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Abstract

Clear-cutting means forest  removing (stem only) and is  the most common type of

forest harvesting but undoubtedly has a negative impact on the C budget in soils. This work

aimed to describe responses of soil organic matter in the forest soils to forest removing under

temperate  climate  conditions  of  lowland  and  mountain  regions  in  south-western  Poland.

Using advanced instrumental analysis, like EPR, 1H NMR and FT-IR spectroscopy it has been

found that clear-cutting, alters C cycling and accelerates decomposition in the forest floor

leading to loss of humic fractions in the investigated soils. In the mountain forests the more

labile,  low-molecular  fulvic  fraction  decreased  as  the  effect  of  harvesting  practice.  The
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transformation  of  organic  matter  after  clear-cutting  resulted  in  the  loss  of  less  humified

organic matter containing humic substances of less polymerised molecules. Analysis of the

semiquinone radical structures and concentrations showed a decrease in radical concentration

observed for HA from mountain clear-cut areas compare to the undisturbed forest. Results

presented in this paper have proved less aliphatic character of humic acid molecules from the

lowlands, compared to the mountain forest as the effect of clear-cutting. Harvesting practices

in mountain regions should be approached with particular care due to the risk of erosion of

exposed surfaces and soils containing less humified and less stable organic matter than in the

lowlands. Humic fractions of higher solubility, less stability and tendency to migrate through

the soil profile may favour the leaching of nutrients and consequently cause the eutrophication

of waters.

Key words:  humic fraction,  soil organic matter, humic acids, EPR,  1H NMR spectroscopy,

forest ecosystems

1. Introduction

Soils are a huge source of terrestrial carbon, storing several times more C than there is

in the atmosphere (Mayer et al., 2020). Particularly important in this matter are forest soils,

due to their storing over 40% of the global total organic carbon (Cerli et al., 2008; Falsone et

al., 2012; Mayer et al., 2020). Most of the soil organic carbon, about 70%, occurs as humic

substances (De Nobili et al., 2020; Loffredo and Senesi, 2006), whose properties can vary

depending on not only environmental, natural factors such as soil properties, plant species,

climate but also anthropogenic factors, such as type of management. Humic fractions, both

humic and fulvic acids, have been used to study the properties and function of soil organic

matter  (SOM) for  hundreds  of  years  (Abbt-Braun and Frimmel,  2002;  Olk  et  al.,  2019).
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According  to  many  authors,  changes  in  forest  cover  can  alter  microbial  community  and

accelerate the degree of organic matter decomposition, leading to C losses (Ishikawa et al.,

2007; Jamroz et al., 2014; Lan et al., 2020; Prescott, 2005; Ussiri and Johnson, 2007). Clear-

cutting, forest removing (stem only), is the most common type of forest harvesting worldwide

but  undoubtedly  has  a  negative  impact  on  the  C  budget  in  soils (Mayer  et  al.  2020).

Understanding the effect of practices like clear-cutting on the soil environment is critical for

the postharvest management of sites.

Forests in Poland occur mainly in areas with the weakest soils; they are a significant

part of the geographic space, 30.4% of the country’s area, and they are mainly publicly owned

(Jamroz 2014). Mountain habitats occupy 8.7% of the forest area. In 2018 the clear-cutting

constituted about 23% of the total timber production. The total area of clear-cutting in Poland

was 40.6 thousand ha. The increase in this area in the last two years was mainly due to the

necessity from hurricane (2017) liquidation (FinP 2019). 

Forest harvesting, especially practices like clear-cutting, is described in the literature

for  both  deciduous  and  coniferous  forests  (Bergholm  et  al.,  2015;  Falsone  et  al.,  2012;

Fuzukawa et al., 2006; Ishikawa et al., 2007; Jamroz et al., 2014; Jussy et al., 2004; Piirainen

et al., 2002; Ussiri and Johnson 2007). The articles, however, mainly characterise the effect of

clear-cutting on nutrient releases, nitrogen and total organic carbon fluxes. There is in the

literature still a lack of information describing the effect of clear-cutting on the soil organic

matter properties and direction of soil organic matter transformation. 

