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Abstract

In this paper, using the compatible theory of differential invariants,
a class of exact solutions is obtained for nonhomogeneous quasilinear
hyperbolic system of partial differential equations (PDEs) describing
rate type materials; these solutions exhibit genuine nonlinearity that
leads to the formation of discontinuities such as shocks and rarefaction
waves. For certain nonconstant and smooth initial data, the solution
to the Riemann problem is presented providing a complete character-
isation of the solutions.

1 Introduction

It is well known that a large number of physical processes are modelled by
systems of quasilinear partial differential equations, but no general methods
are available for solving such systems with arbitrary initial or/and boundary
conditions ([1], [2]). A variety of mathematical methods for finding exact
solutions to such systems have been proposed over the years (see [3]-[6]);
however, among several others, the approach based on the use of differen-
tial constraints, proposed by Janenko [7] (see also [8] - [9]), has been of
considerable interest in recent years (see [10] -[23]). Based on Lie symme-
try analysis, an approximate rarefaction wave-type solution to the Riemann
problem, with non-classical discontinuous initial data for a system of balance
laws describing rate-type materials, was presented in [6]; here the initial data
for the variable u are discontinuous whereas the initial data for the variable
v are constants. A class of solutions to the partial differential equations,
describing rate-type material, was obtained in [6] to solve a generalized Rie-
mann problem through a rarefaction wave. In the present paper, an attempt
is made to solve a family of generalized Riemann problems for the system
under consideration and to completely characterize solutions that connect
the initial data to regions either through shocks or rarefaction waves.

2 Compatibility conditions for Differential Invari-
ants

Consider the following hyperbolic system

∂vj
∂t

+ ajk
∂vk
∂x

= bj ; j, k = 1, 2, · · · , n, (2.1)
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where the matrices (ajk) and (bj) may be functions of x, t, and the un-
knowns v1, v2, · · · , vn. Let λ(i) be the real eigenvalues of (ajk) and R(i) the
corresponding eigenvectors; here and through out this section, summation
from 1 to n over a repeated subscript is automatic unless stated otherwise.
The system (2.1) can be written as

∂vj
∂t

+ λ(i)
∂vj
∂x

+ Q̂
(i)
j = 0, (2.2)

where

Q̂
(i)
j =

(
ajk − λ(i)δkj

) ∂vk
∂x
− bj , (2.3)

with δkj = 0 for k 6= j and δkj = 1 for k = j. If Q̂
(i)

can be determined as
functions of x, t and v1, v2, · · · , vn, such that the system (2.3) is consistent,
then the system (2.2) can be solved along the characteristic family dx

dt = λ(i).

Since the matrix
(
ajk − λ(i)δkj

)
is of rank n − 1, it follows from (2.3)

that the derivatives
∂vj
∂x can be expressed in the form

∂vj
∂x

= R
(i)
j

∂vα
∂x

+Q
(i)
j , (2.4)

for some α ∈ {1, 2, · · · , n} with R
(i)
α = 1, where R

(i)
j is the jth component

of eigenvector R(i), vα is the αth component of v, and Q(i) is a particular

solution to (2.3) with Q
(i)
α = 0; thus, the components of Q̂(i) are determined

in terms of the components of Q(i), given by

Q̂
(i)
j =

(
ajk − λ(i)δkj

)
Q

(i)
k − bj . (2.5)

The compatibility conditions for determining Q
(i)
j are as follows. In view of

(2.4), equation (2.1) can be written as

∂vj
∂t

+ ajk

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
= bj . (2.6)

Following an idea putforth in [3], the method of differential constraints con-

sists of determining Q
(i)
j , and subsequently Q̂

(i)
j from (2.3), subject to the

conditions (2.4); thus, equations (2.2) can be solved along a family of char-
acteristics which in turn a gives a class of solutions to the equations (2.1).
In order to achieve this objective, we differentiate (2.6) with respect to x to
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obtain

∂2vj
∂x∂t

+
∂ajk
∂v`

(
R

(i)
`

∂vα
∂x

+Q
(i)
`

)(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
+ajkR

(i)
k

∂2vα
∂x2

+
∂ajk
∂x

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
+ajk

(
∂R

(i)
k

∂x

∂vα
∂x

+
∂Q

(i)
k

∂x

)

+ajk

(
∂R

(i)
k

∂v`

∂vα
∂x

+
∂Q

(i)
k

∂v`

)(
R

(i)
`

∂vα
∂x

+Q
(i)
`

)
=
∂bj
∂x

+
∂bj
∂vk

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
. (2.7)

Here and throughout this section, α and i are fixed and these indices are not
to be summed. Similarly differentiating the equation (2.4) with respect to

t, and replacing ∂2vα
∂x∂t from (2.7) when j = α, we obtain the following system

on using (2.6):

∂2vj
∂x∂t

=
∂R

(i)
j

∂t

∂vα
∂x

+

(
∂R

(i)
j

∂vk

∂vα
∂x

+
∂Q

(i)
j

∂vk

)(
bk − ak`R

(i)
`

∂vα
∂x
− ak`Q

(i)
`

)

