
Received 26 April 2016; Revised 6 June 2016; Accepted 6 June 2016

DOI: xxx/xxxx

ARTICLE TYPE

Existence and Uniqueness of Weak Solution for chemotaxis model
coupled with heat equation †

Slimani Ali*1 | Guesmia Amar2,1

1Laboratory of Applied Mathematics and
History and Didactics of Mathematiccs
(LAMAHIS) , University of 20 August
1955, skikda, Algeria

2Laboratory of Applied Mathematics and
History and Didactics of Mathematiccs
(LAMAHIS), University of 20 August
1955, skikda, Algeria

Correspondence
*Slimani Ali. Email:
alislimani21math@gmail.com &
ali.slimani@univ-skikda.dz

Summary

Keller-Segel chemotaxis model is described by a system of nonlinear PDE : a convec-
tion diffusion equation for the cell density coupled with a reaction-diffusion equation
for chemoattractant concentration. In this work, we study the phenomenon of Keller
Segel model coupled with a heat equation, because The heat has an effect the density
of the cells as well as the signal of chemical concentration, since the heat is a factor
affecting the spread and attraction of cells as well in relation to the signal of chemical
concentration, The main objectives of this work is the study of the global existence
and uniqueness and boundedness of the weak solution for the problem defined in (8)
for this we use the technical of Galerkin method.
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1 INTRODUCTION

Biological pattern forming is a subject of increasing interest in applied mathematics, both because of the potential for creating
new mathematics and because of the large range of important applications it may have19. Chemotaxis is well understood to play
a key role in the self-organization of many biological processes at the cellular level. Chemotaxis is the regulated movement
of an organism in response to chemical gradients in the environment, which are also differentiated by the cells. Chemotactic
aggregation is a phenomenon that occurs when chemical products are attractive (hence the term chemoattractant). Keller-Segel
model cite2, which can be summarized as follows, is one of the most important partial differential structures for understanding
chemotactic aggregation.:

)t� = D� △ � − k∇(�∇c), (1)
�ct = Dc △ c − �c + ��. (2)

HereD� is the cellular diffusion constant, k the chemotactic coefficient, � the rate of attractant production � the rate of attractant
depletion, Dc the chemical diffusion constant, � is the cell density, and c is the chemical density. The terms in Eq1 include the
diffusion of the cells and chemotactic and Eq2 expresses the diffusion and production of attractant. There is a broad literature
on this problem’s study for both the Keller-Segel model and some simplifications7,15,20,10,11,12,21,13,14 References looked into
the biological significance of this mathematical reality6,1 This will be an important accomplishment in the field of mathematical
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biology. In this article, we look at the regularity problem from a different viewpoint.
⎧

⎪

⎨

⎪

⎩

ut − ∇(m∇u) + ∇(�u∇c + �u∇v) = 0 , (x, t) ∈ Ω ×ℝ+,
�ct −△c + �c + �u +Kcv = 0 , (x, t) ∈ Ω ×ℝ+,
vt − �△ v = 0 , (x, t) ∈ Ω ×ℝ+.

(3)

Where u = u(x, t) denots the density of the cells in position x ∈ ℝd at time t, c = c(x, t) is the concentration of chemical signal
substance, � ≥ 0 represents the relaxation time, the parameter � is the chemotactic coefficient and m, �, � and �, k are given
smooth functions, the term vt is heat distrubition over time and the term △v corresponds to a variation of v compared to its
average and � is the heat coefficient and the terms∇(�u∇v), Kcv are directed cell movement by a heat and chemical degradation
by a heat factor (Respectively). This problem deals with the extent of the influence of heat on the attraction and graduation of
cell density and concentration of the chemical solution signal.
The main objectives of this work is to study of the problemKeller-Segel coupled with a heat equation on the form: � = 1 andm, �
and �, k are the positive constants and � = � are the negatif constant and � = 1. and we demonstrate the global existence and
uniqueness of a weak solution for parabolic- parabolic-parabolic problem with the Dirichlet conditions and initials conditions
defined as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P1

⎧

⎪

⎨

⎪

⎩

ut − ∇(m∇u) − ∇(� (u∇c + u∇v)) = 0, (x, t) ∈ Ω ×ℝ+,
u = 0, in Γ,
u(0, x) = u0, x ∈ Ω,

P2

⎧

⎪

⎨

⎪

⎩

ct −△c + �c + �u +Kcv = 0, (x, t) ∈ Ω ×ℝ+,
c = 0, in Γ,
c(0, x) = c0, x ∈ Ω,

P3

⎧

⎪

⎨

⎪

⎩

vt −△v = 0, (x, t) ∈ Ω ×ℝ+,
v = 0, in Γ,
v(0, x) = v0, x ∈ Ω.

