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Abstract

Sobolev type fractional functional evolution equations have many applications in the modeling of many
physical processes. Therefore, we investigate fractional-order time-delay evolution equation of Sobolev
type with multi-orders in a Banach space and introduce an analytical representation of a mild solution
via a new delayed Mittag-Leffler type function which is generated by linear bounded operators. Further-
more, we derive an exact analytical representation of solutions for multi-dimensional fractional functional
dynamical systems with nonpermutable and permutable matrices. We also study stability analysis of the
given time-delay system in Ulam-Hyers sense with the help of Laplace transform.
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1 Introduction

Multi-term FDEs have been studied due to their applications in modelling, and solved using various math-
ematical methods. Finding the solution to these equations is an interesting and challenging subject that
attracted many scientists in the last decades. Up to now, various analytical and computational techniques
have been investigated to find the solution of multi-term FDEs, of which we mention a few as follows. Luchko
and several collaborators [15, 26, 27] used the method of operational calculus to solve multi-order FDEs with
different types of fractional derivatives. In the realm of ordinary differential equations, Mahmudov and
other collaborators [2, 33] have derived an analytical representation of solutions for special cases of fractional
differential equations with multi-orders, namely: Langevin and Bagley-Torvik equations involving scalar co-
efficients and permutable matrices by using Laplace transform method and fractional analogue of variation of
constants formula, respectively, while the other authors [36] have solved multi-term differential equations in
Riemann-Liouville’s sense with variable coefficients applying a new method to construct analytical solutions.
Several results have been investigated on solving multi-dimensional time-delay deterministic and stochastic
systems with permutable matrices [3, 16] in classical and fractional senses.

Khusainov et al. [20] have proposed a compact representation of a solution of the Cauchy problem for
a linear inhomogeneous differential equation with non-singular matrix and pure delay via special matrix
functions which are called delayed matrix cosine and sine. Diblik et al. [8] have studied a control problem
for a system governed by delay oscillating equations that have considered in [20] and gave sufficient and
necessary conditions for relative controllability from the point of rank criterion. In [22], Liang et al. have
used a different approach to study controllability results for linear second-order delay differential system in
terms of delay Gramian matrix involing delayed matrix sine polynomials. In addition, Diblik et al. [10],
have represented an analytical solution of an inhomogeneous second-order differential equation with two
constant delays by using matrix functions under the assumption that linear parts are given by permutable
matrices. In [23], Liang and Wang have considered iterative learning control problem of an oscillation system
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with two constant delays that are studied in [10] by utilizing delayed matrix functions. In [24], Liang et
al. have investigated the finite-time stability of linear delay differential equations via the delayed matrix
cosine and sine of polynomial degrees and extended to the same issue of delay differential equation with
nonlinearity by virtue of Gronwall’s inequality approach. Particularly, time-delay systems with multi-delays
has a potential to be more suitable for applications in engineering and science [9, 34, 39, 40, 41]. In [9], Diblik
et al. have studied nonhomogeneous system of linear differential equations with multiple different delays and
pairwise permutable matrices. In [39], Pospisil and Jaros have proposed a closed-form formula for a solution
of system of nonhomogeneous linear differential equations with any finite number of constant delays and
linear parts given by pair-wise permutable matrices by applying Laplace transform technique. Pospisil [40]
has introduced analytical representation of solutions for linear differential equations with multiple constant
delays without commutativity assumption on the matrix coefficients. Moreover, Pospisil [41] has analyzed
asymptotic stability results for some nonlinear functional differential equations system with multiple time-
varying delays and linear parts given by pair-wise permutable constant matrices via Gronwall’s, Bihari’s and
Pinto’s integral inequalities. Furthermore, Medved and Pospisil [34] have derived sufficient conditions for the
asymptotic stability of nonlinear multi-delay differential equations using multi-delay exponential functions
via Pinto’s inequality.

Recently, Mahmudov [31] has introduced a fractional analogue of delayed matrices cosine and sine in the
commutative case i.e., AB = BA to solve the sequential Riemann-Liouville type linear time-delay systems
whilst Liang et al. [25] have also obtained an explicit solution of the differential equation with pure delay
and sequential Caputo type fractional derivative. However, there are a few papers involving non-permutable
matrices which are recently studied fractional time-continuous [28] and discrete [29] systems with a constant
delay using recursively defined matrix-equations, and also delayed linear difference equations [30] applying
Z -transform technique by Mahmudov.

Meanwhile, Sobolev type evolution equations and their fractional-order analogues have attracted a great
deal of attention from applications’ point of view and studied by several authors [4, 5, 7, 11, 32, 46, 47, 48]
in recent decade. In [4], Balachandran and Dauer have derived sufficient conditions for controllability of
partial functional differential systems of Sobolev type in a Banach space by using compact semigroups
and Schauder’s fixed point theorem. Moreover, Balachandran et al. [5] have considered existence results
of solutions for nonlinear impulsive integrodifferential equations of Sobolev type with nonlocal conditions
via Krasnoselkii’s fixed point technique. In terms of fractional differential equations, Wang et al. [47] have
investigated controllability results of Sobolev type fractional evolution equations in a seperable Banach space
by using the theory of propagation family and contraction mapping principle. In addition, Feckan et al. [11]
have presented controllability of fractional functional evolution sytems of Sobolev type with the help of new
characteristic solution operators and well-known Schauder’s fixed point approach. In addition, Mahmudov
[32] have considered approximate controllability results for a class of fractional evolution equations of Sobolev
type by using fixed point approach. In [48], Wang and Li have discussed stability analysis of fractional
evolution equations of Sobolev type in Ulam-Hyers sense. In [7], Chang et al. have studied the asymptotic
behaviour of resolvent operators of Sobolev type and their applications to the existence and uniqueness of
mild solutions to fractional functional evolution equations in Banach spaces. Vijayakumar et al. [46] have
presented approximate controllability results for Sobolev type time-delay differential systems of fractional-
order in Hilbert spaces.

To the best of our knowledge, the fractional functional evolution equations of Sobolev type with non-
permutable operators and two independent fractional orders of differentiation α and β which are assumed
to be in the interval (1, 2] and (0, 1], respectively are an untreated topic in the present literature. Thus,
motivated by the above research works, we consider the following Cauchy problem for fractional evolution
equation of Sobolev type with orders 1 < α ≤ 2 and 0 < β ≤ 1 on J := [−τ, T ]:

(
CDα

0+Ey
)

(t)−A0

(
C
Dβ

0+y
)

(t) = B0y(t− τ) + g(t), t > 0, τ > 0,

Ey(t) = ϕ(t), −τ ≤ t ≤ 0,

Ey′(0) = ϕ′(0),

(1.1)

where CDα
0+ and

C
Dβ

0+ Caputo fractional differential operators of orders 1 < α ≤ 2 and 0 < β ≤ 1,
respectively, with the lower limit zero, the operators E : D(E) ⊂ X → Y , A0 : D(A0) ⊂ X → Y and
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B0 : D(B0) ⊂ X → Y are linear, where X and Y are Banach spaces, y(·) is a X-valued function on J, i.e.,
y(·) : J → X, ϕ(·) ∈ C (I, Y ) where I = [−τ, 0], τ > 0 is a fixed delay time, suppose ϕ(·) is continuously
differentiable at initial data t = 0 and ϕ(0), ϕ′(0) ∈ Y . In addition, g(·) : L → Y is a continuous function,
where L = [0, T ] and T = nτ , for a fixed n ∈ N = {1, 2, 3, ...}. The domain D(E) of E becomes a Banach
space with respect to ‖y‖D(E) = ‖Ey‖Y , y ∈ D(E).

The main idea is that under the hypotheses (H1)-(H4) we transform Sobolev type fractional multi-term
functional evolution equation with linear operators (1.1) to fractional-order time-delay evolution equation
with multi-orders and linear bounded operators (3.1). Secondly, we solve fractional functional evolution
equation with nonpermutable linear bounded operators by using Laplace transform technique which is used
as a necessary tool for solving and analyzing fractional-order differential equations and systems in [2, 6, 16,
19, 43]. Then we propose exact analytical representation of a mild solution of (3.1) and (1.1), respectively
with the help of new defined Mittag-Leffler function which is expressed via linear bounded operators by

removing the exponential boundedness of a forced term g(·) and
(
CDβ

0+x
)

(·) for β ∈ (0, 1] (or
(
CDα

0+x
)

(·)
for α ∈ (1, 2]) in both cases: with nonpermutable and permutable linear operators A,B ∈ B(Y ).

The structure of this paper contains a crucial improvement in the theory of Sobolev type fractional multi-
term time-delay evolution equations and is organized as below. Section 2 is a preparatory section where
we recall main definitions and results from fractional calculus, special functions and fractional differential
equations. In Section 3, we establish a new delayed analogue of Mittag-Leffler type function which is
generated by linear bounded operators via a double infinity series and investigate some necessary properties
of this function which are accurate tools for testing the candidate solutions of fractional-order dynamical
equations. Moreover, first, we introduce the sufficient conditions for exponential boundedness of (3.1) to
guarantee the existence of Laplace integral transform of equation (3.1). Meanwhile, we tackle this strong
condition and verify that the sufficient conditions can be omitted easily. In addition, we propose exact
solutions for multi-term fractional delay dynamical systems with commutative and noncommutative matrices.
Section 4 deals with an analytical representation of a mild solution to Sobolev type functional evolution
equation with two independent fractional-orders and permutable linear bounded operators. In Section 6, we
discuss our main contributions of this paper and future research work.

2 Preliminary concept

We embark on this section by briefly presenting some notations and definition fractional calculus and frac-
tional differential equations [21, 37, 44] which are used throughout the paper.

Let C2 (J, X) := {x(·) ∈ C (J, X) : x′(·), x′′(·) ∈ C (J, X)} denote the Banach space of functions x(t) ∈ X

for t ∈ J equipped with a norm ‖x‖C2(J,X) =
2∑
i=0

sup
t∈J
‖x(i)(t)‖. The space of all bounded linear operators

from X to Y is denoted by B(X,Y ) and B(Y, Y ) is written as B(Y ).

Definition 2.1. [21, 37, 44] The fractional integral of order α > 0 for a function g ∈ ([0,∞),R) is defined
by

(Iα0+g)(t) =
1

Γ(α)

t∫
0

(t− s)α−1g(s) ds, t > 0, (2.1)

where Γ(·) is the well-known Euler’s gamma function.

Definition 2.2. [21, 37, 44] The Riemann-Liouville fractional derivative of order n− 1 < α ≤ n, n ∈ N for
a function g ∈ ([0,∞),R) is defined by

(RLDα
0+g)(t) =

1

Γ(n− α)

(
d

dt

)n t∫
0

(t− s)n−α−1g(s) ds, t > 0, (2.2)

where the function g(·) has absolutely continuous derivatives up to order n.
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The following theorem and its corollary is regarding fractional analogue of the eminent Leibniz integral
rule for general order α ∈ (n−1, n], n ∈ N in Riemann-Liouville’s sense which is more productive tool for the
testing particular solution of inhomogeneous linear multi-order fractional differential equations with variable
and constant coefficients is considered by Huseynov et al. [17].