+
∂Q

(i)
j

∂t
+R

(i)
j

∂bα
∂x

+R
(i)
j

∂bα
∂vk

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
−R(i)

j

∂aαk
∂v`

(
R

(i)
`

∂vα
∂x

+Q
(i)
`

)(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
−R(i)

j

∂aαk
∂x

(
R

(i)
k

∂vα
∂x

+Q
(i)
k

)
−R(i)

j aαk

(
∂R

(i)
k

∂x

∂vα
∂x

+
∂Q

(i)
k

∂x

)

−R(i)
j aαk

(
∂R

(i)
k

∂v`

∂vα
∂x

+
∂Q

(i)
k

∂v`

)(
R

(i)
`

∂vα
∂x

+Q
(i)
`

)
−R(i)

j aαkR
(i)
k

∂2vα
∂x2

. (2.8)

Equations (2.7) and (2.8) imply that

T
(i)
j + S

(i)
j

∂vα
∂x

+ T̃
(i)
j

∂2vα
∂x2

+ S̃
(i)
j

(
∂vα
∂x

)2

= 0, (2.9)
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where

T
(i)
j =

(
∂Q

(i)
j

∂vk

)(
bk − ak`Q

(i)
`

)
+
∂Q

(i)
j

∂t
+R

(i)
j

∂bα
∂x

+R
(i)
j

∂bα
∂vk

Q
(i)
k

−R(i)
j

∂aαk
∂v`

Q
(i)
` Q

(i)
k −R

(i)
j

∂aαk
∂x

Q
(i)
k −R

(i)
j aαk

∂Q
(i)
k

∂x

−R(i)
j aαk

∂Q
(i)
k

∂v`
Q

(i)
` +

∂ajk
∂v`

Q
(i)
` Q

(i)
k +

∂ajk
∂x

Q
(i)
k + ajk

∂Q
(i)
k

∂x

+ajk
∂Q

(i)
k

∂v`
Q

(i)
` −

∂bj
∂x
− ∂bj
∂vk

Q
(i)
k ,

T̃
(i)
j = ajkR

(i)
k − aαkR

(i)
k R

(i)
j ,

S̃
(i)
j = R

(i)
`

∂
(
ajkR

(i)
k

)
∂v`

−R(i)
j R

(i)
`

∂
(
aαkR

(i)
k

)
∂v`

− ak`R
(i)
`

∂R
(i)
j

∂vk
,

S
(i)
j =

∂R
(i)
j

∂t
+
∂R

(i)
j

∂vk

(
bk − ak`Q

(i)
`

)
−
∂Q

(i)
j

∂vk
ak`R

(i)
` +R

(i)
j

∂bα
∂vk

R
(i)
k

−R(i)
j

∂aαk
∂v`

(
R

(i)
` Q

(i)
k +Q

(i)
` R

(i)
k

)
−R(i)

j

∂aαk
∂x

R
(i)
k −R

(i)
j aαk

∂R
(i)
k

∂x

−R(i)
j aαk

(
∂R

(i)
k

∂v`
Q

(i)
` +

∂Q
(i)
k

∂v`
R

(i)
`

)
+
∂ajk
∂x

R
(i)
k + ajk

∂R
(i)
k

∂x

+
∂ajk
∂v`

(
R

(i)
` Q

(i)
k +Q

(i)
` R

(i)
k

)
+ ajk

(
∂R

(i)
k

∂v`
Q

(i)
` +

∂Q
(i)
k

∂v`
R

(i)
`

)

− ∂bj
∂vk

R
(i)
k ,

for j = 1 to n for each i ∈ {1, 2, · · · , n}. Since of, aαkR
(i)
k = λ(i)R

(i)
α = λ(i)

and ajkR
(i)
k = λ(i)R

(i)
j , we have T̃

(i)
j = 0 and S̃

(i)
j = 0. Thus, equations (2.9)

reduce to

T
(i)
j + S

(i)
j

∂vα
∂x

= 0, (2.10)

for j = 1 to n for each i ∈ {1, 2, · · · , n}. Observe that T
(i)
α ≡ 0 and S

(i)
α ≡ 0.

In the following section, we use this methodology to a system of conservation
laws describing rate-type materials.
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3 Solutions to the Cauchy problem:

We consider the following system of balance laws describing rate-type ma-
terials ([7]-[9])

∂u

∂t
− ∂

∂x

(
1

v

)
= 0,

∂v

∂t
+
∂u

∂x
= 1− v, (3.1)

where u is the Lagrangian velocity and 1/v with v 6= 0 denotes the stress in
the material that is undergoing loading unloading processes.

The eigenvalues λ(i), i = 1, 2, representing the characteristic speeds of
the system (3.1) and the corresponding right eigenvectors R(i), are given by

λ(1) = −1

v
, λ(2) =

1

v
, R(1) =

[
−v−1

1

]
, R(2) =

[
v−1

1

]
.

As the system (3.1) is strictly hyperbolic and genuinely nonlinear for any
smooth initial data:

u(x, 0) = u0(x), v(x, 0) = v0(x), (3.2)

there exits a unique solution of the Cauchy problem (3.1), (3.2) involving
either a rarefaction wave or a shock wave depending on whether λ(i) is
monotonically increasing or decreasing as (u, v) varies along an integral curve
of the vector field R(i).