(4)

2 EXISTENCE AND UNIQUENESS OF WEAK SOLUTION OF THE PROBLEM

To simplify the weak solution of the problem (4) a decomposition into three subproblems (P1) and (P2) and (P3) are adopted.
We use the Galerkin method we can demonstrate the existence and uniquness of a weak solution of subproblems (P1) and (P2)
and (P3) therefore we have the existence and uniqueness of a weak solution of the problem (4). The following initial-boundary
conditions assumption is used to prove the proposed solution of (4)

u0 ∈ L2(Ω), (5)

c0 ∈ L2(Ω), (6)

v0 ∈ L2(Ω). (7)

2.1 Existence and uniqueness of weak solution of the problem (P1)
In subsection, we state and prove the existence and uniqueness of weak solution result of the problem (P1) .

Definition 1. We say u ∈ L2(0, T ;H1
0 (Ω)) ×H

1
0 (Ω) with ut ∈ L

2(0, T ;H−1(Ω)) is a weak solution of the problem (P1) if and
only if

⟨ut,Φ⟩ + B(u,Φ, t) = 0, (8)
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where
B(u,Φ, t) = ∫

Ω

[m(∇u∇Φ) + � (u∇c∇Φ + u∇v)∇Φ]dx, (9)

for all Φ ∈H1
0 (Ω) ,0 ≤ t ≤ T ,and

u(0, x) = u0 ∈ L2(Ω). (10)

Remark 1. Note that u ∈ C([0, T ];L2(Ω)) as u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L

2(0, T ;H−1(Ω)) Then equality (10) makes sense.

Before proving the existence and uniqueness of weak solution of the problem (P1), we need the following lemma:

Lemma 1. i) For all Φ ∈ H1
0 (Ω) the B(u,Φ, t)is continuous inH

1
0 (Ω) ×H

1
0 (Ω), there exists a constant positive C such that

∣ B(u,Φ, t) ∣≤ C ∥ u ∥H1
0 (Ω)

∥ Φ ∥H1
0 (Ω)

. (11)

ii)For any u ∈ H1
0 (Ω) Then there exists a constant positive � such that

� ∥ u ∥H1
0 (Ω)

≤ B(u, u, t), ∀u ∈ H1
0 (Ω). (12)

Proof. i) We use the Cauchy-Schwarz inequality on (9) we obtain
∣ B(u,Φ, t) ∣ ≤∣ m ∣∥ ∇u ∥L2(Ω)∥ ∇Φ ∥L2(Ω)

+ ∣ � ∣∥ u ∥
L2(Ω)

∥ ∇c ∥
L4(Ω)

∥ ∇Φ ∥
L4(Ω)

× ∣ � ∣∥ u ∥
L2(Ω)

∥ ∇v ∥
L4(Ω)

∥ ∇Φ ∥
L4(Ω)

,

and we have

∣ B(u,Φ, t) ∣≤ C ∥ u ∥H1(Ω)∥ Φ ∥H1(Ω) .

ii) The expression of B(u, u, t) we obtain

B(u, u, t) = ∫Ω(m(∇u)
2 + � (u∇c∇u + u∇v∇u)dx,

and we have

B(u, u, t) ≥ ∫Ω(m(∇u)
2dx = m̀ ∥ ∇u ∥2L2(Ω),

finally, inequality Poincares, gives B(u, u, t) ≥ � ∥ u ∥2
H1
0 (Ω)

.

