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1 | INTRODUCTION

In this paper, we prove the global existence of classical solutions to the following initial-boundary value problem which
describing the dynamics of predator-prey chemotaxis system:

uy, = mAu + x Ve (0, Vv) + ou (1 —uy —ajuy), x€Q, >0,

Uy, = Ay — EV - (1, VV) + oyuy(1 + ayu; —uy), x€EQ, >0,

vV, = ui3Av+af(ap) + () —yv, xeQ, t>0, 2)
Do oo, X €0Q,1>0,

u(,0)=u w(,0) =uy, V(0 =y, x € Q,

TGlobal existence of predator-prey chemotaxis system
0 Abbreviations:Parabolic two species predator-prey chemotaxis system
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in a smooth bounded domain Q C R”,n > 1 with boundary 0€2. Here v represents the unit outward normal to d€2. The functions
u; = u(x,#) and u, = u,(x,1?) describe the densities of the populations of prey and predators, respectively, and v = v(x, )
denotes the concentration of the common chemical attractant. Here p,, u,, ps, x, &, 0y, 05, a,, a,, a, f and y are positive
constants and the initial data u,,, u,, and v, are non-negative functions. The constants y,, 4, and 5 are denoted as diffusion
coefficients which state the natural dispersive force of the movements of the prey, predator and attractant, respectively. y and
¢ are the chemotaxis sensitivities, besides the term yV - (u; Vv) represents the chemorepulsion, that is, the directional prey
movements away from a substance secreted by the predator and the term —¢V - (u, Vv) describes the chemoattraction, that is,
the directional predator movements towards the substance secreted by the prey. o, and o, are indicating that the growth rates
of prey and predator, respectively. a; and a, represent the interactions between two species. The parameters a and f are the
production rate of the prey and predator, respectively, and y is the decay rate of the chemical attractant.

In this paper, we assume that the function f(s) € C1([0, oo]) satisfies the condition

0< f(s) <Ks, for K,I>0, and s>0. 3)
In addition, we also assume that the initial values u,, u,, and v, satisfy
u,€C'Q), with u,>0 inQ
uy, € C'Q), with uyy >0 inQ, 4)
vy € WH(Q), for some q > max{2,n}, with v,>0 inQ.

The chemotaxis is the directional movement of a micro-organism response to the chemical stimulus. In 1970, the classical
chemotaxis system was the first introduced by Keller-Segel in'!

u, = Au—V - Vo),
{ v, = Av—-v+u,

where u and v denote the cell density and the concentration of chemical signals, respectively, and the author provided a detailed
analysis of the aggregation process of the cells. The Keller-Segel system and modified Keller-Segel system were studied exten-
sively by many researchers in the past decades. For the recent developments in this field one can refer the recent reviews by
Lankeit and Winkler? and Gurusamy and Tyagi” and the references therein. This field has been attracted by many researchers
due to its importance in the fields related to chemotaxis systems such as biology, medicine and other sciences.

To the better understanding of the system (2), the two-species chemotaxis system with competitive kinetics

u, = d\Au— | V-uVw) + pu(l —u—av),
v, = dyAv — 1,V - WVw) + pyu(1 — v — au), (&)
Tw, = d;Aw + au+ v —yw,

proposed and discussed about the asymptotic stability of the system under some suitable conditions on the logistic source
coefficients with = 0 by Tello and Winkler. Many research works has been done in the parabolic-parabolic-elliptic case among
them existence and boundedness of classical solutions for the two dimensional case of the system (3) withd, = d, =d; =d, =0
were investigated in” and for asymptotic behavior (see®”). When a; € (0, 1) and a, € (0, 1), Lin et. al.¥ studied the global
boundedness of the solutions under the assumption that the coefficients y; and u, are sufficiently large. Moreover, the solution
approaches the steady-state solution as t — oo exponentially. On the other hand, when a; > 1 and a, € (0, 1) and if y, is large
then the solution of the system (5) converges toward (0,1,1) as # — oo in algebraic. It is worth to notice that the proposed results
of 7% were improved in”. Further, the existence and boundedness of classical solutions studied by Wang'% and the author also
established that the relation between the coefficients of system (5) which improved the results of ¢,