In view of (2.4), we have
∂u

∂x
= Q

(1)
1 −

1

v

∂v

∂x
, and so, equations (3.1) can

be written as

du

dt
= −Q

(1)
1

v
,

dv

dt
= 1− v −Q(1)

1 , (3.3)

where
d

dt
=

∂

∂t
+ λ(1)

∂

∂x
; and Q

(1)
1 is a function of x, t, u and v, which is to

be determined from the equation (2.10), i.e.,

T
(1)
1 + S

(1)
1

∂v

∂x
= 0; (3.4)

here T
(1)
1 and S

(1)
1 are given by

T
(1)
1 = v

(
∂Q

(1)
1

∂x
+ v

∂Q
(1)
1

∂t
+Q

(1)
1

∂Q
(1)
1

∂u
+ v

(
1− v −Q(1)

1

) ∂Q(1)
1

∂v

)
,

S
(1)
1 = 1−Q(1)

1 − 2
∂Q

(1)
1

∂u
+ 2v

∂Q
(1)
1

∂v
.

Similarly, when
∂u

∂x
= Q

(2)
1 +

1

v

∂v

∂x
, equations (3.1) can be written as

du

dt
=
Q

(2)
1

v
,

dv

dt
= 1− v −Q(2)

1 , (3.5)
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where
d

dt
=

∂

∂t
+ λ(2)

∂

∂x
; and Q

(2)
1 is a function of x, t, u and v, which is to

be determined from the equation (2.10), i.e.,

T
(2)
1 + S

(2)
1

∂v

∂x
= 0; (3.6)

here T
(2)
1 and S

(2)
1 are given by

T
(2)
1 = −v

(
∂Q

(2)
1

∂x
− v∂Q

(2)
1

∂t
+Q

(2)
1

∂Q
(2)
1

∂u
− v

(
1− v −Q(2)

1

) ∂Q(2)
1

∂v

)
,

S
(2)
1 = −1 +Q

(2)
1 − 2

∂Q
(2)
1

∂u
− 2v

∂Q
(2)
1

∂v
.

Assume that T
(i)
1 = 0 and S

(i)
1 = 0 for i = 1, 2. For the case i = 1, by solving

the equation S
(1)
1 = 0, we get

Q
(1)
1 = 1 + e−u/2φ(x, t, ξ), (3.7)

where ξ = u+ log v and φ being an arbitrary function of x, t and ξ. In view

of (3.7), the equation T
(1)
1 = 0 reduces to

∂φ

∂x
+
∂φ

∂ξ
− 1

2
φ+ e(ξ−u)

(
∂φ

∂t
− ∂φ

∂ξ

)
− 1

2
e−u/2φ2 = 0,

which leads to φ ≡ 0, i.e., Q
(1)
1 ≡ 1. Similarly, with the assumption that

T
(2)
1 = S

(2)
1 = 0, we have Q

(2)
1 ≡ 1. Thus, on solving (3.3) and (3.5),

equations (3.1) admit the following solutions, which recovers the solution
obtained in [23] following a different line of approach:

v(x, t) = v0(ξ)e
−t,

u(x, t) = u0(ξ) + δ

(
et − 1

v0(ξ)

)
, (3.8)

x = ξ + δ

(
et − 1

v0(ξ)

)
, δ = ±1.

Here, ξ(x, t) denotes the unique point on the x-axis, which lies on the char-
acteristic through (x, t) and is given by (3.8)3. For δ = ±1, the above
equations (3.8) give two solutions of the system (3.1), (3.2), one for each
characteristic family; indeed, the above solutions are characterized by the
differential constraints:

du0(x)

dx
=

δ

v0(x)

dv0
dx

+ 1. (3.9)

Observe that, for a given x and t, the equations (3.8)1 and (3.8)2 admit
unique values for v and u provided there exists a unique ξ satisfying (3.8)3;
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in other words, the existence of a unique solution is guaranteed for every x
in (−∞,∞) and for every t > 0 provided that

δ

(
et − 1

(v0(ξ))
2

)
dv0
dξ
6= 1. (3.10)

4 Shocks and rarefaction waves

There are two distinct families of discontinuous solutions of (3.1), (3.2), re-
ferred to as 1-shocks (or back shocks) and 2-shocks (or front shocks). Sim-
ilarly, there are two families of continuous solutions of (3.1), (3.2), referred
to as rarefaction waves corresponding to either characteristic family λ(1) or
λ(2).

