296 

conditions, which contributes errors to the simulation. As a result, it is necessary to find a 297 

solution to improve the numerical modeling estimate of salinity. 298 

3.2. Salinity estimation from Landsat data 299 

Figure 5 compared the Landsat-estimated and measured salinity at 10 locations in the VMD 300 

(see Figure 1 for the locations of these stations). The figure indicates that there is a 301 
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relatively good agreement between measurement and Landsat estimation with an NSE of 302 

0.79, a correlation coefficient of 0.89 and a bias of 0.1%. This indicates that the regression 303 

Equation (3) can be used to estimated salinity from Landsat measurements. However, 304 

similar to the numerical modeling, the salinity estimated by Landsat images is also suffered 305 

from errors caused by, e.g., the sensitivity of Landsat bands with the salinity, the 306 

nonuniqueness of the relationship between salinity and Landsat reflectance as well as the 307 

quality of Landsat products. Hence, a combination of salinity derived from Landsat and 308 

numerical modeling is expected to improve the accuracy of salinity estimate and reduce its 309 

uncertainties. 310 

3.3. Bayesian inference of salinity 311 

In this section, the salinity estimated by numerical modeling and Landsat images were 312 

fused using the Bayesian inference presented in Section 2.1. This section estimates the 313 

mean 𝜇𝑠𝑡 (Equations (13)) and variance 𝜎𝑠
2 (Equations (14)) of the posterior distribution of 314 

salinity (Equation (12)).  315 

We firstly calculated the mean and variance of the prior pdf from numerical modeling 316 

simulations. Figure 6 compares the measured and numerically-modeled salinity at all 317 

stations in the validation period. The NSE and correlation coefficients for all stations are 318 

0.46 and 0.79, respectively. The best-fitted linear regression equation between the 319 

measurement and modelling is 𝑂 = 1.679 + 0.876𝑆, which indicates that 𝛼 = 1.679 and 320 

𝛽 = 0.876 (Equation 7). Based on the values of 𝛼 and 𝛽, the variance of the posterior pdf 321 

(𝜎0
2) was calculated as 𝜎0

2 =3.65 using Equation (6). The mean of the prior pdf was written 322 

as: 323 

𝜇0𝑡 = 0.876𝑆𝑡 + 1.679  324 
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Next, we estimated the variance of Landsat-derived salinity. This parameter was computed 325 

using Equation (11) from measured and Landsat-derived salinity as 𝜎𝑅𝑆
2 = 8.69. Finally, 326 

we performed data fusion of salinity estimated by modelling and remote sensing to obtain 327 

the ensemble salinity and its variance using Equations (13) and (14). Figure 7 compared 328 

the merged salinity with that obtained from numerical modeling and Landsat images at 10 329 

stations in the Tien and Hau rivers. The results indicate that the merged salinity better 330 

agrees with the measured salinity than that derived from the numerical model and Landsat 331 

images. While the NSE coefficients corresponding to the Landsat estimation and numerical 332 

simulation are, respectively, 0.67 and 0.69, this criterion is 0.73 after merging. The merged 333 

and measured salinity also shows a better correlation with a correlation coefficient of 0.75. 334 

The bias after merging is approximately equal to 1. As for the estimation uncertainty, the 335 

variance of ensemble salinity significantly reduces from 3.65 ppt2 for numerical model and 336 

8.69 ppt2 for Landsat estimation to 2.57 ppt2 (Figure 8). The proposed method based on 337 

Bayesian merging improved the accuracy and reliability of salinity estimation. 338 

 339 

4. Conclusion 340 

In this study, we presented a Bayesian merging approach to combine remote sensing 341 

images with numerical model simulations to improve the salinity estimation in the VMD. 342 

Firstly, numerical simulations based on MIKE11 were performed to simulate the saltwater 343 

intrusion along the Mekong river system. Next, Landsat-8 images and measured salinity at 344 

10 stations in Tien and Hau rivers were processed to derive a remote sensing-based 345 

regression equation for salinity estimation. Finally, the salinity estimated by both Landsat-346 

8 images and numerical simulation at the same time and location was combined to provide 347 
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ensemble salinity estimations. All three evaluation metrics (NSE, correlation coefficient 348 

and bias) indicated that the merging approach significantly improved the accuracy of 349 

salinity estimates. The variance of ensemble salinity (2.57 ppt2) is also significantly lower 350 

than that of numerical model (3.65 ppt2) and Landsat estimation (8.69 ppt2).  351 

