References
[1] S. Satarker, M. Nampoothiri, Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2, Arch. Med. Res. 51 (2020) 482–491. https://doi.org/10.1016/j.arcmed.2020.05.012.
[2] M.J. Bakkers, Y. Lang, L.J. Feitsma, R.J. Hulswit, S.A. de Poot, A.L. van Vliet, I. Margine, J.D. de Groot-Mijnes, F.J. van Kuppeveld, M.A. Langereis, Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity, Cell Host Microbe. 21 (2017) 356–366.
[3] J. Rasheed, A.A. Hameed, C. Djeddi, A. Jamil, F. Al-Turjman, A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images, Interdiscip. Sci. Comput. Life Sci. (2021). https://doi.org/10.1007/s12539-020-00403-6.
[4] C. Yin, Genotyping coronavirus SARS-CoV-2_ methods and implications, (2020) 9.
[5] S.M. Nur, Md.A. Hasan, M.A. Amin, M. Hossain, T. Sharmin, Design of Potential RNAi (miRNA and siRNA) Molecules for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Gene Silencing by Computational Method, Interdiscip. Sci. Comput. Life Sci. 7 (2015) 257–265. https://doi.org/10.1007/s12539-015-0266-9.
[6] A.A.T. Naqvi, K. Fatima, T. Mohammad, U. Fatima, I.K. Singh, A. Singh, S.M. Atif, G. Hariprasad, G.M. Hasan, Md.I. Hassan, Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach, Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1866 (2020) 165878. https://doi.org/10.1016/j.bbadis.2020.165878.
[7] A. Khan, M. Tahir Khan, S. Saleem, M. Junaid, A. Ali, S. Shujait Ali, M. Khan, D.-Q. Wei, Structural insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein, Comput. Struct. Biotechnol. J. 18 (2020) 2174–2184. https://doi.org/10.1016/j.csbj.2020.08.006.
[8] Y.-Z. Zhang, E.C. Holmes, A Genomic Perspective on the Origin and Emergence of SARS-CoV-2, Cell. 181 (2020) 223–227. https://doi.org/10.1016/j.cell.2020.03.035.
[9] Y.-R. Guo, Q.-D. Cao, Z.-S. Hong, Y.-Y. Tan, S.-D. Chen, H.-J. Jin, K.-S. Tan, D.-Y. Wang, Y. Yan, The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status, Mil. Med. Res. 7 (2020) 1–10.
[10] M.T. Khan, A. Ali, Q. Wang, M. Irfan, A. Khan, M.T. Zeb, Y.-J. Zhang, S. Chinnasamy, D.-Q. Wei, Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2. A molecular dynamic study, J. Biomol. Struct. Dyn. 0 (2020) 1–14. https://doi.org/10.1080/07391102.2020.1769733.
[11] M.T. Khan, SARS-CoV-2 nucleocapsid and Nsp3 binding: an in silico study, Arch. Microbiol. (n.d.) 8.
[12] S. Elbe, G. Buckland‐Merrett, Data, disease and diplomacy: GISAID’s innovative contribution to global health, Glob. Chall. 1 (2017) 33–46. https://doi.org/10.1002/gch2.1018.
[13] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic Acids Res. 28 (2000) 235–242.
[14] A. Roy, A. Kucukural, Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction., Nat. Protoc. 5 (2010) 725–38.
[15] Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics. 9 (2008) 40–40. https://doi.org/10.1186/1471-2105-9-40.
[16] C.H. Rodrigues, D.E. Pires, D.B. Ascher, DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability, Nucleic Acids Res. 46 (2018) W350–W355. https://doi.org/10.1093/nar/gky300.
[17] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J. Yuan, Z. Xie, J. Ma, W.J. Liu, D. Wang, W. Xu, E.C. Holmes, G.F. Gao, G. Wu, W. Chen, W. Shi, W. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, The Lancet. 395 (2020) 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8.
[18] J.F.-W. Chan, K.-H. Kok, Z. Zhu, H. Chu, K.K.-W. To, S. Yuan, K.-Y. Yuen, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Microbes Infect. 9 (2020) 221–236.
[19] Y. Shu, J. McCauley, GISAID: Global initiative on sharing all influenza data – from vision to reality, Eurosurveillance. 22 (2017). https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494.
[20] P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao, Z.-L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature. 579 (2020) 270–273. https://doi.org/10.1038/s41586-020-2012-7.
[21] S. Kumar, Drug and vaccine design against Novel Coronavirus (2019-nCoV) spike protein through Computational approach, Prepr. Www Prepr. OrgInternet. (2020).