Let x = X(t) be a curve representing a discontinuity across which the
flow variables u and v are discontinuous and let σ = dX

dt be the speed of
propagation of the discontinuity. Then R-H conditions for the system (3.1)
are

σ(u`(t)− ur(t)) =
1

vr(t)
− 1

v`(t)
, σ(v`(t)− vr(t)) = (u`(t)− ur(t)), (4.1)

where u`(t) = lim
x→X(t)−

u(x, t), ur(t) = lim
x→X(t)+

u(x, t), v`(t) = lim
x→X(t)−

v(x, t),

and vr(t) = lim
x→X(t)+

v(x, t). Equations (4.1) imply that

σ = ± 1

(vrv`)
1/2

, u` = ur + σ (v` − vr) . (4.2)

If the admitted discontinuity x = S1(t) is a consequence of the intersection
of characteristics belonging to the family dx

dt = − 1
v , satisfying

− 1

v`
> σ > − 1

vr
, (4.3)

then the discontinuity x = S1(t) is called a 1-shock or a back shock; the
inequality (4.3) shows that σ < 0 and therefore, for a 1-shock, we have

σ =
dS1
dt

= − 1

(vrv`)
1/2

, u` = ur −
(v` − vr)
(vrv`)

1/2
, (4.4)

with v`(t) > vr(t) and u`(t) < ur(t).
Similarly, if the admitted discontinuity x = S2(t) is a consequence of the

intersection of characteristics belonging to the family dx
dt = 1

v , satisfying

1

v`
> σ >

1

vr
, (4.5)
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then the discontinuity x = S2(t) is called a 2-shock or a front shock satisfying
σ > 0 with

σ =
dS2
dt

=
1

(vrv`)
1/2

, u` = ur +
(v` − vr)
(vrv`)

1/2
. (4.6)

v` < vr and u` < ur.
We now turn to the rarefaction wave solutions of (3.1), (3.2) which are

continuous solutions corresponding to the eigen modes λ(1) and λ(2), referred
to as 1-rarefaction wave and 2-rarefaction waves, respectively. Let uL =
lim
x→0−

u0(x), vL = lim
x→0−

v0(x), uR = lim
x→0+

u0(x), vR = lim
x→0+

v0(x), such

that the initial step function is expansive with vL < vR. Let x = R1(t) and
x = R2(t) be the curves that pass through (0, 0) such that R1(t) < R2(t) for
all t > 0 with R1(t) and R2(t) satisfying

dR1

dt
=

−1

v(R1(t), t)
,

dR2

dt
=

−1

v(R2(t), t)
. (4.7)

In view of (3.8), equations (4.7) lead to R1(t) = (1−et)
vL

, R2(t) = (1−et)
vR

.
Since, vL < vR, we have v(R1(t), t) < v(R2(t), t); a continuously varying
solution in the region R1(t) < x < R2(t), which is continuous across the
curves x = R1(t) and x = R2(t), referred to as 1-rarefaction wave, can be
obtained from (3.8) as follows. Since all the values of u (respectively, v)
between uL and uR (respectively, vL and vR) are taken on characteristics in
a fan through origin, where ξ = 0, the solution in the fan, bounded by the
characteristics x = R1(t) = (1− et)/vL and x = R2(t) = (1− et)/vR is given
by

v(x, t) = ze−t, if R1(t) < x < R2(t),

u(x, t) = ζ −
(

et − 1

z

)
, if R1(t) < x < R2(t), (4.8)

x = −
(

et − 1

z

)
,

where R1(t) < x < R2(t), vL < z < vR, and uL < ζ < uR. Here, the

characteristics are emanating from the origin and given by
dx

dt
= −1

v
=

−et

z
whose speeds are varying from −1/vL to −1/vR. Differentiating the

equations (4.8) with respect to x and t and substituting in (3.1) we get

∂ζ

∂t
+

et

et − 1
= 0,

∂ζ

∂x
− 1

x
= 0.
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Subject to the condition ζ = uL when x = R1(t), the above equations

ζ = uL + log
(
xvL
1−et

)
. Thus, the solution for 1- rarefaction wave is given by

v(x, t) =


v0(ξ)e

−t if x ≤ R1(t),(
e−t−1
x

)
if R1(t) < x < R2(t),

v0(ξ)e
−t if x ≥ R2(t),

(4.9)

u(x, t) =


u0(ξ)−

(
et−1
v0(ξ)

)
if x ≤ R1(t),

uL + log
(
xvL
1−et

)
+ x if R1(t) < x < R2(t),

u0(ξ)−
(

et−1
v0(ξ)

)
if x ≥ R2(t),

(4.10)

x = ξ −
(

et − 1

v0(ξ)

)
,

du0
dx

= 1− 1

v0

dv0
dx

,

with uR = uL + log
(
vL
vR

)
, R1(t) = (1−et)

vL
, R2(t) = (1−et)

vR
and v(R1(t), t) <

v(R2(t), t).
Similarly, let x = R3(t) and x = R4(t) be the curves that pass through

(0, 0) such that R3(t) < R4(t) for all t > 0

dR3

dt
=

1

v(R3(t), t)
,

dR4

dt
=

1

v(R4(t), t)
. (4.11)

Then, since vL > vR and R3(t) < R4(t) for all t > 0, we have v(R3(t), t) >
v(R4(t), t). A continuously varying solution in the region R3(t) < x < R4(t),
which is continuous across the curves x = R3(t) and x = R4(t), referred to
as a 2-rarefaction wave, can be obtained in a similar manner, and is given
by

v(x, t) =


v0(ξ)e

−t if x ≤ R3(t),(
1−e−t

x

)
if R3(t) < x < R4(t),

v0(ξ)e
−t if x ≥ R4(t),

(4.12)

u(x, t) =


u0(ξ) +

(
et−1
v0(ξ)