For the fully parabolic case, the unique global uniformly bounded classical solution to (3) discussed in1123 under the
suitable assumptions on the coefficients . In'#%%l the authors studied the existence of classical solutions to the system (3) and
conducted the numerical simulations as well. Bai and Winkler'® proved that the unique bounded classical solution to (3)) in the
space dimension n < 2. On the other hand, forn > 1,if a; < 1 and a, < 1 and both y, and y, are sufficiently large, the solution
of the system (5)) converges to a unique positive spatially homogeneous equilibrium of (). Besides, if a; > 1 and a, < 1, and
1, is large, then the solution of the system approaches <0, 1, i—f) uniformly and later this condition improved by Mizukami'’
and Zhang and Niu'%, It is to be noted that Mizukami® were improved the conditions for the asymptotic behavior in the case
a;,a, € (0,1) assumed in the above research works'*Z, Htwe and Wang“? studied the global boundedness of solutions to the
system under some weaker conditions. Based on the maximal Sobolev regularity, the existence of a globally bounded classical
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solution to the system (3) in n > 3 established by Zhou and Yang in“Y. Zhang and Li% proved that the system possess a unique
global bounded solution provided the domain is convex and y; and u, are sufficiently large. The authors also established that the
existence of global weak solution for any y#; > 0 and p, > 0. For the three dimensional case, the results of*1%2% were partially
improved by Li and Wang?*. The existence and boundedness of solutions for the two and three-dimensional cases were proved
by Gao et al. in? under the assumption that chemotaxis coefficients are smaller than the diffusion coefficient.

The existence of solutions to predator-prey systems with chemotaxis term is under intensive investigation. Let us review some
of the existing results in literature. Amorim and Telch considered the chemotaxis predator-prey system with indirect pursuit-
evasion and studied the well-posedness of the system using the de Giorgi method and presented the numerical simulations
as well. Haskell and Bell2Z proved the existence of solutions for the predator-mediated co-existence system. Furthermore, the
authors also obtained the pattern formations using bifurcation analysis and finally they validated the analytical results through
the numerical solutions of the system. Negreanu® discussed about the global existence and boundedness of solutions to the
chemotaxis prey-predator system and they proved the asymptotic behaviour of the system for the different ranges of parameters.
Li et. al.”% showed that the global boundedness of solutions of the predator-prey system with indirect pursuit-evasion in the
space dimension n < 3. Moreover, the stability of the solution also provided if b4 < u and the small assumptions on y and
&. On the other hand, if b4 > u and the small condition on y then the solution converges to (4,0) as t — oo. Later, Ahn and
Yo00-Y shown that the global solvability of the prey-predator system with indirect predator-taxis up to the space dimension two.
Furthermore, the authors also obtained the stability of the bounded solution by using Lyapunov function.

In®Y, Fu and Miao proposed the following two-species chemotaxis predator-prey system

uy,, = diAuy+ yV - @, Vo) + pu (1 —uy —equy),
Uy, = dryAuy — EV - (U, VU) + ppur (1 — uy + esuy), (6)
v, = d3Av + auy + fu, — yv,

and they showed that the global existence of classical solution to the system (6]) under the suitable assumptions of the parameters
Uy, My, €; and e, in th space dimension n < 2. Furthermore, they also proved that the unique positive equilibrium is globally

L}

asymptotically stable for e, < 1 if both and #2 were sufficiently large. Nevertheless, if e, > 1 and —; are sufficiently

2 2

large then the solution converges to the semi-triviaf equilibrium point uniformly as  — oo by using Lyapunov functions. Very
recently, the chemotaxis predator-prey system (6) with d, = d, = d; = 1 in three-dimension discussed by Miao et. al. in®2, The
authors also derived that the global boundedness for the predator-prey densities in L? norm and the signal gradient in L* norm.

Motivated by the above mentioned research works, in this paper, we consider the system to prove the global existence
and boundedness of classical solution under suitable conditions on the parameters a, and a, and the non-negative initial data
(1,0, Uy, Vo) € COQ) X COQ) x WH(Q) for Q C R",n > 1.

Our article is organized as follows: In Section 2, we present some basic inequalities and key lemma and we prove the local
existence of classical solution. Section 3 deals with boundedness and global existence of classical solution to the system (2).
Finally, in Section 4, we formulate the conclusion.