Clear-cutting is removing all tree stems in a stand. It causes a strong disturbance of the

forest ecosystem by disruption of the biogeochemical cycle of elements (Mayer et al., 2020;

Jussy et al., 2004). The disadvantages of clear-cutting for the environment are, among others,

unfavourable growth conditions for species requiring shelter when they are young, the threat

of  wind  and  water  erosion  to  the  surface,  especially  in  the  mountain  areas,  the  risk  of
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secondary  swamping in  wetlands,  drying of  the  topsoil  layers  and a  strong expansion of

herbaceous vegetation (Borelli  et al.,  2017; Ussiri and Johnson 2007). This type of practice

induces  wide  biogeochemical  changes  from the  change in  soil  moisture  and temperature,

which  affects  the  microbiological  activity  through  rapid  accelerated  organic  matter

decomposition, leading to high C losses and the reduction of the organic horizon thickness

although  the results from the literature are not consistent across forest sites (Prescott et al.,

2000; Smolander et al., 2019; Valenzuela and Cervantes, 2021). Efforts should be made to

long-term protection of soil carbon from losses. The C stabilisation in soils requires not only

practices  that  can  lead  to  the  diminishing  of  organic  matter  decomposition  but  equally

importantly  enhancing  the  transformation  of  organic  matter  into  more  stable  humic

substances, which can form complexes with a lower turnover rate (Barancikova et al., 2018;

De Nobili et al., 2020; Jamroz 2012; Jandl et al., 2007; Ojeda et al., 2015; Weber et al., 2018).

Decomposition  of  litter  is  a  process  that  is  very  important  for  determining  the

sustainability of managed forest ecosystems (Rocha et al., 2016). Forest litter consists mainly

of a mixture of polysaccharides, lignin, aliphatic biopolymers and tannins (Kӧgel-Knabner,

2002). Humic fractions, as a significant part of soil organic matter, are universally recognised

as the most reactive soil components maintaining the soil fertility and productivity status and

are involved in most physical, chemical and biological processes within the soil environment

(Jerzykiewicz et al., 2018; Senesi et al., 2003, Stevenson 1994, Weber et al., 2018). 

Ussiri and Johnson (2007) found that accelerated organic matter decomposition after

clear-cutting resulted firstly in the decomposition of O-alkyl C compounds and the decrease in

the humic substances in the soil. In some experiments in mountain conditions, it has been

found that complete removal of trees causes increased humic acid internal oxidation states,

and the increase of aromatic structures and carboxylic compounds share in the molecules as
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well (Jamroz 2009). The processes of organic matter transformation in the area after clear-

cutting also reduces the share of aliphatic compounds in humic acid structures. 

Using advanced instrumental analysis, like EPR, 1H NMR and FTIR spectroscopy, we

can describe not only the detailed chemical properties of humic substances and follow the

direction of humification processes but also predict a change in the impact of organic matter

after serious disturbance in the plant cover on the soil environment and the entire ecosystem.

Thus, knowing how to apply modifications to the species composition of new plantings on the

post-harvested areas to improve the quality of the organic matter will be much easier.

This work aimed to describe the direction of humification processes and properties of

humic substances in the forest soils after clear-cutting in the lowland and mountain regions in

south-western Poland.

The hypotheses were that (1) the direction of soil organic matter transformation after

clear-cutting does not differ in the lowland and mountain soils and (2) the organic matter from

the soils after clear-cutting, both in the lowland and mountain regions, transform into humic

substances of simple molecules with low-molecular-weight and more aliphatic structure.

2. Materials and methods

2.1. Site description 

The objects of the investigations were areas two years after clear-cutting (CC), both in

the lowland and in the mountain region. The type of humus was mor.

2.1.1. Lowland study site

The study area was located in the Oborniki Slaskie Forest District (51° 17.98’ N, 19°

49.059’ E), south-western part of Poland. The main site parameters are presented in Table 1.

Soils from the study area are Brunic Arenosols derived from sand (FAO, 2015). The forest
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habitat before forest harvesting was a mature mixed coniferous forest with dominant mature

trees of  Pinus silvestris, Larix decidua, Quercus petraea and  Acer pseudoplatanus.  At the

same time, investigations were carried out on the sites after clear-cutting (LF CC) and the

sites where trees were not cut (LF F). Types of forest habitat soils were the same.