[22] Y. Cai, J. Zhang, T. Xiao, H. Peng, S.M. Sterling, R.M.W. Jr, S. Rawson, S. Rits-Volloch, B. Chen, Distinct conformational states of SARS-CoV-2 spike protein, (2020) 8.
[23] D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge, Virol. J. 16 (2019) 1–22.
[24] A. Sternberg, C. Naujokat, Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination, Life Sci. 257 (2020) 118056. https://doi.org/10.1016/j.lfs.2020.118056.
[25] Y. Wan, J. Shang, R. Graham, R.S. Baric, F. Li, Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus, J. Virol. 94 (2020).
[26] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, X. Wang, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature. 581 (2020) 215–220. https://doi.org/10.1038/s41586-020-2180-5.
[27] Q. Wang, Y. Zhang, L. Wu, S. Niu, C. Song, Z. Zhang, G. Lu, C. Qiao, Y. Hu, K.-Y. Yuen, Q. Wang, H. Zhou, J. Yan, J. Qi, Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2, Cell. 181 (2020) 894-904.e9. https://doi.org/10.1016/j.cell.2020.03.045.
[28] B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G. Seidah, E. Decroly, The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res. 176 (2020) 104742.
[29] Q. Li, J. Wu, J. Nie, L. Zhang, H. Hao, S. Liu, C. Zhao, Q. Zhang, H. Liu, L. Nie, H. Qin, M. Wang, Q. Lu, X. Li, Q. Sun, J. Liu, L. Zhang, X. Li, W. Huang, Y. Wang, The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity, Cell. 182 (2020) 1284-1294.e9. https://doi.org/10.1016/j.cell.2020.07.012.
[30] L. Zhang, C.B. Jackson, H. Mou, A. Ojha, H. Peng, B.D. Quinlan, E.S. Rangarajan, A. Pan, A. Vanderheiden, M.S. Suthar, W. Li, T. Izard, C. Rader, M. Farzan, H. Choe, SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity, Nat. Commun. 11 (2020) 6013. https://doi.org/10.1038/s41467-020-19808-4.
[31] J.A. Plante, Y. Liu, J. Liu, H. Xia, B.A. Johnson, K.G. Lokugamage, X. Zhang, A.E. Muruato, J. Zou, C.R. Fontes-Garfias, D. Mirchandani, D. Scharton, J.P. Bilello, Z. Ku, Z. An, B. Kalveram, A.N. Freiberg, V.D. Menachery, X. Xie, K.S. Plante, S.C. Weaver, P.-Y. Shi, Spike mutation D614G alters SARS-CoV-2 fitness, Nature. (2020). https://doi.org/10.1038/s41586-020-2895-3.
[32] B. Korber, W.M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, N. Hengartner, E.E. Giorgi, T. Bhattacharya, B. Foley, et al., Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus, Cell. 182 (2020) 812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043.
[33] E.B. Hodcroft, M. Zuber, S. Nadeau, K.H.D. Crawford, J.D. Bloom, D. Veesler, T.G. Vaughan, I. Comas, F.G. Candelas, T. Stadler, R.A. Neher, Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020, MedRxiv. (2020). https://doi.org/10.1101/2020.10.25.20219063.
[34] S. Fiorentini, S. Messali, A. Zani, F. Caccuri, M. Giovanetti, M. Ciccozzi, A. Caruso, First detection of SARS-CoV-2 spike protein N501 mutation in Italy in August, 2020, Lancet Infect. Dis. 0 (2021). https://doi.org/10.1016/S1473-3099(21)00007-4.
[35] P.K. Singh, U. Kulsum, S.B. Rufai, S.R. Mudliar, S. Singh, Mutations in SARS-CoV-2 Leading to Antigenic Variations in Spike Protein: A Challenge in Vaccine Development, J. Lab. Physicians. 12 (2020) 154–160. https://doi.org/10.1055/s-0040-1715790.
[36] B. Durmaz, O. Abdulmajed, R. Durmaz, Mutations Observed in the SARS-CoV-2 Spike Glycoprotein and Their Effects in the Interaction of Virus with ACE-2 Receptor, Medeni. Med. J. (2020). https://doi.org/10.5222/MMJ.2020.98048.