Theorem 2.1. Let the function K : J × J → R be such that the following assumptions are fulfilled:

(a) For every fixed t ∈ J , the function K̂(t, s) =
RL,t

Dα−1
s+ K(t, s) is measurable on J and integrable on

J with respect to some t∗ ∈ J ;
(b) The partial derivative RL,tDα

s+K(t, s) exists for every interior point (t, s) ∈ Ĵ × Ĵ ;

(c) There exists a non-negative integrable function g such that
∣∣RL,tDα

s+K(t, s)
∣∣ ≤ g(s) for every interior

point (t, s) ∈ Ĵ × Ĵ ;

(d) The derivative dl−1

dtl−1 lim
s→t−0

RL,t
Dα−l
s+ K(t, s), l = 1, 2, . . . , n exists for every interior point (t, s) ∈ Ĵ×Ĵ .

Then, the following relation holds true for fractional derivative in Riemann-Liouville sense under Lebesgue
integration for any t ∈ Ĵ :

RLDα
t0+

t∫
t0

K(t, s)ds =

n∑
l=1

dl−1

dtl−1
lim

s→t−0

RL,t
Dα−l
s+ K(t, s) +

t∫
t0

RL,tDα
s+K(t, s)ds. (2.3)

If we have K(t, s) = f(t − s)g(s), t0 = 0 and assumptions of Theorem 2.1 are fulfilled, then following
equality holds true for convolution operator in Riemann-Liouville sense for any n ∈ N:

RLDα
0+

t∫
0

f(t− s)g(s)ds =

n∑
l=1

lim
s→t−0

RL,t
Dα−l
s+ f(t− s) d

l−1

dtl−1
lim

s→t−0
g(s)

+

t∫
0

RL,tDα
s+f(t− s)g(s)ds, t > 0. (2.4)

where
RL,t

Dγ
t0+K(t, s) is a partial Riemann-Liouville fractional differentiation operator of order γ > 0

[21] with respect to t of a function K(t, s) of two variables with lower terminal t0 and J = [t0, T ], Ĵ = (t0, T ).

In the special cases, Riemann-Riouville type differentiation under integral sign holds for convolution
operator [17]:

• If α ∈ (0, 1], then

RLDα
0+

t∫
0

f(t− s)g(s)ds = lim
s→t−0

RL,t
Dα−1
s+ f(t− s) lim

s→t−0
g(s)

+

t∫
0

RL,tDα
s+f(t− s)g(s)ds, t > 0;

• If α ∈ (1, 2], then

RLDα
0+

t∫
0

f(t− s)g(s)ds = lim
s→t−0

RL,t
Dα−1
s+ f(t− s) lim

s→t−0
g(s)

+ lim
s→t−0

RL,t
Dα−2
s+ f(t− s) lim

s→t−0
g(s) +

t∫
0

RL,tDα
s+f(t− s)g(s)ds, t > 0.
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Definition 2.3. [21, 37] The Caputo fractional derivative of order, n − 1 < α ≤ n, n ∈ N for a function
g ∈ ([0,∞),R) is defined by

(CDα
0+g)(t) =

1

Γ(n− α)

t∫
0

(t− s)n−α−1

(
d

ds

)n
g(s) ds, t > 0, (2.5)

where the function g(·) has absolutely continuous derivatives up to order n.

Definition 2.4. [21, 37] The relationship between Caputo and Riemann-Liouville fractional differential
operators of order n− 1 < α ≤ n, n ∈ N for a function g ∈ ([0,∞),R) is defined by

(CDα
0+g)(t) = RLDα

0+

(
g(t)−

n−1∑
k=0

tk

k!
g(k)(0)

)
, t > 0, (2.6)

where the function g(·) has absolutely continuous derivatives up to order n.

Remark 2.1. If g(·) is an abstract function with values in X, then the integrals which appear in Definition
2.1, 2.2, 2.3 and 2.4 are taken in Bochner’s sense.

The Laplace transform of the Caputo’s fractional differentiation operator [21] is defined by

L
{

(CDα
0+g)(t)

}
(s) = sαG(s)−

n∑
k=1

sα−kg(k−1)(0), n− 1 < α ≤ n, n ∈ N, (2.7)

where G(s) = L {g(t)} (s).
In the particular cases, the Laplace integral transform of the Caputo fractional derivative is:

• If α ∈ (0, 1], then
L
{(
CDα

0+x
)

(t)
}

(s) = sαX(s)− sα−1x(0);

• If α ∈ (1, 2], then
L
{(
CDα

0+x
)

(t)
}

(s) = sαX(s)− sα−1x(0)− sα−2x′(0),

where X(s) = L {x(t)} (s).

Lemma 2.1 ([51]). Suppose that A is linear bounded operator defined on the Banach space X and assume
that ‖A‖ < 1. Then, (I −A)−1 is linear bounded on X and

(I −A)−1 =

∞∑
k=0

Ak. (2.8)

The following well-known generalized Gronwall inequality which plays an important role in the qualitative
analysis of the solutions to fractional differential equations is stated and proved in [14, 50] for β > 0. In
particular case, if β = 1, then the following relations hold true:

Theorem 2.2. Suppose a(t) is a nonnegative function locally integrable on 0 ≤ t < T (some T ≤ +∞),
b(t) is a nonnegative, nondecreasing continuous function defined on 0 ≤ t < T , |b(t)| ≤M , (M is a positive
constant) and suppose u(t) is a nonnegative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b(t)

t∫
0

u(s)ds,

on this interval; then

u(t) ≤ a(t) + b(t)

t∫
0

exp (b(t)(t− s)) a(s)ds, 0 ≤ t < T.
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Corollary 2.1. Under the hypothesis of Theorem 2.2, let a(t) be a nondecreasing function on [0, T ). Then

u(t) ≤ a(t) exp (b(t)t) , 0 ≤ t < T. (2.9)

The Mittag-Leffler function is a natural generalization of the exponential function, first proposed as
a single parameter function of one variable by using an infinite series [35]. Extensions to two or three
parameters are well known and thoroughly studied in textbooks such as [13]. Extensions to two or several
variables have been studied more recently [1, 12, 18, 45].

Definition 2.5 ([35]). The classical Mittag-Leffler function is defined by

Eα(t) =

∞∑
k=0

tk

Γ(kα+ 1)
, α > 0, t ∈ R. (2.10)

The two-parameter Mttag-Leffler function [49] is given by

Eα,β(t) =

∞∑
k=0

tk

Γ(kα+ β)
, α > 0, β ∈ R, t ∈ R. (2.11)

The three-parameter Mittag-Leffler function [42] is determined by

Eγα,β(t) =

∞∑
k=0

(γ)k
Γ(kα+ β)

tk

k!
, α > 0, β, γ ∈ R, t ∈ R, (2.12)

where (γ)k is the Pochhammer symbol denoting Γ(γ+k)
Γ(γ) . These series are convergent, locally uniformly in t,

provided the α > 0 condition is satisfied. It is important to note that

E1
α,β(t) = Eα,β(t), Eα,1(t) = Eα(t), E1(t) = exp(t).

Lemma 2.2 ([42]). The Laplace transform of the three-parameter Mittag-Leffler function is given by

L
{
tβ−1Eγα,β(λtα)

}
(s) = s−β

(
1− λs−α

)−γ
, (2.13)

where α > 0, β, γ, λ ∈ R and Re(s) > 0.

Definition 2.6. [12] A bivariate Mittag-Leffler type function which is a particular case of multivariate
Mittag-Leffler function [26] is defined by

Eα,β,γ(λ1x
α, λ2y

β) =

∞∑
k=0

∞∑
m=0

(
k +m

m

)
λk1λ

m
2 x

kαymβ

Γ(kα+mβ + γ)
, α, β > 0, γ ∈ R, x, y ∈ R. (2.14)

Univariate version of bivariate Mittag-Leffler function (2.14) is defined by

Eα,β,γ(λ1t
α, λ2t

β) =

∞∑
k=0

∞∑
m=0

(
k +m

m

)
λk1λ

m
2 t

kα+mβ

Γ(kα+mβ + γ)
, α, β > 0, γ ∈ R, t ∈ R. (2.15)

3 A representation of mild solution to (1.1) with non-permutable
linear operators

In this section, we consider the Cauchy problem for fractional functional evolution equation of Sobolev type
in a Banach space. Firstly, we introduce the following hypotheses on the linear operators A0, B0 and E:

(H1): A0 is a closed operator;
(H2): B0 is a bounded operator;
(H3): D(E) ⊂ D(A0) and E is bijective;
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(H4): A linear operator E−1 : Y → D(E) ⊂ X is compact.
It is important to stress out that (H4) implies E−1 is bounded. Furthermore, (H4) also implies that E

is closed since the fact: E−1 is closed and injective, then its inverse is also closed. It comes from the closed
graph theorem, we acquire the boundedness of the linear operator A := A0E

−1 : Y → Y . Furthermore,
B := B0E

−1 : Y → Y is a linear bounded operator since E−1 and B0 are bounded.
Obviously, the substitution Ey(t) = x(t) is equivalent to y(t) = E−1x(t). The central idea is that

applying the substitution y(t) = E−1x(t), under the hypotheses (H1) − (H4), we transform the Sobolev
type fractional-order functional evolution system (1.1) to the following multi-term evolution system with a
constant delay and linear bounded operators A,B ∈ B(Y ):

(
CDα

0+x
)

(t)−A
(
C
Dβ

0+x
)

(t) = Bx(t− τ) + g(t), τ > 0, t > 0,

x(t) = ϕ(t), −τ ≤ t ≤ 0,

x′(0) = ϕ′(0),

(3.1)

where x(·) ∈ C2 (J, Y ), ϕ(·) ∈ C (I, Y ) and ϕ(·) is continuously differentiable at t = 0.
This signifies that a mild solution of the Cauchy problem for Sobolev type multi-term fractional functional

evolution equation (1.1) is the multiplication of E−1 ∈ B(Y ) and the solution of an initial value problem
for fractional time-delay evolution equation with multi-orders and linear bounded operators (3.1).

Remark 3.1. Alternatively, we can modify the assumptions which are given above in a similar way:
(H ′1): A0 is a bounded operator;
(H ′2): B0 is a closed operator;
(H ′3): D(E) ⊂ D(B0) and E is bijective;
(H ′4): E−1 : Y → D(E) ⊂ X is compact.
It follows from the closed graph theorem B := B0E

−1 : Y → Y is a linear bounded operator. Furthermore,
A := A0E

−1 : Y → Y is also a linear bounded operator since A0 and E−1 are bounded. In conclusion, under
the assumptions (H ′1)−(H ′4), the Sobolev type fractional functional multi-term evolution equation with initial
conditions (1.1) is converted to the fractional evolution system with a constant delay and linear bounded
operators (3.1) by using the same transformation y(t) = E−1x(t).

To get an analytical representation of the mild solution of (3.1), first, we need to show that exponentially

boundedness of x(·) and its Caputo derivatives
(
CDα

0+x
)

(·) ,
(
C
Dβ

0+x
)

(·) for 1 < α ≤ 2 and 0 < β ≤
1, respectively. To do this, we need to assume exponential boundedness for one of the given fractional
differentiation operators and a forced term with the aid of following Theorem 3.1.

Theorem 3.1. Assume (3.1) has a unique continuous solution x(t), if g(t) is continuous & exponentially

bounded and
(
CDβ

0+x
)

(t) for 0 < β ≤ 1 is exponentially bounded on [0,∞), then x(t) and its Caputo

derivative
(
CDα

0+x
)

(t) is exponentially bounded for 1 < α ≤ 2 on [0,∞) and, thus, their Laplace transforms
exist.