2.1.2. Mountain study site

The mountain study area (50° 14.669’ N, 16° 50.071’E) was located at an altitude of

970 m a.s.l. in the Zmijowiec Range, East Sudety Mountains, south-west Poland. The main

characteristics are presented in Table 1. Soils were described as Dystric Cambisols (FAO,

2015). The forest habitat was mountain mixed coniferous forest with dominant mature trees:

Picea  abies,  Abies  alba,  Acer  pseudoplatanus and  Fagus  sylvatica.  The  study  area  was

located on the site after clear-cutting (MF CC) and at the same altitude under forest cover

without any harvesting practice (MF F).

 

2.2. Soil sampling

Two replicated soil  profiles were located on each site,  both after  clear-cutting and

without any harvesting practice, on the same soil type in the lowland – Brunic Arenosols and

in the mountain – Dystric Cambisols. Two samples from each profile and each horizon were

prepared for chemical analysis. The texture was determined only in mineral horizons. Soil

samples from Oa and AE soil horizons in the lowland and Oa and AB soil horizons in the

mountain area were taken for detailed structural analysis of humic acids.

Mineral horizons of lowland soils had a sandy texture, with a very low content (0–4%)

of particle sizes > 2 mm and a very low content of clay (3–4%). Soils from the mountain area

had a sandy texture as well but with a much higher (15–23%) content of particles > 2 mm and
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a higher content of silt (27–34%) and a low content of clay (5–7%). Very low pH values

throughout the whole profile were found for soils investigated in both regions (Table 1).

Humic  substances  were  extracted  from organic  and  mineral  horizons  and  detailed

analyses were performed on humic acids from Oa and AE (AB) horizons.

2.3. Extraction and purification of humic and fulvic acids

Humic  fractions  were  extracted  from  the  genetic  horizons  using  the  procedure

described by Swift  (1996),  recommended by the International  Humic Substances  Society.

Humic acids (HA) gel was purified with a 0.1 M HCl/0.3 M HF solution, left overnight and

centrifuged; this procedure was repeated three times. The precipitate was then transferred to a

Visking  dislysis  tube  (Spectra/Por  7  MWCO 10,000,  Spectrum Europe  B.V.,  Breda,  The

Netherlands) and dialyzed against distilled water until a Cl- test was negative. Then, the HA

were freeze-dried.

Fulvic acid (FA) extracts were passed through the XAD-8 column and H+-saturated

cation exchange resin. The eluate was freeze-dried.

Elemental  analysis  of  HA  and  FA  was  performed  with  a  Perkin-Elmer  2000

instrument. The O was calculated from the mass balance. 

2.4. Spectroscopic analysis

2.4.1 EPR

Semiquinone radicals, which are stabilised in humic substances, are highly sensitive to

various factors, both physical (temperature and humidity) and chemical (redox and/or acid-

base reactions, etc.) (Senesi and Schnitzer, 1977). The concentration of radicals and their g-

parameters (related to the magnetic moment of the unpaired electron of radicals) depends on
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the type and origin of the substances in which these radicals are formed (Swift 1996; Senesi

and Loffredo, 2001). Thus, the studies of the structure and concentration of these radicals

could be indicative of the whole structure of the organic fraction (Jerzykiewicz et al., 2019).

The electron paramagnetic resonance EPR method, as the best-known method for studies of

paramagnetic substances, is a good choice for using for the investigation of structural changes

occurring  in  radicals  within  soil  organic  matter. EPR analysis  is  known as  an  important

method  for  determining  humic  substance  characteristics  of  various  origins  (Senesi  1990;

Jerzykiewicz et al., 1999).

All EPR spectra of humic acids were recorded at room temperature using a Bruker

Elexsys E500 spectrometer equipped with an NMR Teslameter (ER 036TM) and standard

Bruker frequency counter. X-band spectra were measured using a double rectangular cavity

resonator ER 4105DR operating in the TD104 mode at a microwave power of 20 mW and

modulation amplitude of 1G. For quantitative measurements, the radical species concentration

standards were placed in the double resonator’s first cavity, while the analysed sample was

placed in its second cavity. After tuning, the spectra were recorded separately for each of the

two  cavities  without  changing  any  of  the  measurement  parameters.  As  the  references  of

radical concentration, the standards distributed by IHSS (peat and Leonardite HA; 2.0 × 1017

and 4.4 × 1017 spins per gram, respectively) and Bruker (alanine pill, 1.7 × 1017 spins per pill)

were  used.  Double  integrations  were  conducted  using  the  WinEPR 2.22  rev.12 programs

(developed by Bruker). 