To demonstrate the existence of weak solution of problem (P1) we use the method of Galerkin we assume wk = wk(x) are
smooth functions verifying:

⎧

⎪

⎨

⎪

⎩

wi ∈ H1
0 (Ω),

∀m;wt....wm, its linearly independent,
the finite linear combinations of wi are dense inH1

0 (Ω).
(13)

We are looking for um = um(t) solution ≺≺approached≻≻ of the problem in the form

um(t) =
m
∑

i=1
gim(t)wi, (14)

and gim to be determined by the conditions:
{

⟨u′m, wj⟩ + B(um, wj , t) = 0,
1 ≤ j ≤ m.

(15)

The nonlinear differential equation system is to be completed by the conditional:

um(0) = u0m, u0m =
∑m
i=1 �imwj → u0 inH1

0 (Ω), when m→∞.
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2.1.1 Energy estimates

We propose now to send m to infinity and show a subsequence of our solutions um of the approximation problems (15) and (16)
converges to a weak solution of (P1). For this we will need some uniform estimates.

Theorem 1. (Energy estimates.) There exists a constant C depending only on Ω, T and c, such that
max0≤t≤T ∥ um ∥L2(Ω) + ∥ um ∥L2(0,T ;H1

0 (Ω))

+ ∥ u′m ∥L2(0,T ;H−1(Ω))≤ C ∥ u0 ∥L2(Ω) .
(16)

Proof. In order to prove the estimation (16) we will estime each terms in the left side of (14) one by one as follows:
1. Multiplying equation (15) by gjm(t) and summing for k = 1...m, and then recalling (14) we find

⟨u′m, um⟩ + B(um, um, t) = 0, (17)

and we have
1
2
d
dt
[∥ um ∥2L2(Ω)] + B(um, um, t) = 0, (18)

From Lemma (1) there exists constant � > 0 such that

� ∥ um ∥2H1
0 (Ω)

≤ B(um, um, t),∀0 ≤ t ≤ T , (19)

and we have
d
dt
(∥ um ∥2L2(Ω)) + � ∥ um ∥

2
H1
0 (Ω)

≤ 0, (20)

this implies that
∥ um ∥2L2(Ω)≤∥ um(0) ∥

2
L2(Ω)≤∥ u0 ∥

2
L2(Ω), (21)

so we have
max
0≤t≤T

∥ um ∥L2(Ω)≤∥ u0 ∥L2(Ω) . (22)

2. Integrate inequality (20) from 0 to T and we employ the inequality (22) to find

∥ um ∥2L2(0,T ;H1
0 (Ω))

=

T

∫
0

∥ um ∥2H1
0 (Ω)

dt. (23)

3. Fix any v ∈ H1
0 (Ω), with ∥ v ∥

2
H1
0 (Ω)

≤ 1, and write v = v1 + v2, where v1 ∈ (wk)k=mk=1 and (v2, wk) = 0, (k = 1, ..., m), we use
(15) we deduce for all 0 ≤ t ≤ T that

(u′m, v
1) + B(um, v1, t) = 0,

then (14) implies
⟨u′m, v⟩ = (u

′

m, v) = (u
′

m, v
1) = −B(um, v1, t),

consequently
∣ ⟨u′m, v⟩ ∣≤ C ∥ um ∥2H1

0 (Ω)
,

since

∥ v1 ∥2
H1
0 (Ω)

≤∥ v ∥2
H1
0 (Ω)

≤ 1,

we have
∥ u′m ∥H−1(Ω)≤ C ∥ um ∥H1

0 (Ω)

and therefore

∥ u′m ∥
2
L2(0,T ;H−1(Ω))=

T

∫
0

∥ u′m ∥
2
H−1(Ω) dt ≤ C

T

∫
0

∥ um ∥2H1
0 (Ω)

dt ≤ C ∥ u0 ∥2L2(Ω) .
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2.1.2 Existence and uniqueness of weak solution

Next, we pass to limits as m→∞, to build a weak solution of our initial boundary-value problem (P1).

Theorem 2. (Existence of weak solution.) Under hypothesis (5), there exists a weak solution of problem (P1).