Though applied for only two salinity datasets in this study, the merging approach can be 352 

extended to multiple datasets to further improve the salinity estimation. In addition, due to 353 

the coarse temporal resolution of Landsat data owing to a long revisit span (16 days) and 354 

the impact of cloud cover, there are only a few Landsat images in each dry season, which 355 

is insufficient to evaluate the temporal variation of saltwater intrusion. In addition, the 356 

Landsat images used in this study have a spatial resolution of 30 m. It is suitable for large 357 

river branches in the Mekong. However, for smaller rivers, it requires finer spatial 358 

resolution images. As a result, our future research will concentrate on using other remote 359 

sensing products to improve both spatial and temporal resolution of salinity estimates. 360 
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Table 1. Criteria that evaluate the agreement between measured and modeled water 423 

levels during calibration and validation process at the My Tho, Can Tho, Tan Chau, 424 

Chau Doc stations 425 

Station 

Calibration Validation 

NSE r BIAS (%) NSE r BIAS (%) 

My Tho 0.96 0.98 1.3 0.92 0.85 1.7 

Tan Chau 0.60 0.83 2.4 0.62 0.81 2.7 

Chau Doc 0.68 0.87 0.8 0.65 0.82 1.1 

My Thuan 0.85 0.89 1.7 0.87 0.83 2.1 

Can Tho 0.93 0.97 2.9 0.89 0.92 3.2 

 426 
  427 
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Table 2. Criteria that evaluate the agreement between measured and modeled 428 

salinity during model calibration and validation at the Hoa Binh and Dai Ngai 429 

stations 430 

Station 

Calibration Validation 

RSE r 
BIAS 

(%) 
RSE r BIAS (%) 

Can Tho 0.77 0.85 13.9 0.59 0.82 10.1 

Dai Ngai 0.44 0.75 17.4 0.40 0.74 17.9 

Huong My 0.55 0.77 15.3 0.45 0.78 13.6 

Hung My 0.53 0.79 14.5 0.48 0.79 11.2 

Ben Trai 0.55 0.77 15.3 0.45 0.78 13.6 

Son Doc 0.53 0.79 14.5 0.48 0.79 11.2 

An Thuan 0.63 0.81 14.2 0.58 0.81 13.2 

Hoa Binh 0.77 0.91 13.4 0.63 0.83 7.9 

Loc Thuan 0.60 0.75 15.7 0.52 0.72 16.2 

Vam Kenh 0.75 0.88 13.9 0.55 0.79 14.5 

 431 
  432 
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 433 

Figure 1. The study area of VMD with the river network. Locations of water level 434 
(triangle shape) and salinity (circle shape) stations for calibrating and validating 435 

numerical model are also presented 436 
  437 
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 438 

Figure 2. Schematic river network simulation in MIKE 11 439 

 440 
  441 
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Figure 3. Comparison of measured and modeled water level at the Tan Chau, Chau 442 

Doc, My Tho and Can Tho stations. The red-solid line represents a perfect match 443 

between the simulation and measurement 444 

  445 



26 
 

  

a) Calibration 

  

b) Validation 

Figure 4. Comparison of measured and modeled salinity at the Can Tho and Dai 446 

Ngai (at Hau river) and Huong My, Hung My, Ben Trai, Son Doc, An Thuan, Hoa 447 

Binh, Loc Thuan and Vam Kenh (at Tien river) stations in 2014 and 2016 448 
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 450 

Figure 5. Comparison between Landsat-derived and measured salinity at different 451 

locations in the VMD  452 

  453 
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 454 

Figure 6. Modeled and measured salinity collected at 10 stations in the Tien and 455 
Hau rivers. The red line represents a perfect match between the modeled and 456 
measured salinity. The blue solid line denotes the best-fitted linear regression 457 
equation between the modeled and measured salinity, which are shown at the 458 

upper-left corner of the figure 459 
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 461 

Figure 7: Comparison of salinity estimated by modeling simulations, Landsat 462 
derivation and merging approach 463 

 464 
 465 
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 467 
Figure 8: Comparison of the variance of salinity estimated by numerical simulation, 468 

remote sensing and merging of numerical simulation and remote sensing 469 

 470 