Proof. Since g(t) and
(
CDβ

0+x
)

(t) for 0 < β ≤ 1 is exponentially bounded, there exists positive constants

L,P, δ and sufficient large T such that ‖g(t)‖ ≤ L exp(δt) and ‖
(
CDβ

0+x
)

(t)‖ ≤ P exp(δt) for any t ≥ T . It is

clear that the system (3.1) is equivalent to the following Volterra fractional integral equation of second-kind:

x(t) =

(
1− Atα−β

Γ(α− β + 1)

)
ϕ(0) + tϕ′(0) +

A

Γ(α− β)

t∫
0

(t− r)α−β−1x(r)dr

+
1

Γ(α)

t∫
0

(t− r)α−1[Bx(r − τ) + g(r)]dr, t > 0, τ > 0. (3.2)

This means that every solution of (3.2) is also a solution of (3.1) and vice versa. For t ≥ T , (3.2) can be
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expressed as

x(t) =

(
1− Atα−β

Γ(α− β + 1)

)
ϕ(0) + tϕ′(0) +

A

Γ(α− β)

T∫
0

(t− r)α−β−1x(r)dr

+
1

Γ(α)

T∫
0

(t− r)α−1[Bx(r − τ) + g(r)]dr +
A

Γ(α− β)

t∫
T

(t− r)α−β−1x(r)dr

+
1

Γ(α)

t∫
T

(t− r)α−1[Bx(r − τ) + g(r)]dr, t > 0, τ > 0.

In view of hypotheses of Theorem 3.1, the solution x(t), (x(0) = ϕ(0), x′(0) = ϕ′(0)) is unique and continuous
on [0,∞), then Ax(t) and Bx(t) + g(t) are bounded on [0, T ], namely:

∃M > 0 s.t. ‖Ax(t)‖ ≤M, ∀t ∈ [0, T ],

and
∃N > 0 s.t. ‖Bx(t− τ) + g(t)‖ ≤ N, ∀t ∈ [0, T ], τ > 0.

Let z(t) = max {‖x(t+ h)‖ : h ∈ [−τ, 0]}. Then, we get

‖z(t)‖ ≤
(

1 +
‖A‖tα−β

Γ(α− β + 1)

)
‖ϕ(0)‖+ t‖ϕ′(0)‖+

M

Γ(α− β)

T∫
0

(t− r)α−β−1dr

+
N

Γ(α)

T∫
0

(t− r)α−1dr +
‖A‖

Γ(α− β)

t∫
T

(t− r)α−β−1‖z(r)‖dr

+
‖B‖
Γ(α)

t∫
T

(t− r)α−1‖z(r)‖dr +
1

Γ(α)

t∫
T

(t− r)α−1‖g(r)‖dr.

Multiplying last inequality by exp(−δt) and note that

exp(−δt) ≤ exp(−δr), r ∈ [T, t] and exp(−δt) ≤ exp(−δT ), ‖g(t)‖ ≤ L exp(δt), t ≥ T.

Using the aforementioned inequalities, we attain

‖z(t)‖ exp(−δt) ≤ ‖ϕ(0)‖ exp(−δt) +
‖A‖tα−β

Γ(α− β + 1)
‖ϕ(0)‖ exp(−δt)

+ t‖ϕ′(0)‖ exp(−δt) +
M exp(−δt)

Γ(α− β)

T∫
0

(t− r)α−β−1dr

+
N exp(−δt)

Γ(α)

T∫
0

(t− r)α−1dr +
‖A‖ exp(−δt)

Γ(α− β)

t∫
T

(t− r)α−β−1‖z(r)‖dr

+
‖B‖ exp(−δt)

Γ(α)

t∫
T

(t− r)α−1‖z(r)‖dr +
exp(−δt)

Γ(α)

t∫
T

(t− r)α−1‖g(r)‖dr

≤ ‖ϕ(0)‖ exp(−δT ) +
‖A‖tα−β

Γ(α− β + 1)
‖ϕ(0)‖ exp(−δT ) + t‖ϕ′(0)‖ exp(−δT )

+
M exp(−θT )

Γ(α− β + 1)
(tα−β − (t− T )α−β) +

N exp(−δT )

Γ(α+ 1)
(tα − (t− T )α)
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+
‖A‖

Γ(α− β)

t∫
T

(t− r)α−β−1‖z(r)‖ exp(−δr)dr

+
‖B‖
Γ(α)

t∫
T

(t− r)α−1‖z(r)‖ exp(−δr)dr

+
L

Γ(α)

t∫
T

(t− r)α−1 exp(δ(r − t))dr

≤ ‖ϕ(0)‖ exp(−δT ) +
‖A‖tα−β

Γ(α− β + 1)
‖ϕ(0)‖ exp(−δT )

+ t‖ϕ′(0)‖ exp(−δT ) +
M exp(−δT )

Γ(α− β + 1)
Tα−β +

N exp(−δT )

Γ(α+ 1)
Tα

+

t∫
0

(
‖A‖(t− r)α−β−1

Γ(α− β)
+
‖B‖(t− r)α−1

Γ(α)

)
‖z(r)‖ exp(−δr)dr

+
L

Γ(α)

t∫
0

(t− r)α−1 exp(−δ(t− r))dr

≤ ‖ϕ(0)‖ exp(−δT ) +
‖A‖tα−β

Γ(α− β + 1)
‖ϕ(0)‖ exp(−δT )

+ t‖ϕ′(0)‖ exp(−δT ) +
M exp(−δT )

Γ(α− β + 1)
Tα−β +

N exp(−δT )

Γ(α+ 1)
Tα

+

(
‖A‖tα−β−1

Γ(α− β)
+
‖B‖tα−1

Γ(α)

) t∫
0

‖z(r)‖ exp(−δr)dr +
L

δα
, t ≥ T.

Denote 

a(t) = ‖A‖tα−β

Γ(α−β+1)‖ϕ(0)‖ exp(−δT ) + t‖ϕ′(0)‖ exp(−δT ) + ‖ϕ(0)‖ exp(−δT )

+M exp(−δT )
Γ(α−β+1) T

α−β + N exp(−δT )
Γ(α+1) Tα + L

δα ,

b(t) = ‖A‖tα−β−1

Γ(α−β) + ‖B‖tα−1

Γ(α) ,

v(t) = ‖z(t)‖ exp(−δt).

Thus, we attain

v(t) ≤ a(t) + b(t)

t∫
0

v(s)ds, t ≥ T. (3.3)

According to the Gronwall’s inequality (2.9), we have

v(t) ≤ a(t) exp(tb(t)) ≤ exp(a(t) + tb(t)). (3.4)

Then, it yields from (3.4) that

‖x(t)‖ ≤ ‖z(t)‖ ≤ exp(a(t) + tb(t) + δt), t ≥ T.

Since g(t) and
(
CDβ

0+x
)

(t) for β ∈ (0, 1] are exponentially bounded on [0,∞), from equation (3.1), we

acquire

‖
(
CDα

0+x
)

(t)‖ ≤ ‖
(
CDα

0+z
)

(t)‖ ≤ ‖A‖‖
(
CDβ

0+z
)

(t)‖+ ‖B‖‖z(t)‖+ ‖g(t)‖
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≤ ‖A‖P exp(δt) + ‖B‖ exp(a(t) + tb(t) + δt) + L exp(δt)

≤ (‖A‖P + ‖B‖+ L) exp(a(t) + tb(t) + δt), t ≥ T.

In other words,
(
CDα

0+x
)

(t) is also exponentially bounded, the Laplace integral transforms of x(t) and its

Caputo derivatives
(
CDα

0+x
)

(t),
(
CDβ

0+x
)

(t) exist for α ∈ (1, 2] and β ∈ (0, 1], respectively. The proof is

complete.

Alternatively, we can also use the following version of Theorem 3.1, for exponential boundedness of x(·)
and its derivatives

(
CDα

0+x
)

(·) ,
(
CDβ

0+x
)

(·) of order 1 < α ≤ 2 and 0 < β ≤ 1, respectively in Caputo’s

sense on [0,∞).

Theorem 3.2. Assume (3.1) has a unique continuous solution x(t), if g(t) is continuous & exponentially
bounded and

(
CDα

0+x
)

(t) for 1 < α ≤ 2 is exponentially bounded on [0,∞), then x(t) and its Caputo

derivative
(
CDβ

0+x
)

(t) is exponentially bounded for 0 < β ≤ 1 on [0,∞) and, thus, their Laplace transforms

exist.

Proof. This proof is similar to the proof of Theorem 3.1. So, we omit it here.

Definition 3.1. We define a new delayed Mittag-Leffler function E A,B,τ
α,β,γ (·) : R → Y generated by nonper-

mutable linear bounded operators A,B ∈ B(Y ) for τ > 0 as follows:

E A,B,τ
α,β,γ (t) :=

∞∑
k=0

∞∑
m=0

QA,Bk,m

(t−mτ)kα+mβ+γ−1

Γ(kα+mβ + γ)
H(t−mτ), α, β > 0, γ ∈ R, t ∈ R, (3.5)

where H(·) : R→ R is a well-known Heaviside function which is determined by

H(t) =

{
1, t ≥ 0,

0, t < 0.

and a linear bounded operator QA,Bk,m ∈ B(Y ), k,m ∈ N0 is defined by

QA,Bk,m :=

k∑
l=0

Ak−lBQA,Bl,m−1, k,m ∈ N, QA,Bk,0 := Ak, k ∈ N0, QA,B0,m := Bm, m ∈ N0. (3.6)

A linear bounded operator QA,Bk,m ∈ B(Y ) is represented explicitly in Table 1.

Table 1: Explicit representation of QA,Bk,m for r, s ∈ N0

QA,Bk,m k=0 k=1 k=2 . . . k=r

m = 0 I A A2 . . . Ar

m = 1 B AB +BA A2B +ABA+BA2 . . . ArB + . . .+BAr

m = 2 B2 AB2 +BAB +B2A
A2B2 +ABAB +AB2A

+BA2B +BABA+B2A2
. . . ArB2 + . . .+B2Ar

. . . . . . . . . . . . . . . . . .

m = s Bs ABs + . . .+BsA A2Bs + . . .+BsA2 . . . ArBs + . . .+BsAr

From the above table, it can be easily seen that, in the case of commutativity AB = BA, we have
QA,Bk,m :=

(
k+m
m

)
AkBm, k,m ∈ N0.

If we consider a delayed Mittag-Leffler type function E A,B,τ
α,β,γ (t) on t ∈ J = [−τ, T ], then we derive the

piece-wise function as follows.
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Definition 3.2. A new delayed Mittag-Leffler type function of three parameters E A,B,τ
α,β,γ : J→ Y for

α, β > 0, γ ∈ R and τ > 0 is defined by

E A,B,τ
α,β,γ (t) :=

Θ, −τ ≤ t ≤ 0,
∞∑
k=0

n−1∑
m=0

QA,Bk,m
(t−mτ)kα+mβ+γ−1

Γ(kα+mβ+γ) , (n− 1)τ < t ≤ nτ, n ∈ N.
(3.7)

where Θ is a null operator.
Furthermore, the delayed Mittag-Leffler type function (3.7) can also be represented step by step on

J = [−τ, T ] := [−τ, 0] ∪ (0, τ ] ∪ (τ, 2τ ] ∪ . . . ∪ ((n− 1)τ, T ], where T = nτ for a fixed n ∈ N,

E A,B,τ
α,β,γ (t) =



Θ, −τ ≤ t ≤ 0,

tγ−1Eα,γ(Atα), 0 < t ≤ τ,

tγ−1Eα,γ(Atα) +
∞∑
k=0

QA,Bk,1
(t−τ)kα+β+γ−1

Γ(kα+β+γ) , τ < t ≤ 2τ,

tγ−1Eα,γ(Atα) +
∞∑
k=0

QA,Bk,1
(t−τ)kα+β+γ−1

Γ(kα+β+γ) +

+
∞∑
k=0

QA,Bk,2
(t−2τ)kα+2β+γ−1

Γ(kα+2β+γ) + · · ·+
∞∑
k=0

QA,Bk,n−1
(t−(n−1)τ)kα+(n−1)β+γ−1

Γ(kα+(n−1)β+γ) , (n− 1)τ < t ≤ nτ.