)
if x ≤ R3(t),

uR − log
(
xvR
1−et

)
+ x if R3(t) < x < R4(t),

u0(ξ) +
(

et−1
v0(ξ)

)
if x ≥ R4(t),

(4.13)

x = ξ +

(
et − 1

v0(ξ)

)
,

du0
dx

= 1 +
1

v0

dv0
dx

,

with uL = uR−log

(
vR
vL

)
, R3(t) =

(et − 1)

vL
, R4(t) =

(et − 1)

vR
and v(R3(t), t) >

v(R4(t), t).
Summarizing the above results as:
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� Across a 1-shock wave, we have v`(t) > vr(t) and u`(t) < ur(t), where
(u`(t), v`(t)) and (ur(t), vr(t)) are the limiting values of (u, v) as the
discontinuity x = S1(t) is approached from left and right respectively.

� Across a 2-shock wave, we have v`(t) < vr(t) and u`(t) < ur(t), where
(u`(t), v`(t)) and (ur(t), vr(t)) are the limiting values of (u, v) as the
discontinuity x = S2(t) is approached from left and right respectively.

� Across a 1-rarefaction wave, we have v`(t) < vr(t) and u`(t) > ur(t)
where v`(t) = v(R1(t), t), u`(t) = u(R1(t), t), vr(t) = v(R2(t), t) and
ur(t) = u(R2(t), t).

� Across a 2-rarefaction wave, we have v`(t) > vr(t) and u`(t) > ur(t)
where v`(t) = v(R3(t), t), u`(t)) = u(R3(t), t), vr(t) = v(R4(t), t) and
ur(t) = u(R4(t), t).

Based on these solutions, we solve a Riemann problem with non-constant
and smooth initial data, in the next section.

5 Riemann Problem with non-constant initial state

Consider the initial profile

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) =

{
(x+ uL, vL) if x < 0,
(x+ uR, vR) , if x ≥ 0,

(5.1)

where uL, uR, vL and vR are constants.
If 1-wave is a shock wave then

v(x, t) =

{
vLe−t if x ≤ S1(t),
ṽe−t if x > S1(t),

(5.2)

u(x, t) =

{
uL + x if x ≤ S1(t),
ũ+ x if x > S1(t),

(5.3)

where
dS1
dt

= − et√
(vLṽ)

, which yields on integration that S1(t) = (1−et)√
(vLṽ)

.

In view of (4.4)2 we have ũ = uL − ṽ−vL√
(vLṽ)

, ṽ < vL and ũ > uL.

Similarly, if 2- wave is a shock wave then

v(x, t) =

{
vRe−t, if x ≥ S2(t),
v̂e−t, if x < S2(t)

(5.4)

u(x, t) =

{
uR + x, if x ≥ S2(t),
û+ x, if x < S2(t),

(5.5)

where
dS2
dt

=
et√

(vRv̂)
, which yields on integration that S2(t) = (et−1)√

vRv̂
. In

view of (4.6)2 we have û = uR + v̂−vR√
vRv̂

with v̂ < vR and ũ > uR.
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If 1- wave is a rarefaction wave then

v(x, t) =


vLe−t if x ≤ R1(t),(
e−t−1
x

)
if R1(t) < x < R2(t),

ṽe−t if x ≥ R2(t),

(5.6)

u(x, t) =


uL + x if x ≤ R1(t),

uL + log
(
xvL
1−et

)
+ x if R1(t) < x < R2(t),

ũ+ x if x ≥ R2(t),

(5.7)

where ũ = uL + log
(
vL
ṽ

)
, R1(t) = (1−et)

vL
, R2(t) = (1−et)

ṽ and ṽ > vL.
Similarly, if 2- wave is rarefaction wave then

v(x, t) =


v̂e−t, if x ≤ R3(t),(
1−e−t

x

)
, if R3(t) < x ≤ R4(t),

vRe−t, if x ≥ R4(t),

(5.8)

u(x, t) =


û+ x, if x ≤ R3(t),

uR − log
(
xvR
et−1

)
+ x, if R3(t) < x < R4(t),

uR + x, , if x ≥ R4(t),

(5.9)

where û = uR − log
(
vR
v̂

)
, R3(t) = (et−1)

v̂ , R4(t) = (et−1)
vR

and v̂ > vR. Here,
ṽ and v̂ are arbitrary constants.

Let A and C be the quantities defined by

A = uL − uR, C = log(vR/vL). (5.10)

Then, to continue our development, it is useful to state the following Lem-
mas:

Lemma 5.1. Let A and C be defined as in (5.10). If the solution to the
Riemann problem for the system (3.1), with initial conditions (5.1), consists
of 1- shock wave and 2-shock wave then A+ 2 sinh(|C|/2) < 0 and A < 0.