2.4.2 1H – NMR

13C-NMR and/or  1H-NMR spectroscopy is  one of the most useful methods for the

characterisation of soil organic matter (Schnitzer 1994; Kӧgel-Knabner 1997; Conte et al.,

2004). This spectroscopy is commonly used in the study of humic substances to describe the
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concentration  of  functional  groups  (Jamroz  et  al.,  2014).  1H-NMR  measurements  were

performed on a Bruker Avance III at 500 MHz. Samples of humic acids were dissolved in a

solution of NaOH in D2O and transferred to standard glass NMR tubes. 

2.4.3 FT-IR

Fourier transformed infrared (FTIR) spectroscopy provides information about nature

and functional groups as well as structural information indicated the presence of both aliphatic

and  aromatic  components.  FTIR  spectroscopy  gives  us  also  information  about  what

degradation products are derived from, e.g. proteins and polysaccharides (Senesi et al., 1991;

Traversa et al., 2008). Fourier transformed infrared spectra of humic and fulvic acids were

recorded with a Bruker Vertex 70 FT-IR spectrometer on KBr pellets (an approximately 1 mg

sample in 400 mg of KBr). The spectra were integrated into the oscillations rages of the

characteristic group. 

2.5 ICP-OES

Humic and fulvic acid digestion was carried out on the reactor's Ertec Magnum and

using HNO3. The thus prepared samples were examined for the study using an ARL Model

3410 ICP (Fisons  Instruments)  spectrometer  to  determine  the  metal  ion  contents:  Fe(III),

Mn(II) and Cu(II).

2.5. TOC and Nt analysis

The content of total organic carbon was analysed using a CS-mat 5500 instrument

(Strohlein GmbH & Co., Kaarst, Germany, currently Bruker AXS Inc., Madison, WI, USA).

Total nitrogen was analysed by the Kjeldahl method using a Buchi  Labortechnik GmbH N

analysis.
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2.6. Total acidity of humic acids

The total acidity of humic acids was analysed with Schnitzer and Gupta's method as

described by Swift (1996).

2.7. Statistical analysis

 Results were verified using Statistica for Windows 13. Means were compared by the

t-test, at a confidence level of p < 0.05

3. Results

3.1. TOC and humic fractions content

In our studies content of TOC in the Oa horizon decreased by 26% in the lowland and

by  34% in  the  mountain  soils,  but  the  quantitative  change  was  more  evident  in  mineral

horizons (Table 1). In the A horizons, TOC decreased by 22% in the lowlands and by 45% in

the mountain areas. Surprisingly conversely in B horizons, soil organic carbon decreased by

67% in the lowland and only by 8% in the mountain soils. That is why in mountain soils, even

in natural sites and despite the soil formation process, there is a much higher content of TOC

in B horizons (48.50 g kg-1) in comparison to the lowland ones (6.17 g kg-1). Content of total

nitrogen was  lower  in  the  clear-cut  sites  nearly  by  31% in  organic  horizons  both  in  the

lowlands and in the mountain areas (Table 1). In mineral soil horizons, the content of N total

was adequate to the TOC concentration. The concentration of humic fraction decreased for

both humic and fulvic acids after clear-cutting in whole soil horizons (Table 1). Humic acids

in Oa horizons decreased after clear-cutting similarly in the lowland and the mountain soils,

by nearly 18% in both regions. In the A horizons, this change was more evident in the lowland

(by 32%) in comparison to the mountain soils (change by 8%). In the case of fulvic acids,

their content significantly decreased more evidently in the mountain soils, by 30% in Oa and
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by 54% in A horizon, in comparison to the lowland, where they decreased by 8.5% and 24%

respectively. In the mineral horizons of the soil on the clear-cut site, however, there was found

a lower content of soil organic carbon in comparison to the undisturbed site. In our study,

clear-cutting had an evident consequence in altering the quantity of soil organic matter but

differed between the lowlands and mountain areas. Meanwhile, in the mountain soils, there

was a more clear decrease of the fulvic fraction in the whole soil profile. In the lowlands in

the  upper  soil  horizons (Oa,  A),  it  was  found that  the  content  of  humic  fraction  content

decreased more in the clear-cut site in comparison to the undisturbed areas (Table 1). 