(3.8)

Lemma 3.1. A linear operator QA,Bk,m ∈ B(Y ) for k,m ∈ N0 has the following properties:

(i) QA,Bk,m , k,m ∈ N generalizes classical Pascal’s rule for linear operators A,B ∈ B(Y ) as follows:

QA,Bk,m = AQA,Bk−1,m +BQA,Bk,m−1, k,m ∈ N; (3.9)

(ii) If AB = BA, then we have

QA,Bk,m =

(
k +m

m

)
AkBm, k,m ∈ N0. (3.10)

Proof. Lemma can be easily prove via a mathematical induction principle. Thus, we omit it here.

According to the above lemma, a linear bounded operator QA,Bk,m for k,m ∈ N satisfies the following
Pascal’s rule for permutable linear operators A,B ∈ B(Y ) as below:(

k +m

m

)
AkBm =

(
k +m− 1

m

)
Ak−1Bm +

(
k +m− 1

m− 1

)
AkBm−1, k,m ∈ N. (3.11)

By using the property of QA,Bk,m ∈ B(Y ) (3.10) we define the following delayed univariate version of a bivariate
Mittag-Leffler function via permutable linear bounded operators which is a delayed analogue of (2.15).

Definition 3.3. We define a new delayed analogue of univariate form of a bivariate Mittag-Leffler type
function EA,B,τα,β,γ (·) : R → Y generated by permutable linear bounded operators A,B ∈ B(Y ) for τ > 0 as
follows:

EA,B,τα,β,γ (t) :=

∞∑
k=0

∞∑
m=0

(
k +m

m

)
AkBm

(t−mτ)kα+mβ)+γ−1

Γ(kα+mβ + γ)
H(t−mτ), α, β > 0, γ ∈ R, t ∈ R. (3.12)

If we consider a delayed Mittag-Leffler function (3.12) with permutable operators on J = [−τ, T ], then
we derive the piece-wise function as follows.

Definition 3.4. A new delayed Mittag-Leffler type function of three parameters EA,B,τα,β,γ : J→ Y generated
by permutable linear operators A,B ∈ B(Y ) for α, β > 0, γ ∈ R, τ > 0 is defined by

EA,B,τα,β,γ (t) :=

Θ, −τ ≤ t ≤ 0,
∞∑
k=0

n−1∑
m=0

(
k+m
m

)
AkBm (t−mτ)kα+mβ+γ−1

Γ(kα+mβ+γ) , (n− 1)τ < t ≤ nτ, n ∈ N.
(3.13)
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In addition, (3.13) can be expressed via the following piece-wise function on t ∈ J := [−τ, 0]∪
n⋃
i=1

((i−1)τ, iτ ]

for a fixed n ∈ N:

EA,B,τα,β,γ (t) =



Θ, −τ ≤ t ≤ 0,

tγ−1Eα,γ(Atα), 0 < t ≤ τ,
tγ−1Eα,γ(Atα) + (t− τ)β+γ−1E2

α,β+γ(A(t− τ)α)B, τ < t ≤ 2τ,

tγ−1Eα,γ(Atα) + (t− τ)β+γ−1E2
α,β+γ(A(t− τ)α)B+

+ · · ·+ (t− (n− 1)τ)(n−1)β+γ−1Enα,(n−1)β+γ(A(t− (n− 1)τ)α)Bn−1, (n− 1)τ < t ≤ nτ.
(3.14)

The following lemma plays a crucial role for solving the Cauchy problem for functional fractional evolution
equation with linear bounded operators (3.1). In general case, it holds true whenever α > 0, α > β, α > γ.

Lemma 3.2. For A,B ∈ B(Y ) which are satisfying AB 6= BA, we have:

L −1

{
sγ

emsτs(m+1)β

[
(sα−βI −A)−1B

]m
(sα−βI −A)−1

}
(t)

=

∞∑
k=0

QA,Bk,m

Γ(k(α− β) +mα+ α− γ)
(t−mτ)k(α−β)+mα+α−γ−1H(t−mτ), t ∈ R, m ∈ N0. (3.15)

Proof. To prove, we will use a mathematical induction principle with regard to m ∈ N0. Obviously, according
to the relation (2.13), (3.15) is true for m = 0, which establishes the basis for induction:

L −1
{
sγ−β(sα−βI −A)−1

}
(t) = tα−γ−1E1

α−β,α−γ(Atα−β)H(t)

= tα−γ−1Eα−β,α−γ(Atα−β)H(t) =

∞∑
k=0

Ak
tk(α−β)+α−γ−1

Γ(k(α− β) + α− γ)
H(t)

=

∞∑
k=0

QA,Bk,0

tk(α−β)+α−γ−1

Γ(k(α− β) + α− γ)
H(t), t ∈ R, where QA,Bk,0 := Ak, k ∈ N0. (3.16)

For m = 1, we use the convolution property of Laplace integral transform and formula (3.16):

L −1
{
e−sτsγ−2β(sα−βI −A)−1B(sα−βI −A)−1

}
(t)

=L −1
{
e−sτs−β(sα−βI −A)−1B

}
(t) ∗L −1

{
sγ−β(sα−βI −A)−1

}
(t)

=(t− τ)α−1Eα−β,α(A(t− τ)α−β)H(t− τ)B ∗ tα−γ−1Eα−β,α−γ(Atα−β)H(t)

=

t∫
0

(t− τ − s)α−1Eα−β,α(A(t− τ − s)α−β)H(t− τ − s)Bsα−γ−1Eα−β,α−γ(Asα−β)H(s)ds

=

t−τ∫
0

(t− τ − s)α−1Eα−β,α(A(t− τ − s)α−β)Bsα−γ−1Eα−β,α−γ(Asα−β)ds (3.17)

Then interchanging the order of integration and summation in (3.17) which is permissible in accordance with
the uniform convergence of the series (2.11), we attain:

L −1
{
e−sτsγ−2β(sα−βI −A)−1B(sα−βI −A)−1

}
(t)

=

∞∑
k=0

∞∑
l=0

AkBAl

Γ(k(α− β) + α)Γ(l(α− β) + α− γ)

t−τ∫
0

(t− τ − s)k(α−β)+α−1sl(α−β)+α−γ−1ds

=

∞∑
k=0

∞∑
l=0

AkBAl

Γ(k(α− β) + α)Γ(l(α− β) + α− γ)
(t− τ)(k+l)(α−β)+2α−γ−1B(k(α− β) + α, l(α− β) + α− γ)
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=

∞∑
k=0

∞∑
l=0

AkBAl

Γ((k + l)(α− β) + 2α− γ)
(t− τ)(k+l)(α−β)+2α−γ−1 (t > τ)

=

∞∑
k=0

∞∑
l=0

AkBAl

Γ((k + l)(α− β) + 2α− γ)
(t− τ)(k+l)(α−β)+2α−γ−1H(t− τ), t ∈ R, (3.18)

where B(·, ·) is a well-known beta function.
Applying the following eminent Cauchy product formula for absolutely convergent double infinity series

∞∑
k=0

∞∑
l=0

akbl =

∞∑
k=0

k∑
l=0

ak−lbl, (3.19)

in (3.18), one can acquire that

L −1
{
e−sτsγ−2β(sα−βI −A)−1B(sα−βI −A)−1

}
(t)

=

∞∑
k=0

k∑
l=0

Ak−lBAl

Γ(k(α− β) + 2α− γ)
(t− τ)k(α−β)+2α−γ−1H(t− τ)

=

∞∑
k=0

k∑
l=0

Ak−lBQA,Bl,0

Γ(k(α− β) + 2α− γ)
(t− τ)k(α−β)+2α−γ−1H(t− τ)

=

∞∑
k=0

QA,Bk,1

Γ(k(α− β) + α+ α− γ)
(t− τ)k(α−β)+α+α−γ−1H(t− τ), t ∈ R, (3.20)

where QA,Bk,1 :=
k∑
l=0

Ak−lBQA,Bl,0 , k ∈ N0.

To verify the induction step, we assume that (3.15) holds true for m = n where n ∈ N0:

L −1
{
e−nsτsγ−(n+1)β

[
(sα−βI −A)−1B

]n
(sα−βI −A)−1

}
(t)

=

∞∑
k=0

k∑
l=0

Ak−lBQA,Bl,n−1

Γ(k(α− β) + (n+ 1)α− γ)
(t− nτ)k(α−β)+(n+1)α−γ−1H(t− nτ)

=

∞∑
k=0

QA,Bk,n

Γ(k(α− β) + nα+ α− γ)
(t− nτ)k(α−β)+nα+α−γ−1H(t− nτ), t ∈ R, (3.21)

where QA,Bk,n :=
k∑
l=0

Ak−lBQA,Bl,n−1, k ∈ N0.

Then it yields that for m = n+ 1 as follows:

L −1
{
e−(n+1)sτsγ−(n+2)β

[
(sα−βI −A)−1B

]n+1
(sα−βI −A)−1

}
(t)

=L −1
{
e−sτs−β(sα−βI −A)−1B

}
(t) ∗L −1

{
e−nsτsγ−(n+1)β

[
(sα−βI −A)−1B

]n
(sα−βI −A)−1

}
(t)

=(t− τ)α−1Eα−β,α(A(t− τ)α−β)H(t− τ)B

∗
∞∑
l=0

QA,Bl,n

Γ(l(α− β) + (n+ 1)α− γ)
(t− nτ)l(α−β)+(n+1)α−γ−1H(t− nτ)

=

t∫
0

(t− τ − s)α−1Eα−β,α(A(t− τ − s)α−β)H(t− τ − s)B

×
∞∑
l=0

QA,Bl,n

Γ(l(α− β) + (n+ 1)α− γ)
(s− nτ)l(α−β)+(n+1)α−γ−1H(s− nτ)ds
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=

t−τ∫
nτ

(t− τ − s)α−1Eα−β,α(A(t− τ − s)α−β)B

×
∞∑
l=0

QA,Bl,n

Γ(l(α− β) + (n+ 1)α− γ)
(s− nτ)l(α−β)+(n+1)α−γ−1ds

=

∞∑
k=0

∞∑
l=0

AkBQA,Bl,n

Γ(k(α− β) + α)Γ(l(α− β) + (n+ 1)α− γ)

t−τ∫
nτ

(t− τ − s)k(α−β)+α−1(s− nτ)l(α−β)+(n+1)α−γ−1ds

=

∞∑
k=0

∞∑
l=0

AkBQA,Bl,n

Γ(k(α− β) + α)Γ(l(α− β) + (n+ 1)α− γ)
(t− (n+ 1)τ)(k+l)(α−β)+(n+1)α+α−γ−1H(t− (n+ 1)τ)

×B(k(α− β) + α, l(α− β) + (n+ 1)α− γ)

=

∞∑
k=0

∞∑
l=0

AkBQA,Bl,n

Γ((k + l)(α− β) + (n+ 1)α+ α− γ)
(t− (n+ 1)τ)(k+l)(α−β)+(n+1)α+α−γ−1H(t− (n+ 1)τ)

=
∞∑
k=0

k∑
l=0

Ak−lBQA,Bl,n

Γ(k(α− β) + (n+ 1)α+ α− γ)
(t− (n+ 1)τ)k(α−β)+(n+1)α+α−γ−1H(t− (n+ 1)τ)

=

∞∑
k=0

QA,Bk,n+1

Γ(k(α− β) + (n+ 1)α+ α− γ)
(t− (n+ 1)τ)k(α−β)+(n+1)α+α−γ−1H(t− (n+ 1)τ), t ∈ R, (3.22)

where QA,Bk,n+1 :=

k∑
l=0

Ak−lBQA,Bl,n , k ∈ N0.