Proof. Given that 1-wave is a shock wav, x = S1(t), implies that ũ > uL
and ṽ < vL; similarly, if 2-wave is a shock wave, x = S2(t), then û < uR and
v̂ < vR. In the region, S1(t) < x < S2(t) the solution given in the equations
(5.2) and (5.3), through 1-shock, and the solutions (5.4) and (5.5), through
2-shock, should coincide; that is ṽ = v̂ = z(say), ũ = û, i.e., A = uL−uR < 0
and f1(z) = 0 where

f1(z) = uL − uR −
z − vL

(vLz)
(1/2)

− z − vR
(vRz)

(1/2)
,

for 0 < z < min {vL, vR}. Observe that lim
z→0

f1(z) =∞ and

df1
dz

= − z + vL

2z
√

(vLz)
− z + vR

2z
√

(vRz)
< 0,

implying thereby that f1 is decreasing.
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� Let vL < vR, i.e., C > 0. Since 0 < z < min {vL, vR}, i.e., 0 < z < vL,
f1 = 0 has a solution if f1(vL) < 0, where

f1(vL) = uL − uR −
vL − vR

(vRvL)(1/2)
= A+ 2 sinh(C/2). (5.11)

� Similarly, let vR < vL, i.e., C < 0 then f1 = 0 has a solution if
f1(vR) < 0, where

f1(vR) = uL − uR −
vR − vL

(vRvL)(1/2)
= A− 2 sinh(C/2). (5.12)

Thus, in view of (5.11) and (5.12), if A < 0 then the solution exists
for f1(z) = 0 only when A+ 2 sinh(|C|/2) < 0.

This situation is depicted in Figure 1.
Further, when vR = vL, i.e., C = 0, it follows from f1(z) = 0 that

z = vL

(√
(uR − uL)2

4
+ 1− uR − uL

4

)2

which recovers the result obtained

in [6] for vL = vR = v0, uR = ur, uL = u` and z = vm.

Lemma 5.2. Let A and C be defined as in (5.10). If the solution to the
Riemann problem for the system (3.1), with initial conditions (5.1), con-
sists of 1- shock wave and 2- rarefaction wave, then either of the following
inequalities holds

(i.) A < 0, C < 0 and A− 2 sinh(C/2) > 0.

(ii.) A > 0, C < 0 and A+ C < 0.

Proof. Let 1-wave be a shock wave and 2-wave be a rarefaction wave. This
implies that ũ > uL, ṽ < vL and v̂ > vR. In view of (5.2), (5.3), (5.8) and
(5.9), it follows that the solutions given by (5.2)-(5.3) and (5.8)-(5.9) should
coincide in the region S1(t) < x < R3(t); this means that ṽ = v̂ = z(say),
i.e., vR < z < vL and f2(z) = 0 where

f2(z) = uL − uR −
z − vL√

(vLz)
+ log

(vR
z

)
,

for vR < z < vL. Observe from the equation

df2
dz

= − z + vL

2z
√

(vLz)
− 1

z
,

that f2 is decreasing. Since, vR < vL, i.e., C < 0, the equation f2 = 0 has a
solution only when f2(vR) > 0 and f2(vL) < 0, i.e.,

f2(vL) < 0⇒ uL − uR + log

(
vR
vL

)
< 0, (5.13)

f2(vR) > 0⇒ uL − uR −
vR − vL√

(vLvR)
> 0 (5.14)
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Since vR < vL, and if uL > uR then (5.14) always holds. Thus, a solution
for f2(z) = 0 over [vR, vL] is possible if (5.13) holds, i.e.,

A+ C = uL − uR + log

(
vR
vL

)
< 0.

Hence, A > 0, C < 0 and A+ C < 0.
Further, since vR < vL, and if uL < uR then the equation (5.13) always

holds. Thus, the number of solutions for f2(z) = 0 over [vR, vL] is possible
only if (5.14) holds, i.e.,

uL − uR −
vR − vL√

(vLvR)
= A− 2 sin(C/2) > 0.

Hence, A < 0, C < 0 and A− 2 sinh(C/2) > 0. This situation is depicted in
Figure 2.

Lemma 5.3. Let A and C be defined as in (5.10). If the solution to the Rie-
mann problem for the system (3.1), with initial conditions (5.1), consists of
1-rarefaction wave and 2-shock wave then either of the following inequalities
holds

(i.) A < 0, C > 0 and A+ 2 sinh(C/2) > 0.

(ii.) A > 0, C > 0 and A− C < 0.

Proof. Given that 1-wave is a rarefaction wave implies that ṽ > vL; similarly
if the 2-wave is a shock wave then û < uR and v̂ < vR. In view of the
equations (5.4)-(5.7), the solutions given by the equations (5.4)-(5.5) and
(5.6)-(5.7) should coincide in the region R2(t) < x < S2(t), i.e., ṽ = v̂ =
z(say), û = ũ, i.e., vL < vR, C < 0 and f3(z) = 0 where

f3(z) = uL − uR + log
(vL
z

)
− z − vR√

(vRz)
,

for vL < z < vR. Observe from the above equation that

df3
dz

= − z + vR

2z
√

(vRz)
− 1

z
,

implying thereby that f3 is decreasing. Since C < 0, the equation f3 = 0
has a solution only when f3(vL) > 0 and f3(vR) < 0, i.e.,

f3(vL) > 0⇒ uL − uR −
vL − vR√

(vLvR)
> 0 (5.15)

f3(vR) < 0⇒ uL − uR + log

(
vL
vR

)
< 0, (5.16)
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If uL > uR and and vL < vR then A > 0, C < 0 and the equation (5.15) is
always true. Thus, the solution for f3(z) = 0 over [vL, vR] exits only when
the equation (5.16) is true, i.e.,

uL − uR + log

(
vL
vR

)
= A− C < 0. (5.17)

Thus, A > 0, C > 0 and A− C < 0.
Further, if vL < vR and uL < uR then C < 0, A > 0 and the equation

(5.16) is always true. Thus, the solution for f3(z) = 0 over [vL, vR] exits
only when the equation (5.15) is true, i.e.,

uL − uR −
vL − vR√

(vLvR)
= A+ 2 sinh(C/2) > 0, (5.18)

implying thereby that A < 0, C > 0 and A+ 2 sinh(C/2) > 0
This situation is depicted in Figure 3.