Theorem 1. Let n > 1, let Q C R” be a bounded domain with smooth boundary. Assume that the parameters p;, u,, us, x,

¢, 0y, 0y, a;, a,, a, f and y are positive and ¢ > max{2,n}. Moreover, forany p > 1,0 </ < 1 and 6 > 0 we choose

+Dp+1
e (o, w),izlﬂsatisfy

p
L L
< < 0'2 > P+l < ( O'l > p+l
a —_— , a P ,
'\ 26,C(p) > 7\ 20,C(p)

. 0] 1 o) 1
min { (? —C(pyal* 0'2), (5 — C(p)a’t 61>} > 5,

then for any initial data (u,, u,, v,) satisfy (@), the system (2)) possesses a unique classical solution (u,, u,, v) which is uniformly
bounded in the sense that

i

such that, if

llu; G, Dl @) + Iap (Dl ) + IVC Dllwraey <€, V>0,

where the constants C(p) and C are positive.
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2 | PRELIMINARIES AND LOCAL EXISTENCE

We recall some useful inequalities and key lemma which we are going to use in the sequel. In this section, we begin with the
local existence of solutions to system (2) which is standard and its proof is based on the ideas of=3.,

Definition 1 (Cauchy’s inequality with ¢5%),
ab§€a2+ib2, a,b>0,e > 0.
4e
Definition 2 (Young’s inequality with €2%). Let 1 < p, ¢ < oo, ﬁ + }] = 1. Then
ab < ea’ + C(e)b?, a,b>0,e >0,
for C(e) = (ep)_fq".

Definition 3 (Holder’s inequality®*). Assume 1 < p, g < oo, i + i = 1. Then if u € LP(Q), v € LY4(Q), we have
[ tuvlax <l ¥l

Definition 4 (Interpolation inequality®#). Assume 1 < s < r <t < oo and % =240 9) , Suppose also u € L$(Q) n LY(Q).
Then u € L (Q) and

llall < Ml Muall 7
Definition 5 (The Gagliardo-Nirenberg inequality®*). Fix 1 < ¢,r <
number « and a natural number j are such that

l=i+<l—m>a+l_a and A
p n r n q m

oo and a natural number m. Suppose also that a real

<a<l,
then

”Dju”Lp(Q) < Cl”Dmu”Lr(Q)”u”Lq(Q) + C2||u||LS(gz),
where s > 0 is arbitrary.

Lemma 1 (Local Existence). Let n > 1, let & C R” be a bounded smooth domain with smooth boundary. Suppose that the
parameters y, 4,, 4z, ¥, &, 01, 05, a;, a,, a, f and y are positive and g > max{2, n}. Then there exists T,,, € (0, 0] and a
uniquely determined triple (u,, u,, v) of nonnegative functions

uleC"(Qx [0, max)) C“(QX(O, max)>,

0, € C (@ [0. T ) ) N C¥ (2 (0. T )

> max

> 7 max

vEC (@ [0.T) ) N € (R (0. ) ) N Lize ([0, T ) s WHIQ),

solving (2) classically in € X (0, T,,,,). Furthermore, if T,,,, < oo, then
fli%nlax (IIul(”t)||L°°(Q) + [[uy (Dl e ) + ”v("t)“WL‘I(Q)) = 0. 7
Moreover, the solution (u;, u,, v) satisfies
1y Dl < my = max {{luggllys. 121} 1 € (0, Tyna): ®)
Iy DIy < my = i’ 1 € (0, Tp0)s &)

014

0'10'2((11 + az) |Q| }

where C; = max | o,a,||u +0,a,||u -
3 { 205 [lwgllig) 14y [y Il 1) min{o,0,)
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Proof. Letw = (u;,u,,v) € R3, then system @) can be reformed as

w, = V- (AWVW) + f(w), xEQ, >0,
= =0, xXeEQ >0,
w(x,0) = (up, Uy, vp), x € 09,
where
Hp 0 yu ou(l —u; —ajuy)
AW) =0 p, —Cuy |, JwW) =1 oomy(1 +au; —wy)
0 0 puy af(u)+pf(uy)—yv

Using theorem 14.4 of*¥ we can ensure the existence of weak maximal solution. Also the solution is classical and satisfies ([2)
pointwise cf. theorem 14.6 of**. Further, (7) follows from theorem 15.5 of*.