Thus (3.22) holds true whenever (3.21) is true, and by the principle of mathematical induction, we conclude
that the formula (3.15) holds true for all m ∈ N0. The proof is complete.

Theorem 3.3. Let A,B ∈ B(Y ) with non-zero commutator, i.e., [A,B] := AB − BA 6= 0. Assume that

g(·) : J → Y and
(
C
Dβ

0+x
)

(t) where 0 < β ≤ 1 (or
(
CDα

0+x
)

(t) where 1 < α ≤ 2) are exponentially

bounded. A mild solution x(·) ∈ C2(J, Y ) of the Cauchy problem (3.1) can be represented as

x(t) =

(
I +

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds

=
(
I + E A,B,τ

α−β,α,α+1(t− τ)B
)
ϕ(0) + E A,B,τ

α−β,α,2(t)ϕ′(0)

+

0∫
−τ

E A,B,τ
α−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

E A,B,τ
α−β,α,α(t− s)g(s)ds, (n− 1)τ < t ≤ nτ. (3.23)

Proof. We recall that the existence of Laplace transform of x(·) and its Caputo derivatives
C
Dα

0+x(·) and
C
Dβ

0+x(·) for 1 < α ≤ 2 and 0 < β ≤ 1, respectively, is guaranteed by Theorem 3.1 or 3.2. Thus, to find the
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mild solution x(t) of (3.1) satisfying the initial conditions x(t) = ϕ(t) for −τ ≤ t ≤ 0 and x′(0) = ϕ′(0) , we
can use the Laplace integral transform. Taking the Laplace transform on both sides of equation (3.1) and
using the following facts that

L
{(
CDα

0+x
)

(t)
}

(s) = sαX(s)− sα−1ϕ(0)− sα−2ϕ′(0),

L
{(

CDβ
0+x

)
(t)
}

(s) = sβX(s)− sβ−1ϕ(0),

and for a delayed term, first, using substitution t− τ = θ, we obtain that

L {x(t− τ)} (s) =

∞∫
0

e−stx(t− τ)dt = e−sτ
∞∫
−τ

e−sθx(θ)dθ

= e−sτ

 0∫
−τ

e−sθx(θ)dθ +

∞∫
0

e−sθx(θ)dθ


= e−sτX(s) +

0∫
−τ

e−s(τ+θ)ϕ(θ)dθ.

Secondly, by making use of the substitution τ + θ = r, we acquire that

L {x(t− τ)} (s) = e−sτX(s) +

τ∫
0

e−srϕ(r − τ)dr

= e−sτX(s) +

∞∫
0

e−stϕ̂(t− τ)dt

= e−sτX(s) + L {ϕ̂(t− τ)} (s),

where ϕ̂(·) : R→ R is the unit-step function defined as follows :

ϕ̂(t) =

{
ϕ(t), −τ ≤ t ≤ 0,

0, t > 0.
(3.24)

Therefore, we derive that(
sαI −Asβ −Be−sτ

)
X(s) = sα−1ϕ(0)−Asβ−1ϕ(0) + sα−2ϕ′(0) +BL {ϕ̂(t− τ)} (s) +G(s), (3.25)

where X(s) and G(s) represent the Laplace integral transforms of x(t) and g(t), respectively.
Thus, after solving the above equation with respect to the X(s), we get

X(s) = sα−1
(
sαI −Asβ −Be−sτ

)−1
ϕ(0) + sα−2

(
sαI −Asβ −Be−sτ

)−1
ϕ′(0)

− sβ−1
(
sαI −Asβ −Be−sτ

)−1
Aϕ(0) +

(
sαI −Asβ −Be−sτ

)−1
BL {ϕ̂(t− τ)} (s)

+
(
sαI −Asβ −Be−sτ

)−1
G(s) = s−1ϕ(0) + s−1

(
sαI −Asβ −Be−sτ

)−1
Be−sτϕ(0)

+ sα−2
(
sαI −Asβ −Be−sτ

)−1
ϕ′(0) +

(
sαI −Asβ −Be−sτ

)−1
BL {ϕ̂(t− τ)} (s)

+
(
sαI −Asβ −Be−sτ

)−1
G(s).

For nonpermutable linear operators A,B ∈ B(Y ) and sufficiently large s such that

‖
(
sα−βI −A

)−1
Bs−βe−sτ‖ < 1,
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a linear bounded operator sαI −Asβ −Be−sτ is invertible and it holds that(
sαI −Asβ −Be−sτ

)−1
=
(
sβ
[
sα−βI −A−Bs−βe−sτ

])−1

=
(
sβ(sα−βI −A)

[
I − (sα−βI −A)−1Bs−βe−sτ

])−1

=
(
sβ
[
I −

(
sα−βI −A

)−1
Bs−βe−sτ

])−1 (
sα−βI −A

)−1

=
[
I − (sα−βI −A)−1Bs−βe−sτ

]−1
s−β

(
sα−βI −A

)−1

=

∞∑
m=0

1

emsτsβm

[(
sα−βI −A

)−1
B
]m

s−β
(
sα−βI −A

)−1

=

∞∑
m=0

1

emsτs(m+1)β

[(
sα−βI −A

)−1
B
]m (

sα−βI −A
)−1

Then, by taking inverse Laplace transform, we have

x(t) = L −1
{
s−1
}

(t)ϕ(0) + L −1

{ ∞∑
m=0

s−1

e(m+1)sτs(m+1)β

[(
sα−βI −A

)−1
B
]m (

sα−βI −A
)−1

}
(t)Bϕ(0)

+ L −1

{ ∞∑
m=0

sα−2

emsτs(m+1)β

[(
sα−βI −A

)−1
B
]m (

sα−βI −A
)−1

}
(t)ϕ′(0)

+ L −1

{ ∞∑
m=0

1

emsτs(m+1)β

[(
sα−βI −A

)−1
B
]m (

sα−βI −A
)−1

BL {ϕ̂(t− τ)} (s)

}
(t)

+ L −1

{ ∞∑
m=0

1

emsτs(m+1)β

[(
sα−βI −A

)−1
B
]m (

sα−βI −A
)−1

G(s)

}
(t). (3.26)

Therefore, in accordance with Lemma 3.2, in general case, we attain the following result for t ∈ R+:

x(t) =

(
I +

∞∑
k=0

∞∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)
H(t− (m+ 1)τ)

)
ϕ(0)

+

∞∑
k=0

∞∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
H(t−mτ)ϕ′(0)

+

0∫
−τ

∞∑
k=0

∞∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
H(t− (m+ 1)τ − s)ϕ(s)ds

+

t∫
0

∞∑
k=0

∞∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
H(t−mτ − s)g(s)ds

:=
(
I + E A,B,τ

α−β,α,α+1(t− τ)B
)
ϕ(0) + E A,B,τ

α−β,α,2(t)ϕ′(0)

+

0∫
−τ

E A,B,τ
α−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

E A,B,τ
α−β,α,α(t− s)g(s)ds, t > 0, (3.27)

where we have used the formula (3.24) and substitution s− τ = r and acquired that

t∫
0

∞∑
k=0

∞∑
m=0

QA,Bk,mB
(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
H(t−mτ − s)ϕ̂(s− τ)ds

=

τ∫
0

∞∑
k=0

∞∑
m=0

QA,Bk,mB
(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
H(t−mτ − s)ϕ(s− τ)ds
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=

0∫
−τ

∞∑
k=0

∞∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − r)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
H(t− (m+ 1)τ − r)ϕ(r)dr

=

0∫
−τ

∞∑
k=0

∞∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
H(t− (m+ 1)τ − s)ϕ(s)ds.

Thus, the analytical representation of a mild solution of (3.1) can be expressed with respect to
t ∈ (−(n− 1)τ, nτ ], n ∈ N as follows:

x(t) =

(
I +

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds

:=
(
I + E A,B,τ

α−β,α,α+1(t− τ)B
)
ϕ(0) + E A,B,τ

α−β,α,2(t)ϕ′(0)

+

0∫
−τ

E A,B,τ
α−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

E A,B,τ
α−β,α,α(t− s)g(s)ds, (n− 1)τ < t ≤ nτ. (3.28)

The following lemma will be of significance for the results of next theorem.

Lemma 3.3. For arbitrary t ∈ ((n−1)τ, nτ ] for fixed n ∈ N, τ > 0 and any parameters α, β, γ ∈ R satisfying
α, β > 0 and γ − 1 > bνc, we have:

CDν
0+

{
E A,B,τ
α,β,γ (s)

}
(t) = E A,B,τ

α,β,γ−ν(t), n− 1 < ν ≤ n, n ∈ N.

Proof. We have [37]:
dn

dtn
(
tξ
)

=
Γ(ξ + 1)

Γ(ξ − n+ 1)
tξ−n, n ∈ N, ξ ∈ R. (3.29)

Since (t −mτ)kα+mβ+γ−1 = (t −mτ)kα+mβ+γ−1H(t −mτ) , t > mτ for m = 0, 1, . . . , n − 1 and given the
condition γ − 1 > bνc, we can attain that

CDν
0+

( ∞∑
k=0

n−1∑
m=0

QA,Bk,m

(s−mτ)kα+mβ+γ−1

Γ(kα+mβ + γ)

)
(t)

= CDν
0+

( ∞∑
k=0

n−1∑
m=0

QA,Bk,m

(s−mτ)kα+mβ+γ−1H(s−mτ)

Γ(kα+mβ + γ)

)
(t)

=

∞∑
k=0

n−1∑
m=0

QA,Bk,m
CDν

0+

(
(s−mτ)kα+mβ+γ−1H(s−mτ)

Γ(kα+mβ + γ)

)
(t)

=

∞∑
k=0

n−1∑
m=0

QA,Bk,m

1

Γ(n− ν)

t∫
0

(t− s)n−ν−1 d
n

dsn

(
(s−mτ)kα+mβ+γ−1H(s−mτ)

Γ(kα+mβ + γ)

)
ds
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=

∞∑
k=0

n−1∑
m=0

QA,Bk,m

1

Γ(n− ν)

t∫
0

(t− s)n−ν−1 (s−mτ)kα+mβ+γ−n−1H(s−mτ)

Γ(kα+mβ + γ − n)
ds

=

∞∑
k=0

n−1∑
m=0

QA,Bk,m

1

Γ(n− ν)

t∫
mτ

(t− s)n−ν−1 (s−mτ)kα+mβ+γ−n−1

Γ(kα+mβ + γ − n)
ds

=

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)kα+mβ+γ−ν−1

Γ(n− ν)Γ(kα+mβ + γ − n)
B (n− ν, kα+mβ + γ − n)

=

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)kα+mβ+γ−ν−1

Γ(kα+mβ + γ − ν)
= E A,B,τ

α,β,γ−ν(t), (n− 1)τ < t ≤ nτ.