Proof. According to the energy estimates (16), we see that the sequence {um}∞m=1is bounded in L2(0, T ;H1
0 (Ω)) and {u

′

m}
∞
m=1

is bounded in L2(0, T ;H−1(Ω)) Consequently there exists a subsequence which is also noted by {um}∞m=1 and a function u ∈
L2(0, T ;H1

0 (Ω)), with u
′ ∈ L2(0, T ;H−1(Ω)), such that

um → u weakly in L2(0, T ;H1
0 (Ω)), (24)

u′m → u′ weakly in L2(0, T ;H−1(Ω)). (25)

2. Next fix an integerN and choose a function v ∈ C1(0, T ;H1
0 (Ω)) having the form

v(t) =
N
∑

k=1
g(k)(t)wk, (26)

where
{

g(k)
}N
k=1 are given smooth functions, we choose m ≥ N and multipling equation (15) by g(k)(t) ∀K = 1...N, and then

integrate with respect to t to find
t

∫
0

⟨u′m, v⟩ + B(um, v, t)dt = 0, (27)

we recall (24) and to find upon passing to weak limits that
t

∫
0

⟨u′ , v⟩ + B(u, v, t)dt = 0, ∀v ∈ L2(0, T ;H1
0 (Ω)), (28)

as functions of the form (26) are dense in L2(0, T ;H1
0 (Ω)). Hence in particular

⟨u′, v⟩ + B(u, v, t) = 0, ∀v ∈ H1
0 (Ω) and ∀t ∈ [0, T ], (29)

and from Remark (1) we have u ∈ C(0, T ;L2(Ω)).
3. In order to prove u(0) = u0, we first note from (10) that

t

∫
0

−⟨u, v′⟩ + B(u, v, t) = (u(0), v(0)), (30)

for each v ∈ C1(0, T ;H1
0 (Ω)) with v(T ) = 0. Similary, from (27) we obtain

t

∫
0

−⟨um, v′⟩ + B(um, v, t)dt = (u0, v(0)), (31)

we use again (30), we obtain
t

∫
0

−⟨u, v′⟩ + B(u, v, t)dt = (u0, v(0)), (32)

since um(0)→ u0 in L2(Ω). Comparing (30) and (32), we conclude u(0) = u0.

Theorem 3. (Uniqueness of weak solutions. ) A weak solution of problem (P1) is unique.

Proof. We suppose there exists two weak solution u1 and u2and we put U = u2 − u1 then U is also a solution of problem (P1)
with U0 = (u2 − u1)(0) ≡ 0. Setting v = U in identity (18) we are

d
dt
(1
2
∥ U ∥2L2(Ω)) + B(U,U, t) = 0,
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from Lemma (1), we have B(U,U, t) ≥ � ∥ U ∥2
H1
0 (Ω)

≥ 0, so d
dt
( 1
2
∥ U ∥2L2(Ω)) ≤ 0, then integrate with respect to t to find

∥ U ∥2L2(Ω)≤∥ U0 ∥
2
L2(Ω)= 0,

Thus U ≡ 0.

2.2 Existence and uniqueness of weak solution of problem (P2)
In subsection, we state and prove the existence and uniqueness of weak solution result of the problem (P2)

Definition 2. We say c ∈ L2(0, T ;H1
0 (Ω)) with ct ∈ L

2(0, T ;H−1(Ω)) is a weak solution of the problem (P2) if and only if

⟨ct, q⟩ + L(c, q, t) = 0, (33)

where
L(c, q, t) = ∫

Ω

[(∇c∇q) + �cq + �uq +Kvcq]dx, (34)

for all q ∈H1
0 (Ω) ,0 ≤ t ≤ T ,and

c(0, x) = c0 ∈ L2(Ω). (35)

Remark 2. Note that c ∈ C([0, T ];L2(Ω)) as c ∈ L2(0, T ;H1
0 (Ω)) and ct ∈ L

2(0, T ;H−1(Ω)) Then equality (35) makes sense.