Lemma 5.4. Let A and C be defined as in (5.10). If the solution to the
Riemann problem for the system (3.1), with initial conditions (5.1), consists
of 1-rarefaction wave and 2-rarefaction wave then A > 0 and A− |C| > 0.

Proof. Let 1-wave and 2-wave be both rarefaction waves. In view of (5.6)-
(5.9), the solutions given in the equations (5.6)-(5.7) and (5.8)-(5.9) should
coincide in the region, R2(t) < x < R3(t), i.e., ṽ = v̂ = z(say) and f4(z) = 0
where

f4(z) = uL − uR + log
(vL
z

)
+ log

(vR
z

)
,

with max{vL, vR} < z <∞. Observe from the above equation that

df4
dz

= −2

z
,

showing thereby f4 is decreasing. Observe that lim
z→∞

f4(z) = −∞.

If vL < vR, C > 0, then f4 = 0 has a solution provided f4(vR) > 0, i.e.,

uL − uR + log

(
vL
vR

)
= A− C > 0. (5.19)

Since C > 0 and A− C > 0 we have A > 0.
Similarly, if vR < vL then f4 = 0 has a solution if f4(vL) > 0, i.e.,

uL − uR + log

(
vR
vL

)
= A+ C > 0. (5.20)

Since C < 0 and A+ C > 0 we have A > 0.
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Also observe that when vL > vR (respectively, vR > vL) and uR > uL
then equation (5.19) (respectively, equation (5.20)) does not hold. This
situation is depicted in Figure 4.

Further, when vR = vL, i.e., C = 0 from the equation f4(z) = 0 yields

z = vLe
uL−uR

2 which on replacing vL = vR = v0, uR = ur, uL = u` and
z = Vm recovers the result in the equation (37) of Ref.[6] .

Lemma 5.5. Let A and C be defined as in (5.10). If the solution to the
Riemann problem for the system (3.1), with initial conditions (5.1), consists
of only 1-rarefaction wave (respectively, 2-rarefaction wave) then A > 0,
C > 0 and A− C = 0 (respectively, A > 0, C < 0 and A+ C = 0).

Proof. Let the solution be given through 1-wave as a rarefaction wave only,
then in view of (5.6) − (5.7), we have ṽ > vL, ṽ = vR and ũ = uR, i.e.,

uL+log
(
vL
vR

)
= uR, which implies that A−C = 0. Similarly, when solution

is given through 2- rarefaction wave, it can be easily shown that A + C =
0.

Lemma 5.6. Let A and C be defined as in (5.10). If the solution to the
Riemann problem for the system (3.1), with initial conditions (5.1), consists
of only 1-shock wave (respectively, 2-shock wave) then A < 0, C < 0 and
A− 2 sinh(C/2) = 0 (respectively, A < 0, C > 0 and A+ 2 sinh(C/2) = 0).

Proof. Let solution be given through 1-wave as a shock wave only, then in
view of (5.2)− (5.3), we have ṽ < vL, ṽ = vR and ũ = uR, i.e., uL− vR−vL√

vLvR
=

uR which implies A − 2 sinh(C/2) = 0. Similarly, when solution is given
through 2-wave as a shock wave, it can be proved that A− C = 0.

We next give the following two theorems, which in fact, complete our
discussion relating to the complete characterization of the solution of the
Riemann problem under consideration.

Theorem 5.1. Let A and C be defined as in (5.10). Consider the solution
to the Riemann problem for the system (3.1), with initial conditions (5.1).
Then 1-rarefaction wave (respectively, 1-shock wave) is a solution to the
Riemann problem if and only if A + max(2 sinh(C/2), C) > 0 (respectively,
A+ max(2 sinh(C/2), C) < 0).

Proof. Observe that if C > 0 (respectively; C < 0) then min(C, 2 sinh(C/2)) =
C (respectively; min(C, 2 sinh(C/2)) = 2 sinh(C/2)).

Let the 1-wave be a rarefaction wave. Then, from Lemmas 5.3, 5.4 and
5.5, we have

1. A < 0, C > 0, A+ 2 sinh(C/2) > 0 ⇒ A+ max(C, 2 sinh(C/2)) > 0.
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2. A > 0, C < 0, A+ C > 0 ⇒ A+ max(C, 2 sinh(C/2)) > 0.