This completes the proof.

It should be stressed out that the assumption on the exponential boundedness of the function g(·) and(
C
Dβ

0+x
)

(·) where 0 < β ≤ 1 (alternatively,
(
CDα

0+x
)

(·) for 1 < α ≤ 2) can be omitted.

Theorem 3.4. Let A,B ∈ B(Y ) with non-zero commutator, i.e., [A,B] := AB −BA 6= 0. A mild solution
x(·) ∈ C2(J, Y ) of the Cauchy problem (3.1) can be represented as

x(t) =

(
I +

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds

:=
(
I + E A,B,τ

α−β,α,α+1(t− τ)B
)
ϕ(0) + E A,B,τ

α−β,α,2(t)ϕ′(0)

+

0∫
−τ

E A,B,τ
α−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

E A,B,τ
α−β,α,α(t− s)g(s)ds, (n− 1)τ < t ≤ nτ. (3.30)

Proof. For making use of verification by substitution, we apply superposition principle for the initial value
problem of linear inhomogeneous multi-order fractional evolution equation (3.1). For this, firstly let us
consider the following homogeneous system with inhomogeneous initial conditions:

(
CDα

0+x
)

(t)−A
(
C
Dβ

0+x
)

(t)−Bx(t− τ) = 0, τ > 0, t > 0,

x(t) = ϕ(t), −τ ≤ t ≤ 0,

x′(0) = ϕ′(0),

(3.31)

has a mild solution

x(t) =

(
I +

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)
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+

0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

=
(
I + E A,B,τ

α−β,α,α+1(t− τ)B
)
ϕ(0) + E A,B,τ

α−β,α,2(t)ϕ′(0)

+

0∫
−τ

E A,B,τ
α−β,α,α(t− τ − s)Bϕ(s)ds, (n− 1)τ < t ≤ nτ. (3.32)

With the help of verification by substitution and the property of QA,Bk,m (3.9), we confirm that (3.32) is a mild
solution of linear homogeneous fractional functional evolution equation (3.31):(

CDα
0+x

)
(t) = CDα

0+

(
I + E A,B,τ

α−β,α,α+1(t− τ)B
)
ϕ(0) + CDα

0+

(
E A,B,τ
α−β,α,2(t)

)
ϕ′(0)

+ CDα
0+

 0∫
−τ

E A,B,τ
α−β,α,α(t− τ − s)Bϕ(s)ds


= CDα

0+

(
I +

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+ CDα
0+

( ∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)

)
ϕ′(0)

+ CDα
0+

 0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

 .

In this case, we first apply the property of QA,Bk,m (3.9) before Caputo differentiation the first and second
terms above, in accordance with the following formula [37]:

CDν
0+

(
tη

Γ(η + 1)

)
=


tη−ν

Γ(η−ν+1) , η > bνc,
0, η = 0, 1, 2, . . . , bνc,
undefined, otherwise.

(3.33)

Then, we have

(
CDα

0+x
)

(t) = CDα
0+

[
I +B

(t− τ)α

Γ(α+ 1)
+

∞∑
k=1

n−1∑
m=0

AQA,Bk−1,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

+

∞∑
k=0

n∑
m=1

BQA,Bk,m−1B
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

]
ϕ(0)

+ CDα
0+

[
tI +

∞∑
k=1

n−1∑
m=0

AQA,Bk−1,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)

+

∞∑
k=0

n∑
m=1

BQA,Bk,m−1

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)

]
ϕ′(0)

+ CDα
0+

( 0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

)

= Bϕ(0) +

∞∑
k=1

n−1∑
m=0

AQA,Bk−1,mB
(t− (m+ 1)τ)k(α−β)+mα

Γ(k(α− β) +mα+ 1)
ϕ(0)

19



+

∞∑
k=0

n∑
m=1

BQA,Bk,m−1B
(t− (m+ 1)τ)k(α−β)+mα

Γ(k(α− β) +mα+ 1)
ϕ(0)

+

∞∑
k=1

n−1∑
m=0

AQA,Bk−1,m

(t−mτ)k(α−β)+mα+1−α

Γ(k(α− β) +mα+ 2− α)
ϕ′(0)

+

∞∑
k=0

n∑
m=1

BQA,Bk,m−1

(t−mτ)k(α−β)+mα+1−α

Γ(k(α− β) +mα+ 2− α)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα−1

Γ(k(α− β) +mα)
ϕ(s)ds.

Again by making use of an important property of QA,Bk,m (3.9) and relation (3.33) one can attain that

(
CDα

0+x
)

(t) = Bϕ(0) +

∞∑
k=0

n−1∑
m=0

AQA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α−β

Γ(k(α− β) +mα+ α− β + 1)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

BQA,Bk,mB
(t− (m+ 2)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

AQA,Bk,m

(t−mτ)k(α−β)+mα+1−β

Γ(k(α− β) +mα+ 2− β)
ϕ′(0)

+

∞∑
k=0

n−1∑
m=0

BQA,Bk,m

(t− (m+ 1)τ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

AQA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−β−1

Γ(k(α− β) +mα+ α− β)
ϕ(s)ds

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

BQA,Bk,mB
(t− (m+ 2)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds, (n− 1)τ < t ≤ nτ.

Then, the Caputo fractional differentiation of x(t) (3.32) of order 0 < β ≤ 1 is as follows:

(
C
Dβ

0+x
)

(t) =
C
Dβ

0+

(
I + E A,B,τ

α−β,α,α+1(t− τ)B
)
ϕ(0) +

C
Dβ

0+

(
E A,B,τ
α−β,α,2(t)

)
ϕ′(0)

+
C
Dβ

0+

 0∫
−τ

E A,B,τ
α−β,α,α(t− τ − s)Bϕ(s)ds


=
C
Dβ

0+

(
I +

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mβ+α

Γ(k(α− β) +mβ + α+ 1)

)
ϕ(0)

+
C
Dβ

0+

( ∞∑
k=0

∞∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mβ+1

Γ(k(α− β) +mβ + 2)

)
ϕ′(0)

+
C
Dβ

0+

( 0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

)

=

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mβ+α−β

Γ(k(α− β) +mβ + α− β + 1)
ϕ(0)
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+

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ)k(α−β)+mβ+1−β

Γ(k(α− β) +mβ + 2− β)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−β−1

Γ(k(α− β) +mα+ α− β)
ϕ(s)ds, (n− 1)τ < t ≤ nτ.

Finally, taking a linear combination of above results, we acquire the desired result:

(
CDα

0+x
)

(t)−A
(
C
Dβ

0+x
)

(t) = Bϕ(0) +

∞∑
k=0

n−1∑
m=0

BQA,Bk,mB
tk(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

BQA,Bk,m

tk(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

BQA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds := Bx(t− τ).

Next, we consider the following linear inhomogeneous fractional evolution equation for t ∈ J:(
CDα

0+x
)

(t)−A
(
C
Dβ

0+x
)

(t)−Bx(t− τ) = g(t), t > 0, τ > 0, (3.34)

with zero initial conditions
x(t) = 0, x′(0) = 0, −τ ≤ t ≤ 0,

has an integral representation of a mild solution which is a particular solution of (3.1):

x̄(t) =

t∫
0

E A,B
α−β,α,α(t− s)g(s)ds =

t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds, (n− 1)τ < t ≤ nτ.

In accordance with fractional analogue of variation of constants formula any particular mild solution of
inhomogeneous differential equation of fractional-order (3.34) should be looked for in the form of

x̄(t) =

t∫
0

E A,B
α−β,α,α(t− s)f(s)ds =

t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds, (n− 1)τ < t ≤ nτ,

(3.35)
where f(s) is unknown function for s ∈ [0, t] with x̄(0) = x̄′(0) = 0.

Because of this homogeneous initial values x̄(0) = x̄′(0) = 0, it follows that in this case, for any given
order either in (1, 2] and (0, 1], the Riemann–Liouville and Caputo type fractional differentiation operators
are equal in accordance with (2.6). Therefore, in the work below we will apply Riemann–Liouville derivative
instead of Caputo one to verify the mild solution of evolution equation with two independent fractional-
orders.

Applying the property of a linear operator QA,Bk,m (3.9) and having Caputo differentiation of order
1 < α ≤ 2 of x̄(t), we obtain:(

CDα
0+x̄

)
(t) =

(
RLDα

0+x̄
)

(t)

= RLDα
0+

[ t∫
0

(t− s)α−1

Γ(α)
f(s)ds+

t∫
0

∞∑
k=1

n−1∑
m=0

AQA,Bk−1,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds

+

t∫
0

∞∑
k=0

n∑
m=1

BQA,Bk,m−1

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds

]
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=
(
RLDα

0+(Iα0+f)
)

(t) + RLDα
0+

[ t∫
0

∞∑
k=0

n−1∑
m=0

AQA,Bk,m

(t−mτ − s)k(α−β)+mα+2α−β−1

Γ(k(α− β) +mα+ 2α− β)
f(s)ds

]

+ RLDα
0+

[ t∫
0

∞∑
k=0

n−1∑
m=0

BQA,Bk,m

(t− (m+ 1)τ − s)k(α−β)+mα+2α−1

Γ(k(α− β) +mα+ 2α)
f(s)ds

]
.

By making use of the fractional Leibniz integral rules (2.4) in Riemann-Liouville’s sense for the second
and third terms of the above expression, we get(

CDα
0+x̄

)
(t) =

(
RLDα

0+x̄
)

(t)

= f(t) + lim
s→t−0

RL,tDα−1
0+

( ∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t−mτ − s)k(α−β)+mα+2α−β−1

Γ(k(α− β) +mα+ 2α− β)

)
lim

s→t−0
f(s)

+ lim
s→t−0

RL,tDα−2
0+

( ∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t−mτ − s)k(α−β)+mα+2α−β−1

Γ(k(α− β) +mα+ 2α− β)

)
d

dt
lim

s→t−0
f(s)

+

t∫
0

RL,tDα
0+

∞∑
k=0

n−1∑
m=0

AQA,Bk,m

(t−mτ − s)k(α−β)+mα+2α−β−1

Γ(k(α− β) +mα+ 2α− β)
f(s)ds

+ lim
s→t−0

RL,tDα−1
0+

( ∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t− (m+ 1)τ − s)k(α−β)+mα+2α−1

Γ(k(α− β) +mα+ 2α)

)
lim

s→t−0
f(s)

+ lim
s→t−0

RL,tDα−2
0+

( ∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t− (m+ 1)τ − s)k(α−β)+mα+2α−1

Γ(k(α− β) +mα+ 2α)

)
d

dt
lim

s→t−0
f(s)

+

t∫
0

RL,tDα
0+

∞∑
k=0

n−1∑
m=0

AQA,Bk,m

(t− (m+ 1)τ − s)k(α−β)+mα+2α−1

Γ(k(α− β) +mα+ 2α)
f(s)ds

= f(t) + lim
s→t−0

∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t−mτ − s)k(α−β)+mα+α−β

Γ(k(α− β) +mα+ α− β + 1)
lim

s→t−0
f(s)

+ lim
s→t−0

∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t−mτ − s)k(α−β)+mα+α−β+1

Γ(k(α− β) +mα+ α− β + 2)

d

dt
lim

s→t−0
f(s)