To demonstrate existence of weak solution of problem (P1) we use the Galerkin method, we assume wk = wk(x) are smooth
functions verifying:

⎧

⎪

⎨

⎪

⎩

wi ∈ H1
0 (Ω),

∀m;wt....wm its linearly independent ,
the finite linear combination of wi are dense inH1

0 (Ω).
(36)

We are looking for cm = cm(t) solution ≺≺approached≻≻ of the problem in the form

cm(t) =
m
∑

i=1
dim(t)wi, (37)

the dim to be determined by the conditions:
{

⟨c′m, wj⟩ + L(cm, wj , t) = 0,
1 ≤ j ≤ m.

(38)

The system of nonlinear differential equations is to be completed by the initial conditions:

cm(0) = c0m, c0m =
m
∑

i=1
�imwj → c0 inH1

0 (Ω), when m→∞. (39)

We now propose to send m to infinity and to show a subsequence of our solutions cm approximation problems (38) and (39)
converges towards a weak solution of the problem (P2). For this we need uniform estimates.

2.2.1 Energy estimates

We propose now to send m to infinity and show a subsequence of our solutions cm of the approximation problems (38) and (39)
converges to a weak solution of problem (P2). For this we will need some uniform estimates.

Theorem 4. (Energy estimates.) They exists a constant C depending only on Ω, T such that
max0≤t≤T ∥ cm ∥L2(Ω) + ∥ cm ∥L2(0,T ;H1

0 (Ω))

+ ∥ c′m ∥L2(0,T ;H−1(Ω))≤ C ∥ c0 ∥L2(Ω) .
(40)

Proof. In order to prove the estimation (40) we will estime each terms in the left side of (38) one by one as follows:
1. Multiplying equation (38) by djm(t) and summing for j we find

⟨c′m, wj⟩ + B(cm, cm, t) = 0, (41)
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and we have
1
2
d
dt
[∥ cm ∥2L2(Ω)] + L(cm(t), cm(t)) = 0, (42)

and we put ∥ v ∥=
√

L(v, v) (= is norm inH1
0 (Ω)), so
1
2
d
dt
(∥ cm ∥2L2(Ω))+ ∥ cm ∥

2
H1
0 (Ω)

= 0, (43)

we have
d
dt
(∥ cm ∥2L2(Ω)) ≤ 0,

and we have
∥ cm ∥2L2(Ω)≤∥ cm(0) ∥

2
L2(Ω)≤∥ c0 ∥

2
L2(Ω), (44)

so we are
max
0≤t≤T

∥ cm ∥L2(Ω)≤∥ c0 ∥L2(Ω) . (45)

2. Integrate inequality (43) from 0 to T and we use (45) to find

∥ cm ∥2L2(0,T ;H1
0 (Ω))

=

T

∫
0

∥ cm ∥2H1
0 (Ω)

dt. (46)

3. Fix any v ∈ H1
0 (Ω), with ∥ v ∥

2
H1
0 (Ω)

≤ 1, and write v = v1 + v2, where v1 ∈ (wk)k=mk=1 and (v2, wk) = 0 for all (k = 1, ..., m).
we use (38) from all 0 ≤ t ≤ T that

(c′m, v
1) + L(cm, v1, t) = 0.

Then (37) implies
(c′m, v) = ⟨c′m, v⟩ = ⟨c′m, v

1
⟩ = −L(cm, v1, t),

consequently
∣ ⟨c′m, v⟩ ∣≤ C ∥ cm ∥2H1

0 (Ω)
,

and as

∥ v1 ∥2
H1
0 (Ω)

≤∥ v ∥2
H1
0 (Ω)

≤ 1,

thus
∥ c′m ∥H−1(Ω)≤ C ∥ cm ∥H1

0 (Ω)
,

and therefore

∥ c′m ∥
2
L2(0,T ;H−1(Ω))=

T

∫
0

∥ c′m ∥
2
H−1(Ω) dt ≤ C

T

∫
0

∥ cm ∥2H1
0 (Ω)

dt ≤ C ∥ c0 ∥2L2(Ω) .

2.2.2 Existence and uniqueness of weak solution

Next, we pass to limits as m→∞, to build a weak solution of our initial boundary-value problem (P2).

Theorem 5. (Existence of weak solution.) Under hypothesis (6), there exists a weak solution of (P2).