3. A > 0, C > 0 ⇒ A+ C > 0 and A+ 2 sinh(C/2) > 0.

Thus, if the 1 -wave is a rarefaction wave then A+max(C, 2 sinh(C/2)) > 0.
Let the 1 -wave be a shock wave then from Lemmas 5.1, 5.2 and 5.6 we

have

1. A < 0, C > 0, A+ 2 sinh(C/2) < 0 ⇒ A+ max(C, 2 sinh(C/2)) < 0.

2. A > 0, C < 0, A+ C < 0 ⇒ A+ max(C, 2 sinh(C/2)) < 0.

3. A < 0, C < 0 ⇒ A+ C < 0 and A+ max(C, 2 sinh(C/2)) < 0.

Thus, if the 1 -wave is a shock wave then A+ max(C, 2 sinh(C/2)) < 0.
To prove the converse, let A + max(2 sinh(C/2), C) > 0, then the we

have one of the following possibilities

� A > 0, C > 0.

� A > 0, C < 0, A+ C > 0

� A < 0, C > 0, A+ 2 sinh(C/2) > 0,

which lead us to conclude that the 1-wave cannot be a shock wave as the
above inequalities are contradicting the consequences of lemmas 5.1, 5.2 and
5.6 . Hence, the 1-wave is a rarefaction wave.

Now, let A + max(2 sinh(C/2), C) < 0, then the we have one of the
following possibilities

� A < 0, C < 0.

� A > 0, C < 0, A+ C < 0.

� A < 0, C > 0, A+ 2 sinh(C/2) < 0,

which imply that the 1-wave is not a rarefaction wave as the above inequal-
ities are contradicting the consequences of lemmas 5.3, 5.4 and 5.5. Hence,
the 1-wave is a shock wave.

Theorem 5.2. Let A and C be defined as in (5.10). Consider the solution
to the Riemann problem for the system (3.1), with initial conditions (5.1).
Then, 2-rarefaction wave (respectively, 2-shock wave) is a solution to the
Riemann problem if and only if A −min(2 sinh(C/2), C) > 0 (respectively,
A−min(2 sinh(C/2), C) < 0).

Proof. Observe that if C > 0 (respectively; C < 0) then min(C, 2 sinh(C/2)) =
C (respectively; min(C, 2 sinh(C/2)) = 2 sinh(C/2)).

Let 2 -wave be a rarefaction wave then from Lemmas 5.2, 5.4 and 5.5 we
have
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1. A > 0, C < 0 ⇒ A− C > 0 and A− 2 sinh(C/2) > 0.

2. A > 0, C > 0, A− C > 0 ⇒ A−min(C, 2 sinh(C/2)) > 0.

3. A < 0, C < 0, A− 2 sinh(C/2) > 0 ⇒ A−min(C, 2 sinh(C/2)) > 0.

Thus, if 2 -wave is a rarefaction wave then A − min(C, 2 sinh(C/2)) > 0.
However, if the 2 -wave is a shock wave then from Lemmas 5.1, 5.3 and 5.6
we have

1. A < 0, C > 0 ⇒ A− C < 0 and A− 2 sinh(C/2) < 0.

2. A > 0, C > 0, A− C < 0 ⇒ A−min(C, 2 sinh(C/2) < 0.

3. A < 0, C < 0, A− 2 sinh(C/2) < 0 ⇒ A−min(C, 2 sinh(C/2)) < 0.

Thus, if 2 -wave is a shock wave then A−min(C, 2 sinh(C/2) < 0.
To prove the converse, let A−min(2 sinh(C/2), C) > 0, then the we have

one of the following possibilities

� A > 0, C < 0.

� A > 0, C > 0, A− C > 0.

� A < 0, C < 0, A− 2 sinh(C/2) > 0.

Assume that 2-wave is a shock wave, then the above inequalities are contra-
dicting the consequences of lemmas 5.1, 5.3 and 5.6. Hence, the 2-wave is a
rarefaction wave.

Now, let A+max(2 sinh(C/2), C) < 0; then we have one of the following
possibilities

� A < 0, C > 0.

� A > 0, C < 0, A− C < 0.

� A < 0, C < 0, A− 2 sinh(C/2) < 0.

Assume that 2-wave is a rarefaction wave, then the above possibilities are
contradicting lemmas 5.2, 5.4 and 5.5. Hence, the 2-wave is a shock wave.
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Figure 1: S1 and S2 are, respectively, the back-shock and the front shock;
regions x < S1(t), S1(t) < x < S2(t), and x > S2(t) are depicted as I, II and
III respectively.
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Figure 2: Region behind the back-shock S1 is depicted as I; region S1(t) <
x < R3(t) between S1 and the trail characteristic R3 of the front rarefaction
wave III is depicted as II; region x > R4(t) ahead of the front rarefaction is
depicted as IV.
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Figure 3: The region x < R1(t) is depicted as I; back rarefaction region
R1(t) < x < R2(t) is depicted as II; the region R2(t) ≤ xS2(t) is depicted
as III and the region x > S2(t) is depicted as IV.
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Figure 4: The region x < R1(t) is depicted as I; II is the back rarefaction
wave region; region R2(t) ≤ x ≤ R3(t) between front and back rarefaction is
depicted as III; IV is the front rarefaction wave region and region x > R4(t)
is depicted as V.
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