+

t∫
0

∞∑
k=0

n−1∑
m=0

AQA,Bk,m

(t−mτ − s)k(α−β)+mα+α−β−1

Γ(k(α− β) +mα+ α− β)
f(s)ds

+ lim
s→t−0

RL,tDα−1
0+

( ∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t− (m+ 1)τ − s)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
lim

s→t−0
f(s)

+ lim
s→t−0

∞∑
k=0

n−1∑
m=0

AQA,Bk,m lim
s→t−0

(t− (m+ 1)τ − s)k(α−β)+mα+α+1

Γ(k(α− β) +mα+ α+ 2)

d

dt
lim

s→t−0
f(s)

+

t∫
0

∞∑
k=0

n−1∑
m=0

AQA,Bk,m

(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds

= f(t) +

∫ t

0

∞∑
k=0

n−1∑
m=0

AQA,Bk,m

(t−mτ − s)k(α−β)+mα+α−β−1

Γ(k(α− β) +mα+ α− β)
f(s)ds

+

∫ t

0

∞∑
k=0

n−1∑
m=0

BQA,Bk,m

(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds
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Then, Caputo fractional derivative of x̄(t) of order 0 ≤ β ≤ 1 is(
C
Dβ

0+x̄
)

(t) =
(
RL
Dβ

0+x̄
)

(t)

=
RL
Dβ

0+

[ t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds

]

= lim
s→t−0

RL,tDβ−1
0+

( ∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)

)
lim

s→t−0
f(s)

+

t∫
0

RL
Dβ

0+

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds

= lim
s→t−0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−β

Γ(k(α− β) +mα+ α− β + 1)
lim

s→t−0
f(s)

+

t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−β−1

Γ(k(α− β) +mα+ α− β)
f(s)ds

=

t∫
0

∞∑
k=0

n−1∑
m=0

QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−β−1

Γ(k(α− β) +mα+ α− β)
f(s)ds.

Thus, linear combinations of above results yield that(
CDα

0+x̄
)

(t)−A
(
C
Dβ

0+x̄
)

(t)

= f(t) +

t∫
0

∞∑
k=0

n−1∑
m=0

BQA,Bk,m

(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
f(s)ds

= f(t) +Bx̄(t− τ) = g(t) +Bx̄(t− τ), (n− 1)τ < t ≤ nτ, τ > 0.

Therefore, f(t) = g(t), (n− 1)τ < t ≤ nτ which confirms the desired verification. The proof is complete.

Then it follows that by using the substitution y(t) = E−1x(t), we can acquire a mild solution of (1.1) as
below.

Theorem 3.5. Let A,B ∈ B(Y ) with non-zero commutator, i.e., [A,B] := AB −BA 6= 0. A mild solution
y(·) ∈ C2(J, X) of the Cauchy problem (1.1) can be represented as

y(t) =

(
E−1 +

∞∑
k=0

n−1∑
m=0

E−1QA,Bk,mB
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

∞∑
m=0

E−1QA,Bk,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

E−1QA,Bk,mB
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

∞∑
m=0

E−1QA,Bk,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds

:=
(
E−1 + tαE−1E A,B

α−β,α,α+1(t− τ)B
)
ϕ(0) + tE−1E A,B

α−β,α,2(t)ϕ′(0)
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+

0∫
−τ

E−1E A,B
α−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

E−1E A,B
α−β,α,α(t− s)g(s)ds, (n− 1)τ < t ≤ nτ. (3.36)

Remark 3.2. Let α = 2, β = 1. Then, a mild solution y(·) ∈ C2(J, X) of the Cauchy problem for the following
second-order functional evolution equation

(Ey′′) (t)−A0y
′(t)−B0y(t− τ) = g(t), t > 0, τ > 0,

y(t) = ϕ(t), −τ ≤ t ≤ 0,

y′(0) = ϕ′(0),

(3.37)

can be determined by means of a new delayed Mittag-Leffler type function as follows

y(t) =

(
E−1 +

∞∑
k=0

n−1∑
m=0

E−1QA,Bk,mB
(t− (m+ 1)τ)k+2m+2

(k + 2m+ 2)!

)
ϕ(0)

+
∞∑
k=0

n−1∑
m=0

E−1QA,Bk,m

(t−mτ)k+2m+1

(k + 2m+ 1)!
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

E−1QA,Bk,mB
(t− (m+ 1)τ − s)k+2m+1

(k + 2m+ 1)!
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

E−1QA,Bk,m

(t−mτ − s)k+2m+1

(k + 2m+ 1)!
g(s)ds

:=
(
E−1 + tαE−1E A,B

1,2,3(t− τ)B
)
ϕ(0) + tE−1E A,B

1,2,2(t)ϕ′(0)

+

0∫
−τ

E−1E A,B
1,2,2(t− τ − s)Bϕ(s)ds+

t∫
0

E−1E A,B
1,2,2(t− s)g(s)ds, (n− 1)τ < t ≤ nτ. (3.38)

Remark 3.3. In particular case, we consider the following initial value problem for multi-dimensional multi-
term fractional time-delay differential equation with noncommutative matrices

(
CDα

0+y
)

(t)−A0

(
C
Dβ

0+y
)

(t)−B0y(t− τ) = g(t), t > 0, τ > 0,

y(t) = ϕ(t), −τ ≤ t ≤ 0,

y′(0) = ϕ′(0),

(3.39)

where CDα
0+ and

C
Dβ

0+ Caputo fractional derivatives of orders 1 < α ≤ 2 and 0 < β ≤ 1, respectively, with
the lower limit zero. E = I ∈ Rn×n is an identity matrix, the matrices A0, B0 ∈ Rn×n are nonpermutable
i.e., AB 6= BA, y(·) ∈ Rn is a vector-valued function on J, i.e., y(·) : J → Rn and ϕ ∈ C(J,Rn) and ϕ′(·) is
continuously differentiable at t = 0. In addition, a forced term g(·) : L→ Rn is a continuous function.

The exact analytical representation of solution y(·) ∈ C2(J,Rn) of (3.39) can be expressed by

y(t) :=
(

1 + E A0,B0

α−β,α,α+1(t− τ)B0

)
ϕ(0) + E A0,B0

α−β,α,2(t)ϕ′(0)

+

0∫
−τ

E A0,B0

α−β,α,α(t− τ − s)B0ϕ(s)ds+

t∫
0

E A0,B0

α−β,α,α(t− s)g(s)ds

=

(
1 +

∞∑
k=0

n−1∑
m=0

QA0,B0

k,m B0
(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)
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+

∞∑
k=0

n−1∑
m=0

QA0,B0

k,m

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

QA0,B0

k,m B0
(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

QA0,B0

k,m

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds, (n− 1)τ < t ≤ nτ. (3.40)

4 A representation of solutions of (1.1) with permutable linear
operators

To get an analytical representation of a mild solution of (3.1) with permutable linear operators i.e., AB = BA,
first, we need to prove auxiliary lemma for making use of Laplace integral transform according to the Theorem
3.1. Moreover, the scalar analogue of following theorem has been considered by Ahmadova and Mahmudov
for fractional delay-free Langevin equations with constant coefficients in [2]. In general, the following theorem
is true for α > 0, α > β and α > γ.

Theorem 4.1. Let m ∈ N0 and Re(s) > 0. For A,B ∈ B(Y ) with [A,B] = AB −BA = 0, we have:

L −1
{ sγBme−msτ

(sαI −Asβ)m+1

}
(t) = (t−mτ)mα+α+γ−1

∞∑
k=0

(
k +m

m

)
AkBm(t−mτ)k(α−β)

Γ(k(α− β) +mα+ α− γ)

= (t−mτ)mα+α−γ−1Em+1
α−β,mα+α−γ(A(t−mτ)α−β)Bm.

Proof. By using the Taylor series representation of 1
(1−t)m+1 ,m ∈ N0 of the form

1

(1− t)m+1
=

∞∑
k=0

(
k +m

m

)
tk, |t| < 1,

we achieve that

sγBme−msτ

(sαI −Asβ)m+1
=
sγBme−msτ

(sαI)m+1

1

(1− A
sα−β )m+1

=
sγBme−msτ

s(m+1)α

∞∑
k=0

(
k +m

m

)( A

sα−β

)k
=

∞∑
k=0

(
k +m

m

)
AkBme−msτ

s(m+1)α+k(α−β)−γ .

By using the inverse Laplace integral formula for the above function, we get the desired result:

L −1
{ sγBme−msτ

(sαI −Asβ)m+1

}
(t) =

∞∑
k=0

AkBm
(
k +m

m

)
L −1

{ e−msτ

sk(α−β)+(m+1)α−γ

}
(t)

=

∞∑
k=0

AkBm
(
k +m

m

)
(t−mτ)k(α−β)+mα+α−γ−1

Γ(k(α− β) +mα+ α− γ)

= (t−mτ)mα+α−γ−1Em+1
α−β,mα+α−γ(A(t−mτ)α−β)Bm.

We have required an extra condition on s such that

sα−β > ‖A‖,

for proper convergence of the series. But, this condition can be removed at the end of calculation since
analytic continuation of both sides, to give the desired result for all s ∈ C which is satisfying Re(s) > 0.
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Then, we acquire analytical representation of mild solution for multi-term fractional functional evolution
equation with permutable linear bounded operators via the following theorem.

Theorem 4.2. Let A,B ∈ B(Y ) with zero commutator, i.e., [A,B] := AB − BA = 0. Assume that

g(·) : J → X and
(
C
Dβ

0+x
)

(·) for 0 < β ≤ 1 are exponentially bounded. A mild solution x(·) ∈ C2(J, Y ) of

the Cauchy problem (3.1) can be represented by means of delayed analogue of bivariate Mittag-Leffler type
functions (2.14) as follows

x(t) =
(
I +BEA,B,τα−β,α,α+1(t− τ)

)
ϕ(0) + EA,B,τα−β,α,2(t)ϕ′(0)

+

0∫
−τ

EA,B,τα−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

EA,B,τα−β,α,α(t− s)g(s)ds

=

(
I +

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm+1 (t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm+1 (t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm

(t− s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds. (4.1)

Proof. We recall that the existence of Laplace transform of x(·) and its Caputo derivatives
(
CDα

0+x
)

(·) and(
C
Dβ

0+x
)

(·) for 1 < α ≤ 2 and 0 < β ≤ 1, respectively, is guaranteed by Theorem 3.1. Thus, to find the mild

solution x(t) of (1.1) with permutable linear operators, i.e., AB = BA, we can use the Laplace transform
technique. Taking the Laplace transform technique on both sides of equation (3.1) and solving the equation
with respect to the X(s), we get Thus, after solving the above equation with respect to the X(s), we get

X(s) = s−1ϕ(0) + s−1
(
sαI −Asβ −Be−sτ

)−1
Be−sτϕ(0)

+ sα−2
(
sαI −Asβ −Be−sτ

)−1
ϕ′(0) +

(
sαI −Asβ −Be−sτ

)−1
BL {ϕ̂(t− τ)} (s)

+
(
sαI −Asβ −Be−sτ

)−1
G(s).

For nonpermutable linear operators A,B ∈ B(Y ) and sufficiently large s such that

‖I −
(
sαI −Asβ

)−1
Be−sτ‖ < 1,

a linear bounded operator sαI −Asβ −Be−sτ is invertible and it holds that

(
sαI −Asβ −Be−sτ

)−1
=
(
sαI −Asβ

)−1
(
I −

(
sαI −Asβ

)−1
Be−sτ

)−1

=
(
sαI −Asβ

)−1
∞∑
m=0

(
sαI −Asβ

)−m
Bme−msτ

=

∞∑
m=0

Bme−msτ

(sαI −Asβ)
(m+1)

.