Next, from first equation of () we see that
d 2
— [ uy <o u —oc uj,
dr =" _/ ! ! / !

Q Q Q
using Cauchy-Schwarz inequality, we get
2
d 0y
i fwse fog| ]
Q Q Q

by ODE comparison argument gives (8). Next, Integrating the sum of the 6,a, times the first equation in (Z)) and the o, a, times
the second equation in (2) on Q by parts

d d
E O'2a2l11 + a O'lallI2 = 616202“1 - 0-10-2(12“% + 0'10'2a1112 - O-lazalu%,

Q Q Q Q Q Q
using Cauchy Schawrz inequality and Young’s inequality we see that

d d
5 | 2™ + 7 | Oam < - [ oi00a,u; — | 0,0,a,u,+0,0,|Q|(a; + a,),
Q Q Q Q

take z(¢) = / o,au; + / 6,a,u, by ODE argument, gives (9). O
Q Q

Lemma 2. (See Cao'll'and Hieber??). Let r € (1, o). Consider the following evolution equation

¥y, =Ay-y+g, xeQ, t>0,
Z—f=0, x€0Q, >0, (10)
¥(x,0) = yo(x), x e Q.

For each y, € W2T(Q) such that % =0onodQandany g € L* ((O, T); Lr(Q)), there exists a unique solution

ye W“((O, T);L‘(Q)) n L‘((O, T);W“(Q)).

Moreover, for any s, € [0, T), there exists C(r) > 0 such that for all s € (s, T") we have

T T T T
[[y+] [wrs] [imwse [ [rerec [vec [ianr an
S @ S @ Q Q Q )

So So

T T
//wmwsq//wqu/%+q/MMﬁ (12)
5% Q 5% Q Q )

Next we prove the main theorem of our system (2).

and
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3 | GLOBAL EXISTENCE

In this section, we prove the global existence and boundedness of the solution to (2). First we drive LP(€2) norm for u; and u,.
Given any s, € (0,T,,,) such that s, < 1, from Lemma (I) gives u,(:, 5y),u,(-, 5), V(-, so) € C*(Q) with % = 0, we pick
K > 0 such that

sup |lu; (-, )L ) < K, sup |luy (-, )L () < K, sup IV, $)llLwig) < K and  [[AVC, $)|[pe) < K. (13)

0<5<sg 0<5<s, 0<5<s,

Next, we drive boundedness in t € (sg, Tyay)-

Lemma 3. Let Q C R", n > 1 be a bounded domain with smooth boundary 0Q, the parameters y,, y,, s, ¥, &, 0, 05, ay,

o+ 1p+1
a,, a, f and y are positive constants. For any p > 1,0 < / < 1 and there exists 6 > 0 choose y; € | 0, & where
p
i = 1,2 satisfy
1 1
(zew) =< (mtw)”
al < - N a2 < sy N
20,C(p) 20,C(p)
such that, if
min { (ﬁ — C(p)a”“crz) , (2 — C(p)apHal)} > 6,
2 2 2 1
then
||u1(‘»t)||Lp(g) + ||u2(‘,t)||Lp(g) <C, Vit € (S, Tinax)s (14)

for some C(p), C(ulo, Uyg, Vo, H1s Hp> 01507, 6,x,p, ) > 0.

Proof. Multiply with u"l’_l, p > 1, in the first equation of () and integrate with respect to Q, we get

/uhu’l’_1 = /41/ “'Au, + )(/ PV (0 VY) + oy /u‘l’_lul(l —u, —au,),

Q Q Q Q
Applying integration by parts, we get

1d - _
P u‘l’:—yl(p—l)/u‘l’ 2|Vu1|2—;((p—1)/u‘1J 1Vu1VV+(71/u‘1’—01/u‘l’J'1 —alal/u‘l’uz,

Q Q Q Q Q Q

Again use of integration by parts to the second term in R.H.S of the last equation leads to

1

1d = —/,[l(p—l)/ "2|V P+ (p )/ ”Av+al/u —61/ —alal/u”uz,
pdt

1

__br+! u—,ul(p—l)/ w7 v, + )/ u’Av +—/ +61/u —01/ u’t!
P Q
—alal/ll[;llz,
Q

ol 1 + 1
=_T/u —Gl/u‘l’“—#l(l?—l)/ p2|Vu1|z+x(P )/quv+<al+pP >/u?
Q “ ’
—aldl/uuz,
Q