3.2. Elemental composition and UV-VIS results of humic and fulvic acids

Elemental composition is one of the most important humic fraction properties. In the

investigated soils, FA molecules contained more oxygen than HA molecules, regardless of

management practice or altitude, but the content of carbon was varied (Table 2). Molecules of

humic acids from the Oa horizons of the clear-cut sites, in the lowlands, were characterised by

a  higher  content  (although  not  statistically  confirmed)  of  carbon  and  oxygen  and  lower

content of hydrogen in comparison to the undisturbed sites. In the first mineral horizons, a

significant decrease in the carbon content of the humic acids molecules was found in the

lowland (from 35.39% to 35.01%) and there was a significant increase in the mountain sites

under  the  influence  of  clear-cutting  practice  (from  30.54%  to  32.22%).  The  content  of

nitrogen increased in the molecules of HA in the lowland after CC, but the change was not

significantly confirmed in the first mineral soil horizon (from 1.94% to 2.04%). There were

no  significant  differences  in  N  content  between  clear  cut  and  undisturbed  soils  in  the

mountain areas (Table 2). The FA from the Oa horizons, both in the lowlands and mountain

region, did not significantly differ between clear-cut sites and those without any harvesting

practice. On the contrary, in the A horizons of the lowland’s soils, the FA molecules contained

more carbon and significantly less  oxygen than those from the undisturbed forest.  In  the
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investigated  mountain  soils  from  the  clear-cut  sites,  fulvic  acids  contained  more  carbon

(33.91%)  as  well  and  significantly  less  hydrogen  (35.17%)  compared  to  those  from the

undisturbed forest sites (32.95% and 36.04%, respectively). In the studied areas, the H/C ratio

of the HA was rather high and ranged from 1.46 to 1.61 in the Oa horizons and from 1.18 to

1.45 in the first mineral horizons (Table 2). The E4/E6 ratio of humic acids from Oa and

analysed mineral horizons of the soils on the clear cut sites, both in the lowlands and in the

mountain investigated region (Table 2), showed lower values (4.18 and 3.80 in the lowlands

and 4.82 and 4.31 in the mountain) in comparison to the undisturbed forest sites (6.16 and

4.33 in the lowlands and 6.32 and 4.89 in the mountain regions, respectively). 

3.3. EPR results

The  studies  of  radical  structure  and  concentration  followed  the  analysis  of  the

manganese, iron and copper contents in humic acids because these metal ions are known from

their antiferromagnetic interaction with semiquinone radicals in humic acid (Jerzykiewicz et

al., 2002). As a result, a decrease in radical concentration is observed. For the investigated

samples, the content of manganese ions was very small (0–0.023 mg g-1), and copper ions

were not detected. Thus, these metal ions did not affect semiquinones. 

Differently, iron ion contents were much higher and varied between samples. In humic

acids extracted from mineral horizons, the iron concentration was higher than that of those

that were extracted from organic ones (Table 3). It is worth mentioning that samples from the

lowland  forest  areas  did  not  exhibit  the  influence  of  clear-cutting  on  the  metal  ion

concentrations. The increase of iron ion concentrations in HA was observed after clear-cutting

only  for  samples  from MF areas.  Similar  phenomena  as  described  previously  of  radical

quenching by metal ions were found only for the mountain soils, as presented in Table 3.

In  the  A  horizons  of  the  lowland  soils,  iron(III)  ions  did  not  affect  radical

concentration because metal ions are incorporated there by different functional groups unlike
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in Oa horizons. That is well  presented on the EPR spectra (Fig. 1),  where different lines

attributed to different Fe(II) and Fe(III) were observed at values of g equal to 2.0, 4.25 and 6.

This third peak (Fig. 1, MF-F AB) is especially interesting because iron is built-in here via

nitrogen  atoms,  not  oxygen  as  it  is  for  other  iron(III)-humic  acid  bonds.  It  is  worth

mentioning that elemental analysis confirms that HA characterised by a g = 6 peak contained

also more nitrogen. The signal at g = 6.0 is commonly admitted to pertain to the trivalent

heme-iron-like complex in which iron is at the third degree of oxidation instead of the second

one (Krzyminiewski et al., 2011). 