Proof. According to the energy estimates (40), we see that the sequence {cm}∞m=1is bounded in L2(0, T ;H1
0 (Ω)) and {c

′

m}
∞
m=1

is bounded in L2(0, T ;H−1(Ω)) Consequently there exists a subsequence which is also noted by {cm}∞m=1 and a function c ∈
L2(0, T ;H1

0 (Ω)) with c
′ ∈ L2(0, T ;H−1(Ω)), such that

cm → c weakly in L2(0, T ;H1
0 (Ω)), (47)

c′m → c′ weakly in L2(0, T ;H−1(Ω)).

2. Next fix an integerN and choose a function v ∈ C1(0, T ;H1
0 (Ω)) having the form

v(t) =
N
∑

k=1
d(k)(t)wk, (48)
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where
{

d(k)
}N
k=1 are given smooth functions. We choose m ≥ N , multiply equation (38) by d(k)(t)∀K = 1...N, and then

integrate with respect to t to find
t

∫
0

⟨c′m, v⟩ + L(cm, v, t)dt = 0, (49)

we recall (47) to find upon passing to weak limits that
t

∫
0

⟨c′ , v⟩ + L(c, v, t)dt = 0, ∀v ∈ L2(0, T ;H1
0 (Ω)). (50)

As functions of the form (48) are dense in L2(0, T ;H1
0 (Ω)). Hence in particular

⟨c′, v⟩ + L(c, v, t) = 0, ∀v ∈ H1
0 (Ω) et ∀t ∈ [0, T ] (51)

and as (35) and from Remark (2) we have c ∈ C(0, T ;L2(Ω)).
3. In order to prove for prouver c(0) = c0, we first note from (35) that

t

∫
0

−⟨c, v′⟩ + L(c, v, t)dt = (c(0), v(0)), (52)

for each v ∈ C1(0, T ;H1
0 (Ω)) with v(T ) = 0. Similary, from (49) we obtain

t

∫
0

−⟨cm, v′⟩ + B(cm, v, t)dt = (c0, v(0)), (53)

we use again (52), we obtain
t

∫
0

−⟨c, v′⟩ + B(c, v, t)dt = (c0, v(0)), (54)

since cm(0)→ c0 in L2(Ω). Comparing (52) and (54), we conclude c(0) = c0.

Theorem 6. (Uniqueness of weak solutions. ) A weak solution of problem (P2) is unique.

Proof. We suppose there exists two weak solution c1 et c2 and we put that
C = c2 − c1 then C is also a solution of (P2) with C0 = (c2 − c1)(0) ≡ 0. Setting v = C in identity (51) we have

d
dt
(1
2
∥ C ∥2L2(Ω)) + L(C,C, t) = 0,

and as ∥ C ∥=
√

L(C,C) (= norm inH1
0 (Ω)), there L(C,C, t) =∥ C ∥

2
H1
0 (Ω)

≥ 0, then we have

d
dt
( 1
2
∥ C ∥2L2(Ω)) ≤ 0,

then integrate with respect to t to find
∥ C ∥2L2(Ω)≤∥ C0 ∥

2
L2(Ω)= 0,

then C ≡ 0.

2.3 Existence and uniqueness of weak solution of the problem (P3)
In subsection, we state and prove existence and uniqueness of weak solution result of the problem (P3)

Definition 3. We say v ∈ L2(0, T ;H1
0 (Ω)) with vt ∈ L

2(0, T ;H−1(Ω)) is a weak solution to the problem (P3) if and only if

⟨vt,Ψ⟩ + A(v,Ψ, t) = 0, (55)

when
A(v,Ψ, t) = ∫

Ω

∇v∇Ψdx, (56)
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for all Ψ ∈H1
0 (Ω) ,0 ≤ t ≤ T ,and

v(0, x) = v0 ∈ L2(Ω). (57)

Remark 3. Note that v ∈ C([0, T ];L2(Ω)) as v ∈ L2(0, T ;H1
0 (Ω)) and vt ∈ L

2(0, T ;H−1(Ω)) Then equality (57) makes sense.