+1
—/u’;—al/ufl’“+Il+12+13+14. (15)
p
Q

=

=
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Using Gagliardo-Nirenberg inequity and Young’s inequality to the first term in R.H.S of (I3]), we get

212 » (2@ p |2(1=a) 22
/u’1’= u; SC(Vuf ulfl . Huf ),
J 12(Q) 12(Q) L? (@ L? (@

. : L RA-0N T R
Se(Vuf > +CC(€)< 12 ) +C uf ,
L2(Q) Ls Q) Le (&)
» ‘ 22
$€<Vu12 > +Cylulf ,
12(Q) L? Q)
, 1
<el|Vu’ + Cylluy (-, ¢
> < 1 LZ(Q> 0” 1( )”LI(Q)
4 —1
(” v +c..
LZ(Q)
41
(p )/‘ +C1’
4(p—1 b N2
S#/(Euf Vul) e
p 2
Q
2
Ap-1p [ (%
< (p2 )p—/uf2>|Vu1|2+cl,
p 4 J

therefore, we get

/ufg(p—l)/uf‘2|Vul|2+cl,
Q Q

. 4(p-1) 1
with €, = Cym”, C()—< > > <Z) (1 - a),

follows:

where a =

1
2

+ |

S =

NI
N I—=

16)

€ (0,1). Now we estimate I, using (I6) as

11=—M1(p—1)/u’f_2|V111I2S—m/ﬂ’f+ﬂ1C1-
o

Next, for p > 1, (1 - —) < 1, we have

Now applying Young’s inequality with k > 0, we get

I, < K/ (ul)(l+ )+C(K)/()(|AV|)I)+1

/IAVI”“,

Q

< K’/u‘;’Jr1 + Cyi P P!
Q

AR

Q

Q

/ uf|Avl.

Q

a7
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P l+p

p+1
II+I3=<61+T_#1>/UI;+M1C1’
o
_ 1
o+ 1\ 1 p+1 r
Sn/ u’ ﬂ+11”(—> — o1 +—— —pu + 1, Cy,
J (u}) ) p+lg 1 » 1 1¢1

< n/ i, (18)

1
where C, = <Ii> L . Again, using Young’s inequality with # > 0, we obtain,

1\ 1 s . .
where C; = 7" <p ki ) ! <01 +2 L ,ul> |Q] + 4, C,. Again, use of Young’s inequality,
p

p+t1 p
(o3 ptl
_ P ¥4 1 ¥4 p+1 p+1 p+1
14——/(116111 u, S/alaluluz <5 (u?) " +C(o)d] /u2 ,
Q Q Q
o2

1
1 2

|
0|

1 1 p+l |
uer + Cyo lp f+ ot /uer
Q

0]
2

IA

/
/

u’*! +C4ap+10'1/u§+1, (19)
Q

1 -p
with C4 = <p+ > ll_ <%) .SubstitUte@ @Dln@we see that
p
1d p+1 ) 6 1
;a/ufs_ p /u?_"l/“fﬂ""f/“fH*‘CzK pl”“/IAV|”+1+11/uf“+C3+?1/uf+
Q Q Q Q o 5 J

+1 o
<- pT uj — <?l -k - ’1) /u’lJ+1 + Cy P P! / |Av|PH 4 C4a’1’+10'1 /u§+1 + C;,
o Q

4 l/u )/u‘l’+l+C2K"’)(”+l/|AV|”+1+C4a’1’+lal/u’2’+l+C3. (20)
dr|p

Q Q Q Q Q
Applying the variation-of-constants formula to (20), we obtain

t t t

o
l/u:l: < - <71_K_r])/e—(p+1)(t—s)/u117+1 +C2K_—p1p+l/e—(p+l)(t—s)/ |Av|P*! +C4a[17+10_1/e—(p+1)(t—s)/u§+1
p
Q