As it  is  presented  in  Table  3,  g  – the  parameter  calculated  from EPR spectra  for

semiquinone radicals did not change much. Better information could be obtained from studies

of radical concentration. The high radical concentration is commonly known as an indicator

of high humification degree (Jerzykiewicz et al., 1999). In the presented case, a decrease in

radical  concentration  is  observed  for  HA from  mountain  clear-cut  areas  (Table  3).  The

decrease  in  radical  concentration  could  be  the  effect  of  higher  Fe(III)  content  and  the

antiferromagnetic interaction (Jezierski et al., 2002). For samples with higher Fe(III) content

(4.796 in Oa and 5.356 mg g-1 in the A horizons after clear-cutting compare to 1.562 and

3.027 from the undisturbed forest respectively), radical content is much lower for HA from

the clear-cutting area than from undisturbed forest. 

3.4. FTIR spectra of humic acids

The FT-IR spectra were typical for humic acid spectra (Figure 2). The differences,

although small, were observed only in the signal intensities. First, lines of COOH vibrations

at 1722 cm-1 were less intense for HA samples from mineral horizons. The difference is even

more distinguished after clear-cutting. Peaks ascribed as aliphatic C–H stretching vibrations

(3000–2820 cm-1) and anti-symmetric stretching modes of COO-  and/or aromatic C=C (1650

cm-1)  for  humic  acids  extracted  from  clear-cutting  areas  were  characterised  by  higher
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intensities and were more clearly marked for HA from the soil horizons in the lowlands than

for HA from undisturbed forest soils. The absorption band may be associated with aromatic

C=C, C=O groups of quinones and ketones (Traversa et al., 2008). 

3.5 1H NMR analysis of humic acids

The NMR spectra presented typical NOM spectra (Figs. 3 and 4). This information is

valuable because of the quantification reliability (Grinhut et al., 2011; Hertkorn et al., 2007). 

The spectra  were divided into three regions.  The first  was with the chemical  shift

region of 0–2.33 ppm was attributed to CH2 groups. An increase in HA from both horizons

has been observed after clear-cutting in the lowlands and mountain regions as well (Figs. 3

and 4). This may be linked to HA degradation after environmental disturbances such as clear-

cutting. Demethylation during this process causes the removal of CH2 groups, and thus the

detection  of  more  molecules  that  belonged to  the  consecutive  CH2 series  (Grinhut  et  al.,

2011). Within the chemical shift region of 2.93–4.26 (connecting with metoxyl groups), there

has been observed a decrease after clear-cutting, indicating a decrease of oxygen-containing

functional groups (Grinhut et al., 2011). These findings are in good agreement with a decrease

of the O/C ratio in the mineral mountain soil horizons after clear-cutting. The third region of

5.8–8.2 ppm was assigned to aromatic protons and was able to be analysed after integral

calculation. 

The  integration  of  the  lines  attributed  to  the  previously  mentioned  three  areas

exhibited more detailed differences between samples. About 8.58% of the non-exchangeable

protons of the HA from the undisturbed lowland forest soil (Oa horizon) were assigned to

aromatic groups (Table 4), whereas after clear-cutting, this amount increased over three times

(26.97%).  A slighter  increase  in  aromaticity  was  also  detected  after  clear-cutting  in  HA

molecules from mountain regions compared to the lowlands, but only in Oa horizons. 
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The 1H NMR spectra exhibit not only a slight increase of aliphatic proton shifts (0–1

ppm) but also a slight increase in aromatic proton shifts (5.8–8.2 ppm). Increase these two

bands could be an explanation why the summary aromatic-aliphatic parameter from elemental

analysis remains unchanged or only slightly decreases. The observed increase in the intensity

of aliphatic and aromatic shifts is accompanied by the decrease of intensity of methoxyl shifts.