Before proving the existence and uniqueness of weak solution of problem (P3), we need the following lemma:

Lemma 2. i)For all Ψ ∈ H1
0 (Ω) and A(v,Ψ, t)is continuous inH

1
0 (Ω) ×H

1
0 (Ω), there exists a constant positive Csuch that

∣ A(v,Ψ, t) ∣≤ C ∥ v ∥H1
0 (Ω)

∥ Ψ ∥H1
0 (Ω)

. (58)

ii)For any v ∈ H1
0 (Ω) Then there exists a constant positive � such that

� ∥ v ∥H1
0 (Ω)

≤ A(v, v, t), ∀v ∈ H1
0 (Ω). (59)

Proof. i) We use the Cauchy-Schwarz inequality on (56) we obtain

∣ A(u, v, t) ∣≤∥ ∇v ∥L2(Ω)∥ ∇Ψ ∥L2(Ω),

and

∣ A(u, v, t) ∣≤ C ∥ v ∥H1(Ω)∥ Ψ ∥H1(Ω) .

ii) The expression of A(v, v, t) becomes

A(v, v, t) = ∫
Ω

(∇v)2dx =∥ ∇v ∥2L2(Ω),

finally, Poincares inequality, gives A(v, v, t) ≥ � ∥ v ∥2
H1
0 (Ω)

.

To demonstrate existence of a weak solution of (P3) we use the Galerkin method we suppose that wk = wk(x) are smooth
functions checking:

⎧

⎪

⎨

⎪

⎩

wi ∈ H1
0 (Ω),

∀m;wt....wm its linearly independent,
the finite linear combination of wi are dense inH1

0 (Ω).
(60)

we are looking for vm = vm(t) solution ≺≺approached≻≻ of the problem in the form

vm(t) =
m
∑

i=1
lim(t)wi, (61)

the lim to be determined by the conditions:
{

⟨v′m, wj⟩ + A(vm, wj , t) = 0,
1 ≤ j ≤ m.

(62)

The system of nonlinear differential equations is to be completed by the initial condition:

vm(0) = v0m, v0m =
m
∑

i=1
�imwj → v0 inH1

0 (Ω), when m→∞. (63)

We now propose to send m to infinity and to show a subsequence of our solutions vm of approximation problems (62) and (63)
converges to a weak solution of problem (P3). For this we will need uniform estimates.

2.3.1 Energy estimates
Theorem 7. (Energy estimates.) There is a constant C depending only on Ω, T such that

max
0≤t≤T

∥ vm ∥L2(Ω) + ∥ vm ∥L2(0,T ;H1
0 (Ω))

+ (64)

∥ v′m ∥L2(0,T ;H−1(Ω))≤ C ∥ v0 ∥L2(Ω) . (65)

Proof. Multiplying equation (62) index j by ljm(t) and we are in j he comes :

⟨v′m, wj⟩ + A(vm, vm, t) = 0, (66)
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where
1
2
d
dt
[∥ vm ∥2L2(Ω)] + A(vm, vm, t) = 0, (67)

we have according to the lemma (2) there is a constant � > 0 such That

� ∥ vm ∥2H1
0 (Ω)

≤ B(m, vm, t),∀0 ≤ t ≤ T , (68)

so
d
dt
(∥ vm ∥2L2(Ω)) + � ∥ vm ∥

2
H1
0 (Ω)

≤ 0, (69)
therefore

∥ vm ∥2L2(Ω)≤∥ vm(0) ∥
2
L2(Ω)≤∥ v0 ∥

2
L2(Ω), (70)

then we have
max
0≤t≤T

∥ vm ∥L2(Ω)≤∥ v0 ∥L2(Ω) . (71)
Integrated inequality (69) from 0 to T and we use (71) find

∥ vm ∥2L2(0,T ;H1
0 (Ω))

=

T

∫
0

∥ vm ∥2H1
0 (Ω)

dt, (72)

fixed everything u ∈ H1
0 (Ω), with ∥ u ∥

2
H1
0 (Ω)

≤ 1, and write u = u1 + u2

where u1 ∈ (wk)k=mk=1 and (u2, wk) = 0, (k = 1, ..., m). we use (62) from all 0 ≤ t ≤ T that