So Q S0 Q So Q
+ Cs, 2n

—
IN
I
—
aS]
+
—_
N
SR
.—zm
|
—
|
I
o
I
=

where C; = 1 / u +C; % According to Lemma (2)), there exists C, > 0 such that
p p

t t

| 1 Ds |l I p+l 1 1
//e(p+ )sIAV|p+ Scp//e(P+ )vlau1+ﬂu2|p+ +Cp/V0P+ +Cp/|AVO|P+.
s Q so Q Q Q
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Thanks to the inequality (a + b)? < 29(a? + b%) with a,b > O and d > 1, we have

t t
1 1 1)s 1 1 1 +1
//e(P+ )S|AV|P+ < Cp / / e(PtDsppt+ |(au11)17+ + (ﬂulz)P+ | + Cp”VO”I‘J)Vz_p-H?
sy Q sy Q

(p+1)sHp+1 +1.1(p+1) +11(p+1) p+l
<C, / / P+Dsop <aP u + P, ) + CollVollyapeis
s Q

Applying Young’s inequality with 0 < / < 1, we get

// (P+Dsop+l o p+1 l(p+1)<CC // p+])s I(P‘H) +CC(§1)// p+])s ad p+l)L_

<C§1// (p+1)s P+1+CC(C)( p+1 p+1) ’|Q| ep+1)sds

So

1

-1
ﬁ) . Similarly, we obtain

where C(¢)) = (gl%)ﬁ (

t

So

<C52// (p+1)s p+1+CC(C)( p+]ﬂp+l) ,lgl e(p+l)sds

So

1 -1

with C(¢,) = <C2%> - <ﬁ) . Now we rewrite the inequality (22)) using (23) and (24) as

Cp// P+1)S2p+1ﬁp+1 /(p+l)<CC// (p+1)s l(p+1)> +CC(C2)// (p+1)s 2p+1ﬁp+1)+
Q
t

(22)

(23)

(24)

t t t
CzK—p)(p+le—(p+1)t / / e(p+1)slAV|p+l < szl(—p){p+1e—(p+1)thC1 / / e(p+1)sull7+1 + CZK_p)(p+1€_(p+l)thC2 / / e(p+1)su§+1
so Q sp Q 5o Q

+C6+C7+C8’

L
with Cg = C,x?x"*'C,C(¢)) (27! P+1)1 71Q Jlrl C; = G Py C,C(G) (27 7 ) T 1Q Jlrl and
p
Cg = C,Cyx P yPHle P+ ||v0||’;21p+1. Substltutlng the last inequality (23) in to 1)), we get

l/ufﬁ— ——K'— // —(p+D)(t—s) p+1+C2C Cl’f )(p+1// —(p+1)=5)y p+1
p
Q
+C2CpC2K_p)(p+1//e_(”“)("s)ug“ +C4a[1J+151//e—(p+1)(t—s)u127+l s
5o Q 5 Q

Combining the terms in the last inequality, we obtain

t

(25)

(26)

t
1 0] - 1 —(p+1)(t=s), p+1 - 1 +1 —(p+1)(t=s), pH1
I—)/u’l’ <- <7 —k—n—=CC, k7P " )//e D=y 4 (C2CPC2K PPt 4+ Cydl al> e D=yl

Q s Q s Q
+C9.

@7
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Similarly, we estimate for u, as

t

t
1 p %2 —pgp+l —(p+1)(t—s),Pt+1 —p gp+l p+1 —(p+1)(t—s),Pt+1
;/uz <- (7 — K== O KE ) DIy (cchgzx Pt 4 Cal 02) D=y

Q 5o Q 5o Q
+ Cyp» (28)

where the constant C;, > 0. Adding the inequalities (Z7) and (28), we obtain

t

/ u’ + / — (= =k =n=CC5 7y = C,C Lok TPE — "“az) / / eIy *!

5o Q
t

02 - 1 - - 1
_ (7 —k—n-— C2C LS p§p+1 _ CZCpCZK p}(p+1 _ C4a111+ (71) / / Palandy s)u12J+
5o Q

+Cyyps (29)
where C;; > 0. Let
6 =max {k + C,C,5,k 77 " + C,C, 0k PE Kk + C,C Lk TPE + C,C 0Kk Py

we may choose
such that
and

Hence, we deduce from (29), that

1 /u';+/u’2’ <Ch VEE (5, Ty, (30)
p
Q Q
where the constant C;; = C(u,q, Uy, Vo, 11, K5 $15 &, Py |Q]) > 0. N