4. Discussion

In our studies, clear-cutting enhanced transformation of soil organic matter, through an

increase of organic matter decomposition and humification process as well. In mountain soils,

even in natural sites and despite the soil formation process, there is a much higher content of

TOC in  mineral  horizons  in  comparison  to  the  lowland  ones.  This  may  because,  in  the

mountain  regions,  there  was  much  higher  precipitation  that  than  in  the  lowland,  causing

naturally higher leaching of elements, especially low molecular fractions of carbon, to the

deeper soil horizons. According to many authors (Achat et al., 2015; Jamroz, 2009; Mayer et.

al., 2020; Ussiri and Johnson, 2007), clear-cutting in first years enhances the decomposition

rate of organic matter and consequently reduces the amount of soil organic matter in upper

soil  horizons.  On the other  hand,  Falsone et  al.  (2012) observed that  5  years  after  clear-

cutting, the content of soil organic carbon in the Oa horizon was a bit higher (186 g kg-1) in

comparison to the soil from the undisturbed area (173.7 g kg-1). Thus, we can expect that

content of SOM will recover over time but the rate will depend on type of afforestation. The

origin of humus fractions in oligotrophic forest ecosystems is mainly plant residues rich in

polysaccharides,  lignin,  aliphatic  biopolymers  as  well  as  tannins  (Kogel-Knabner  2002,

Ziolkowska et al., 2020), which more often transform in such conditions into low-molecular

humic substances, like fulvic acids, than into compounds of higher polymerisation, like humic

acids. Coniferous and mixed coniferous forest ecosystems are characterised by the type of soil
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organic matter with the prevalence of the fulvic fraction over the humic one and in most cases

with the mor type of humus. Fulvic fractions, apart from their  low molecular weight,  are

characterised  by  a  more  aliphatic  structure  that  favours  leaching  through the  soil  profile

(Buurman and Jongmans,  2005;  Falsone  et  al.,  2012;  Jamroz et  al.,  2014).  Low pH and

changes  in  microclimate  conditions,  particularly  in  the  mountain  areas  with  much higher

precipitation than in the lowlands, means that removing trees alters microbial activity, and the

weakly decomposed low-molecular fraction can be easily transported to the lower part of the

soil profile or even leached to the groundwater. The H/C ratio of  HA molecules is often used

as  an  indicator  of  aromaticity/aliphaticity  and  is  useful  for  monitoring  structural  changes

(Senesi and Loffredo, 1999; Rice and MacCarthy, 1991). Results of our studies point to the

overall more aliphatic than the aromatic character of the molecules’ structures. Falsone et al.,

(2012) found that a larger proportion of the aliphatic component could be related to a greater

contribution of saccharide residues. Humic acids from the A horizons (in the mountain soils)

and the Oa horizons (in the lowlands and mountain areas as well) after clear-cutting were less

aliphatic (lower H/C ratio) than those from undisturbed forest  sites. The lower H/C ratio,

lower total acidity, higher content of carbon and oxygen in HA molecules from Oa horizons

after clear-cutting shows that the harvesting practice altered not only the decomposition but

also the humification process. The transformation of organic matter in the investigated sites

after  clear-cutting,  particularly  in  Oa  horizons  both  in  the  lowlands  and  mountain  areas,

resulted in more humified products with less aliphatic structures. The higher O/C ratio in

fulvic acids than in humic acids in all investigated forest sites confirms the statement that FA

are polysaccharidic in nature (Tan, 2014). This parameter significantly decreased only in the

lowland in  the  first  mineral  soil  horizon after  clear-cutting.  During  the  transformation  of

organic  matter  after  clear-cutting,  more  of  the  aromatic  substances  are  broken down and

released  in  comparison  with  the  polysaccharide  constituents.  Consequently,  the  humic
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substances formed became increasingly more polysaccharidic in nature. The molecular weight

of humic substances is related to the E4/E6 ratio, and this ratio is considered by many authors

as a measure of the overall humification degree (Barancikova et al., 2018; Chen et al., 1977;

Zaccone  et  al.,  2013).  Results  received  indicate  the  formation  of  similar  size  molecular

weights of humic substances before and after clear-cutting in the coniferous mixed forest in

the lowlands and mountain regions as well. Barancikova et al. (2018) point out that humic

substances  with  higher  molecular  weights  are  more  stable  in  the  environment  and  more

resistant to unfavourable external factors. Analysis of the semiquinone radical structures and

concentrations can be useful in studies of the humification process (Klavins and Purmalis

2014). This type of radicals can be built into soil organic matter structures (Senesi 1990).