Then taking inverse Laplace transform, we have

x(t) = L −1
{
s−1
}

(t)ϕ(0) + L −1

{ ∞∑
m=0

s−1Bm+1e−(m+1)sτ

(sαI −Asβ)
(m+1)

}
(t)Bϕ(0)
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+ L −1

{ ∞∑
m=0

sα−2Bme−msτ

(sαI −Asβ)
(m+1)

}
(t)ϕ′(0)

+ L −1

{ ∞∑
m=0

Bm+1e−(m+1)sτ

(sαI −Asβ)
(m+1)

ϕ(s)

}
(t)

+ L −1

{ ∞∑
m=0

Bme−msτ

(sαI −Asβ)
(m+1)

G(s)

}
(t). (4.2)

Therefore, in accordance with Theorem 4.1, we acquire on t ∈ J = [−τ, T ]:

x(t) =

{
I +

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
AkBm+1(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

}
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
AkBm(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
AkBm+1(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
AkBm(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds

:=
(
I + EA,B,τα−β,α,α+1(t− τ)

)
ϕ(0) + EA,B,τα−β,α,2(t)ϕ′(0)

+

0∫
−τ

EA,B,τα−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

EA,B,τα−β,α,α(t− s)g(s)ds, (n− 1)τ < t ≤ nτ. (4.3)

Remark 4.1. The analytical mild solution for the initial value problem for (3.1) can be attained from the

property of QA,Bk,m (3.10) for linear bounded operators A,B ∈ B(Y ) satisfying AB = BA where

QA,Bk,m =

(
k +m

m

)
AkBm, k,m ∈ N0.

It should be emphasized that the assumption on the exponential boundedness of the function g(·) and(
C
Dβ

0+x
)

(·) for 0 < β ≤ 1 (
(
CDα

0+x
)

(·) for 1 < α ≤ 2 ) can be omitted for the case of permutable linear

bounded operators, too.

Theorem 4.3. Let A,B ∈ B(Y ) with zero commutator, i.e., [A,B] := AB − BA = 0. A mild solution
x(·) ∈ C2(J, Y ) of the Cauchy problem (3.1) can be expressed as

x(t) =

(
I +

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm+1 (t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm+1 (t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
AkBm

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds, (n− 1)τ < t ≤ nτ. (4.4)
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Proof. For linear homogeneous and inhomogeneous cases, by using the following Pascal identity for binomial
coefficients: (

k +m

m

)
=

(
k +m− 1

m

)
+

(
k +m− 1

m− 1

)
, k,m ∈ N,

the formula (3.33) and fractional Leibniz integral rules (2.4), it can be easily shown that (4.4) is a mild
solution of the Cauchy problem for (3.1) with permutable linear bounded operators. Moreover, similar
case have considered by Mahmudov et al. for multi-dimensional delay-free Bagley-Torvik equations with
permutable matrices in [33].

Theorem 4.4. Let A,B ∈ B(Y ) with zero commutator, i.e., [A,B] := AB − BA = 0. A mild solution
y(·) ∈ C2(J, X) of the Cauchy problem (1.1) can be determined as below

y(t) =

{
E−1 +

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
E−1AkBm+1(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

}
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
E−1AkBm(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
E−1AkBm+1(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

(
k +m

k

)
E−1AkBm(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds

:=
(
E−1 + E−1EA,B,τα−β,α,α+1(t− τ)

)
ϕ(0) + E−1EA,B,τα−β,α,2(t)ϕ′(0)

+

0∫
−τ

E−1EA,B,τα−β,α,α(t− τ − s)Bϕ(s)ds+

t∫
0

E−1EA,B,τα−β,α,α(t− s)g(s)ds (n− 1)τ < t ≤ nτ. (4.5)

Remark 4.2. In a special case, the exact analytical representation of solution y(·) ∈ C2(J,Rn) of Cauchy
problem for multi-dimensional fractional functional differential equation with multi-orders and permutable
matrices A0, B0 ∈ Rn×n i.e., A0B0 = B0A0 (3.39) can be represented by

y(t) =

(
I +

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
Ak0B

m+1
0

(t− (m+ 1)τ)k(α−β)+mα+α

Γ(k(α− β) +mα+ α+ 1)

)
ϕ(0)

+

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
Ak0B

m
0

(t−mτ)k(α−β)+mα+1

Γ(k(α− β) +mα+ 2)
ϕ′(0)

+

0∫
−τ

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
Ak0B

m+1
0

(t− (m+ 1)τ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ϕ(s)ds

+

t∫
0

∞∑
k=0

n−1∑
m=0

(
k +m

m

)
Ak0B

m
0

(t−mτ − s)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
g(s)ds, (n− 1)τ < t ≤ nτ. (4.6)

5 Stability analysis

In this section, we investigate stability results of fractional functional evolution equation of Sobolev type
with linear bounded operators A,B ∈ B(Y ) in Ulam-Hyers sense, without loss of generality, by considering
nonpermutable case : AB 6= BA. In general, Ulam-Hyers stability results are studied via fixed point
approach in [2, 48]. Unlike otherss, we consider stability analysis results for Sobolev type fractional multi-
order functional evolution equation via Laplace transform technique.
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Definition 5.1. System (3.1) is stable in Ulam-Hyers sense on J = [−τ, T ] if there exists Λ > 0 such that
for any ε > 0, a function x∗(·) ∈ C2(J, Y ) satisfying the following inequality:

‖
(
CDα

0+x
∗
)

(t)−A
(
C
Dβ

0+x
∗
)

(t)−Bx∗(t− τ)− g(t)‖ ≤ ε, (5.1)

with the initial conditions

x∗(t) = ϕ(t), −τ ≤ t ≤ 0,

x∗′(0) = ϕ′(0), (5.2)

there exists a mild solution x(·) ∈ C2(J, Y ) of (3.1) such that

‖x∗(t)− x(t)‖ ≤ Λε, t ∈ J. (5.3)

Theorem 5.1. Let g(·) : L→ Y be a continuous function. Then, the system (3.1) is stable in Ulam-Hyers
sense on J = [−τ, T ].

Proof. Let x∗(·) ∈ C2(J, Y ) satisfy the inequality (5.1) with initial conditions (5.2). Putting

h(t) =
(
CDα

0+x
∗
)

(t)−A
(
C
Dβ

0+x
∗
)

(t)−Bx∗(t− τ)− g(t), t ∈ J. (5.4)

It follows from Definition 5.1 that ‖h(t)‖ ≤ ε. We apply Laplace integral transform to both sides of equation
(5.1) and using (3.25), then we acquire

H(s) =
(
sαI −Asβ −Be−sτ

)
X∗(s)− sα−1ϕ(0) +Asβ−1ϕ(0)− sα−2ϕ′(0)−BL {ϕ̂(t− τ)} (s)−G(s),

(5.5)

where H(s) and X∗(s) are Laplace transforms of h(t) and x∗(t), respectively.
Then, after solving (5.5) with respect to X∗(s), we attain

X∗(s) = −H(s)
(
sαI −Asβ −Be−sτ

)−1
+ sα−1

(
sαI −Asβ −Be−sτ

)−1
ϕ(0)

−Asβ−1
(
sαI −Asβ −Be−sτ

)−1
ϕ(0) + sα−2

(
sαI −Asβ −Be−sτ

)−1
ϕ′(0)

+BL {ϕ̂(t− τ)} (s)
(
sαI −Asβ −Be−sτ

)−1
+G(s)

(
sαI −Asβ −Be−sτ

)−1
.

In accordance with Theorem we obtain a mild solution of (3.1) via Laplace transform technique. Thus, since
linearity property of Laplace transform, we derive

L {x(t)− x∗(t)} (s) = H(s)
(
sαI −Asβ −Be−sτ

)−1
.

Let L(s) =
(
sαI −Asβ −Be−sτ

)−1
. By using convolution property of Laplace transform and applying

inverse Laplace integral formula, we obtain

x(t)− x∗(t) = L −1 {H(s)L(s)} = h(t) ∗ l(t)

where l(t) =
∞∑
k=0

n−1∑
m=0

QA,Bk,m
(t−mτ)k(α−β)+mα+α−1

Γ(k(α−β)+mα+α) .

Suppose for τ > 0,

Λ := max

{∫ t

0

l(s)ds, t ∈ ((n− 1)τ, nτ ]

}
= max

{∫ t

0

∞∑
k=0

n−1∑
m=0

‖QA,Bk,m‖
(s−mτ)k(α−β)+mα+α−1

Γ(k(α− β) +mα+ α)
ds, t ∈ ((n− 1)τ, nτ ]

}
.

Therefore, for any t ∈ ((n− 1)τ, nτ ], we attain a desired result:

‖x(t)− x∗(t)‖ ≤ ‖
t∫

0

h(t− s)l(s)ds‖ ≤ ε‖
t∫

0

l(s)ds‖ ≤ Λε.

Thus, (3.1) is Ulam-Hyers stable on J = [−τ, T ]. The proof is complete.
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This implies that the functional evolution system of Sobolev type (1.1) is also Ulam-Hyers stable on
J = [−τ, T ].

Remark 5.1. It should be pointed out that stability analysis in Ulam-Hyers sense can also be discussed for
permutable case AB = BA by using the property of QA,Bk,m (4.1) with binomial coefficients. In this case, the
only change happens for l(t) that is expressed in terms of Mittag-Leffler type functions which are generated
by linear operators A,B ∈ B(Y ).

6 Conclusions

In this research work, we first convert Sobolev type fractional time-delay evolution equation with multi-orders
(1.1) to multi-term fractional functional evolution equation with linear bounded operators (3.1). Secondly, we
give the sufficient conditions to guarantee the rationality of solving multi-term fractional evolution equation
with constant delay and linear bounded operators by the Laplace transform method. Then, we solve linear
inhomogeneous time-delay evolution equations with nonpermutable & permutable linear bounded operators
A,B ∈ B(Y ) by making use of Laplace transform. Next, we propose an exact analytical representation of
a mild solution to (3.1) and (1.1) in terms of newly defined delayed Mittag-Leffler type function which is
generated by linear bounded operators by removing the strong condition that is an exponential boundedness
of a forced term and one of fractional orders with the help of analytical methods, namely: verification by
substitution and fractional analogue of variation of constants formulas. Moreover, we investigate stability
results for fractional-order functional evolution equation in Ulam-Hyers sense without fixed point approach.

The main contributions of this paper are as follows:

• we introduce a new delayed Mittag-Leffler type function which is generated by linear bounded operators
A,B ∈ B(Y ) via a double infinite series ;

• we propose the property of QA,Bk,m with nonpermutable linear operators A,B ∈ B(Y ) which is a gener-
alization of well-known Pascal’s rule for binomial coefficients.

• we acquire the analytical representation of a mild solution for linear Sobolev type multi-term fractional
functional evolution system with nonpermutable and permutable linear operators;

• we derive the exact analytical representation of multi-dimensional time-delay system with two inde-
pendent orders and nonpermutable & permutable matrices.

• we investigate Ulam-Hyers type stability results for time-delay evolution equation of Sobolev type with
the help of Laplace transform;

The possible directions for future work in which to extend the results of this paper is looking at Sobolev
type fractional impulsive evolution equations with multi-orders and investigate asymptotic stability and
approximate controllability results for Sobolev type multi-term fractional differential equations (1.1).
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