Lemma 4. Let the assumptions of Lemma 3 hold. Suppose that the initial data u,,, u,, and v, satisfy @) and the parameters
Ui, Has M3, X, €, 01, 04, a4, ay, a, f and y are positive constants. Let ¢ > max{2,n},p>land0 </ < 1. If

sup (110, ¢ Dllacy + 10 Dllacy ) < o0, (3D

1€(50-Tmax)

for some p > g, then we have

(sup )<”u1(‘,t)”L°°(Q) + ”u2("t)”Lw(Q) + ||V(‘,t)”w1~q(g)> < 00. (32)
1€(S0,Tnax

Proof. Let ¢ > max{2,n} and for each fixed p > g there holds

0, if >n,
LU S o (33)
(n—p), vy if 3<p<n
and choose g < (n and 1 < r < g fulfillingn < r < —/— - p) which enables to choose p > 1, n < pr < ( = and pr < q. We

Py
fix arbitrary ¢t € (s, Ty,y)- Applying the variation of constants formula to the third equation of (2), we get

max
t

v(-, 1) = e—V(f—So)ellz(f_So)AVO + / e—y(t—S)eus(t—S)A(af (ul(.’ s)) +p8f (uz(" s)) )ds

S0
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Now,
t

—r(t— —sp)A (-
1VVC, Dl < 70|V 0by o +/e y(1—s)

So

Ve (0, .9) + 7 (wnC.9)

S
Ler(Q)

By using the estimates for the Neumann heat semigroup (Winkler®) and pr < g, we obtain

IVVC, D) < C e_y(t_SO)HVo”wn.q(Q)
t

1 nf1 1
+ Cz/e—y(t—S) (1 + (- s)‘i‘i(Z‘,?)) e At=s)

af (w(.9) +f (00 9)|| o dss G

So
where C; and C, are positive constants. Because of our assumption pr < ﬁ and pr < ¢, we can ensure that
Lon(l_ 1Y\,
2 2\p opr ’
o0
/ x e = A I(1 - n), for Re(n) < 1, Re(1) > 0,
0
thus using Gamma function, we obtain
o0
_L__(l_ )
/e‘7¢<1+§ 22\ o >e <o
0
Since 0 < I < 1, we use Young’s inequality to get
2
/ £ < ellsil g + COK T, (35)
Q

— 1

where c(€) = (?)E <ﬁ> . Substituting (33)) in to (34), we conclude that

IVVC, Dl @) < CillVollwrag) + C3 < sup (”W('J)”u(g) + ”u2('at)”LP(Q)>> + Cy.

1€(50:Tinax)

max

Where C; and C, are positive constants. Finally, we obtain
IVv(., t)”LPl‘(Q) <Cs, Vi€ (59, Tiax)- (36)

where Cs > 0. Let 7, = max{s,,  — 1}, and using variation of constants formula to the first equation of (2)), we get

t t
(1) =eﬂl<f—'o>Au1(-,t0)+;(/eﬂl(’—mv- (ul(-,s)VV(~,s)>ds+0'1 /eﬂl<’—smu1(-,s)(1 —uy(9) —aluz(-,s)>ds. (37)

) )

Next, taking L>(Q) on both sides of (37)), we obtain

t
WD wre < [leE0Ay (¢ H Ml(r—s)AV_<u - VY-, )
lay ¢ D) < lle 1G5 10) L°°(£2)+){ lle 1, 9)VV(, s) Le@
11

0

ds
Le(Q)

t
+ 0, / “eul(t—s)Aul(-, s)(l —u,(-, 5) — ayu,(-, s))

forall t € (g, Tp,)- If t < 1, then ¢, = 5, we can use the maximum principle,
—t)A —sp)A
”eﬂl(t fo) ul("to)“Lm(Q) = ”eﬂl(t ) ul("so)”Lm(Q) < ||u1('a50)||Loo(Q)~
If # > 1, using Neumann heat semigroup (Winkler=®) property, with C > 0