Humic substance molecules are rich in functional groups and can form, among others, metal

chelate complexes (Barancikova et al., 2018; Jerzykiewicz et al., 2019). EPR results indicate

the  direct  influence  of  the  harvesting  procedure  on  radical  concentration.  However,  it  is

difficult to state unambiguously what is the mechanism of the clear-cutting procedure that

influences the enhancement of the interaction of metal ions with unpaired electrons of HA

radicals. Similar results were described by Barancikova et al. (2018), who found a decrease in

radical content in humic acids from the forest soils after windstorms and wildfires. The free

radical  concentration  is  overall  in  line  with  aromaticity,  humification  degree  and  other

chemical and structural properties of humic acids (Senesi et al., 2003). Other results presented

in this paper (H/C; O/C, E4/E6) proved the less aliphatic character of humic acid molecules

from the lowlands, compared to the mountain forest, as the effect of clear-cutting. Results of

the FTIR analysis, especially in the lowlands after clear-cutting, may reflect a higher degree

of organic matter decomposition (Haberhauer et al.,  1998) and point to different from the

spruce-mountains type of litter. Spruce needles and bilberry leaves, which are often part of the

litter composition from mountain forest soils, contain a high amount of polyphenols, which
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slow  down  the  decomposition  processes  (Albers  et  al.,  2004,  Jamroz  et  al.,  2014)  in

comparison to pine litter in the lowlands. These results are in good agreement with those from

elemental analysis, confirming the less aliphatic nature of humic acids from the investigated

forest soils in the lowlands. All  1H NMR spectra examined indicate that aliphatic structures

are dominant components of humic acids especially in mineral soil horizons, whose contents

even increased after clear-cutting particularly in the lowland. These results are in line with

other authors (Bonifacio et al., 2006; Jamroz et al., 2014), who reported a higher degree of

aliphacity of SOM in mineral forest soil horizons.

5. Concluding remarks

Soil  organic matter  in  the  coniferous  forest  ecosystems is  characterised  mostly by

more  aliphatic  character,  both  in  the  lowlands  and  mountain  conditions,  and  lower

humification  degree  in  comparison  to  other  ecosystems  (cropland  or  grassland).  Forest

management, especially clear-cutting, alters C cycling and accelerates decomposition in the

forest floor leading to loss of humic substances with the highest C losses in the forest floor

and the upper mineral soil. In our studies, clear-cutting enhanced the transformation of soil

organic  matter,  through  the  increase  of  organic  matter  decomposition.  Humic  fraction

decreased under the influence of clear-cutting more in the lowland areas covered by mainly

pine forests. In the mountain forests, with Norway spruce as the main species, the more labile,

low-molecular fulvic fraction decreased more noticeably as the effect of harvesting practice.

Presumably, the main cause of these changes was the activation of easily soluble fractions and

their leaching from the soil profile. Lower H/C ratio, higher content of carbon and oxygen in

HA molecules from Oa horizons after clear-cutting shows that harvesting practice altered not

only  the  decomposition  but  also  the  humification  process  as  well.  The  transformation  of

organic matter in the investigated sites after clear-cutting, particularly in Oa horizons both in
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the  lowlands  and  mountain  areas,  resulted  in  the  loss  of  less  humified  organic  matter

containing humic substances of less polymerised molecules. Results presented in this paper

have proved less aliphatic character of humic acid molecules from the lowlands, compared to

the mountain forest as the effect of clear-cutting. Harvesting practices in mountain regions

should be approached with particular care due to the risk of erosion of exposed surfaces and

soils containing less humified and less stable organic matter than in the lowlands. Humic

fractions of higher solubility, less stability and tendency to migrate through the soil profile

may favour the leaching of nutrients and consequently cause the eutrophication of waters.

These  phenomena  due  to  climate  change  are  predicted  to  even  increase,  leading  to  the

“brownification” of surface waters (Lurling et al., 2014). 

Based on the literature and presented results, it could be stated that the study of humic

fractions  can  help  resolve  scientific  and practical  issues  in  ecosystems. Practices  through

improved growth of tree seedlings, applying organic materials into deeper soil horizons and

selection of species with nitrogen-fixing associates will prevent the reduction of C stocks, soil

surface in the mountain regions against erosion processes as well as ensure the stability of the

whole ecosystem. 
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