(v′m, u
1) + A(vm, u1, t) = 0,

when (61) we find
(v′m, u) = (v

′

m, u
1) = −A(vm, u1, t),

therefore
∣ (v′m, u) ∣≤ C ∥ vm ∥2H1

0 (Ω)
and as

∥ u1 ∥2
H1
0 (Ω)

≤∥ u ∥2
H1
0 (Ω)

≤ 1,

therefore
∥ v′m ∥H−1(Ω)≤ C ∥ vm ∥H1

0 (Ω)
,

and when

∥ v′m ∥
2
L2(0,T ;H−1(Ω))=

T

∫
0

∥ v′m ∥
2
H−1(Ω) dt ≤ C

T

∫
0

∥ vm ∥2H1
0 (Ω)

dt ≤ C ∥ v0 ∥2L2(Ω) .

2.3.2 Existence and uniqueness of weak solution

Then we pass the limit as m→∞, to build a weak solution for the initial problem condition (P3).

Theorem 8. Under hypothesis (7), There is a weak solution of problem (P3).

Proof. According to energy estimates (65), we see that the sequence {vm}∞m=1is bounded in L2(0, T ;H1
0 (Ω)) and {v

′

m}
∞
m=1

is bounded in L2(0; T ;H−1(Ω)) Therefore, there is a subsequence which is also noted by{vm}∞m=1 and a function v ∈
L2(0, T ;H1

0 (Ω)), with v
′ ∈ L2(0; T ;H−1(Ω)), such that

vm → v weakly in L2(0, T ;H1
0 (Ω)), (73)

v′m → v′ weakly in L2(0; T ;H−1(Ω)). (74)

Next fix an integerN and takes a function u ∈ C1(0, T ;H1
0 (Ω)) under the form

u(t) =
N
∑

k=1
g(k)(t)wk, (75)



Slimani Ali ET AL 11

where
{

g(k)
}N
k=1 are given smooth functions and we choose m ≥ N , multipling the equation (62) by g(k)(t) and ∀K = 1...N,

then integrate with respect to t to find
t

∫
0

⟨v′m, u⟩ + A(vm, u, t)dt = 0, (76)

we recall and (74) to find passing low limits that
t

∫
0

⟨v′ , u⟩ + A(v, u, t)dt = 0, ∀u ∈ L2(0, T ;H1
0 (Ω)), (77)

as functions of the form (75) are dense in L2(0, T ;H1
0 (Ω)). In particular

⟨v′, u⟩ + A(v, u, t) = 0, ∀u ∈ H1
0 (Ω) and ∀t ∈ [0, T ] (78)

and as (57) and from Remark(3) we have v ∈ C(0, T ;L2(Ω)).
To prove v(0) = v0, we first note of (10) that

t

∫
0

−⟨v, u′⟩ + A(v, u, t) = (v(0), u(0)), (79)

for each u ∈ C1(0, T ;H1
0 (Ω)) with u(T ) = 0. Similary, from (76) we obtian

t

∫
0

−⟨vm, u′⟩ + A(vm, u, t)dt = (v0, u(0)), (80)

we use again (73), we obtian
t

∫
0

−⟨v, u′⟩ + A(v, u, t)dt = (v0, u(0)), (81)

since vm(0)→ v0 in L2(Ω). Comparing (80) and (81), we conclude v(0) = v0.

Theorem 9. (Uniqueness of weak solutions.) A weak solution of problem (P3) is unique.

Proof. We suppose there exists two weak solution v1 and v2 and we put that V = v2 − v1 then V is also a solution of (P3) with
V0 = (v2 − v1)(0) ≡ 0. Setting u = V in identity (78), we have

d
dt
(1
2
∥ V ∥2L2(Ω)) + A(V , V , t) = 0,

for lemma (2), we have A(V , V , t) ≥ � ∥ V ∥2
H1
0 (Ω)

≥ 0, so d
dt
( 1
2
∥ V ∥2L2(Ω)) ≤ 0,

then integrate with respect to t to find
∥ V ∥2L2(Ω)≤∥ V0 ∥

2
L2(Ω)= 0,

thus V ≡ 0.
Then we have the existence and uniqueness of weak solution to chemetaxis model coupled with heat equation.
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