—t)A -z
[|er1 =10 u, (-, 7)oy < CU = 19) 2 [luy (-, 1)) < Cmy,
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because ¢ — 7, = 1. In view of the estimates for the Neumann heat semigroup (Winkler=%), C, > 0 satisfying

t

______ 1
I, ¢ Dl < max{|lu; ¢, so)llpeq). Cmy } + ;(CG/ (1 +(t—29) -3 w>> A=, (-, 5)VVE, s)“L ‘@
Ty
+o / e -5, s)(l —u,Cy5) — ayuy(-, s)> e (38)
Using the Cauchy’s inequahty with e, we have
oiu (1 —u; —agu,) <oju; — Glu%,
1
< aluf + Halz - aluf,
c
<2
4
Due to 7 — f, < 1 and the maximum principle, the last term in (38) can be written as
t
Hy(1=$)A — . —u (- 8) — . <L
o, / ||e e s)(l w, (-, 5) — ayuy(-, s)>“ 35S0 / Hul( ,s)<1 (-, 5) — aguy( ,s)) RS M ED)
To

Therefore, inserting (39) in (38)), we gte

t

L N
s Dl < max {19l Cmy } + 2C / (14 @=9775 )0

0

o
GV g ds+ 5 @0)

for all € (s¢, T,)- Here by using the Holder inequality and Interpolation inequality and (8] and (36), we obtain
||u1(',S)VV(',S)||Lr(Q) < (s S)”Lﬁr(g) IVv(, S)”Lpr(g),
< “ul('ss)” Lo (Q) ”ul( s)”Ll(Q) ”VV(, s)“LPr(Q),

S C7 ”ul(', s)”L“’(Q)’

where 7 'is the dual exponentof pand k = 1 — Al € (0,1),Vs € (t,, 1) and C; > 0. Inserting the last inequality in (@0}, it follows
pr

that
10, Dl oy < max { [, o)l Cy } + CoC T+ = 9775 ) ey () g ds + 2
lll ) Loo(g)_max ul ,SO L*(Q)» ml 6 7/1/ N r]e ul ’ L*(Q) N 4’
0

where % + 21r < 1 because of r > n. This gives
oo
/ 14+¢75m 2, e < .
0

0]
sup [lu; (-, Dllpe) < max {[u; (-, sp)llpe@y Cmy } + Cg sup |lu, (., t)||Lw(Q)+ e 41)
t€(sy.T) 1€(s0,T)

Thus we obtain

for all T € (s, Ty,x)- Now we define, M(T) := sup |[u;(:, )|l (q) The inequality (1) can be rewritten as
te(sy,T)

M(T) < Cy+ CSM"(T), VT € (59> Tipax)- 42)
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Using Young’s inequality with e,
CsM(T) <e (Mk(T))i + C(e) (cg)ﬁ .
< %M(T) + Ciys
= 1 \7L

where C(e) = <el>] ‘ <—> . Thus
k 1-k

M(T)§C9+%M(T)+C10§CH, VT € (59 Tnax)>
where C;; > 0. Finally, we conclude that
lu, ¢ D=y < Ciis V1€ (50, Tax)- (43)

Similarly, if we apply the above procedure, for u,, we can obtain

t t
Uy (-, 1) = =03y (1) — € / PRIV <u2(-, SHVVC, s))ds +0, / o=y (., s)(l + a0, 5) — Uy, s))ds,
Ty Iy

Next,
t

—tg)A —s)A
s Dlseq@y < et (o)l + € / o2 - (Vv )

Ty

ds
Le(Q)

t

+ 0'2/ | e =98y, (., s)(l + a,u, (-, 8) — uy(-, s)) @ (44)

)

A use of Cauchy’s inequality gives us that

w(l+au —u,y) <u,(1+au)— u%,
1
< u% + Z(l +au)? — ug,
1 2

< e (45)

Therefore, substituting @3) in to @), we get

1

" o5(1 + a,Cy,)?
e Dll gy < 5 {5y G} 4 6Ci [ (140907875 e ol e

w(-, )V, s)”ers +

4
Ty
(46)
Again, we deduce that
luy (-, Dllp=(@) < Cias V1 € (Sp Thnax)s “4n
where Cj3 > 0. O

Proof of the Theorem (I). Lemmas (3) and (@) imply that @3)) and (7)) and holds for t € (s, T},,,)- Using (I3), we can
conclude that

lla; . Dl o) < Chas luy (- Dl < Cis and V(. Dllwra) < Cies Vi€ (0, T ). (48)

This completes the proof of Theorem ().

4 | CONCLUSIONS

In this paper, we proved the local and global existence of classical solution to the two species predator-prey chemotaxis system

@).
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