[37] M.A. Tortorici, M. Beltramello, F.A. Lempp, D. Pinto, H.V. Dang, L.E. Rosen, M. McCallum, J. Bowen, A. Minola, S. Jaconi, F. Zatta, A.D. Marco, B. Guarino, S. Bianchi, E.J. Lauron, H. Tucker, J. Zhou, A. Peter, C. Havenar-Daughton, J.A. Wojcechowskyj, J.B. Case, R.E. Chen, H. Kaiser, M. Montiel-Ruiz, M. Meury, N. Czudnochowski, R. Spreafico, J. Dillen, C. Ng, N. Sprugasci, K. Culap, F. Benigni, R. Abdelnabi, S.-Y.C. Foo, M.A. Schmid, E. Cameroni, A. Riva, A. Gabrieli, M. Galli, M.S. Pizzuto, J. Neyts, M.S. Diamond, H.W. Virgin, G. Snell, D. Corti, K. Fink, D. Veesler, Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms, Science. 370 (2020) 950–957. https://doi.org/10.1126/science.abe3354.
[38] G.B. Chand, A. Banerjee, G.K. Azad, Identification of twenty-five mutations in surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics, Gene Rep. 21 (2020) 100891. https://doi.org/10.1016/j.genrep.2020.100891.
[39] P. Pradhan, A.K. Pandey, A. Mishra, P. Gupta, P.K. Tripathi, M.B. Menon, J. Gomes, P. Vivekanandan, B. Kundu, Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag, Evolutionary Biology, 2020. https://doi.org/10.1101/2020.01.30.927871.
[40] D.X. Liu, Q. Yuan, Y. Liao, Coronavirus envelope protein: A small membrane protein with multiple functions, Cell. Mol. Life Sci. 64 (2007) 2043–2048. https://doi.org/10.1007/s00018-007-7103-1.
[41] T.S. Fung, D.X. Liu, Post-translational modifications of coronavirus proteins: roles and function, Future Virol. 13 (2018) 405–430. https://doi.org/10.2217/fvl-2018-0008.
[42] T.R. Ruch, C.E. Machamer, The Hydrophobic Domain of Infectious Bronchitis Virus E Protein Alters the Host Secretory Pathway and Is Important for Release of Infectious Virus, J. Virol. 85 (2011) 675–685. https://doi.org/10.1128/JVI.01570-10.
[43] C. Verdiá-Báguena, J.L. Nieto-Torres, A. Alcaraz, M.L. DeDiego, L. Enjuanes, V.M. Aguilella, Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge, Biochim. Biophys. Acta BBA - Biomembr. 1828 (2013) 2026–2031. https://doi.org/10.1016/j.bbamem.2013.05.008.
[44] W. Surya, Y. Li, J. Torres, Structural model of the SARS coronavirus E channel in LMPG micelles, Biochim. Biophys. Acta BBA - Biomembr. 1860 (2018) 1309–1317. https://doi.org/10.1016/j.bbamem.2018.02.017.
[45] M.K. Gupta, S. Vemula, R. Donde, G. Gouda, L. Behera, R. Vadde,In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel, J. Biomol. Struct. Dyn. (2020) 1–11. https://doi.org/10.1080/07391102.2020.1751300.
[46] M. Bianchi, D. Benvenuto, M. Giovanetti, S. Angeletti, M. Ciccozzi, S. Pascarella, Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics?, BioMed Res. Int. 2020 (2020) 1–6. https://doi.org/10.1155/2020/4389089.
[47] M.S. Rahman, M.N. Hoque, M.R. Islam, I. Islam, I.D. Mishu, Md.M. Rahaman, M. Sultana, M.A. Hossain, Mutational insights into the envelope protein of SARS-CoV-2, Gene Rep. 22 (2021) 100997. https://doi.org/10.1016/j.genrep.2020.100997.
[48] Y. Ye, B.G. Hogue, Role of the Coronavirus E Viroporin Protein Transmembrane Domain in Virus Assembly, J. Virol. 81 (2007) 3597–3607. https://doi.org/10.1128/JVI.01472-06.
[49] E.A. J Alsaadi, I.M. Jones, Membrane binding proteins of coronaviruses, Future Virol. 14 (2019) 275–286. https://doi.org/10.2217/fvl-2018-0144.
[50] A.L. Arndt, B.J. Larson, B.G. Hogue, A Conserved Domain in the Coronavirus Membrane Protein Tail Is Important for Virus Assembly, J. Virol. 84 (2010) 11418–11428. https://doi.org/10.1128/JVI.01131-10.
[51] S. Thomas, The Structure of the Membrane Protein of SARS-CoV-2 Resembles the Sugar Transporter SemiSWEET, Pathog. Immun. 5 (2020) 342. https://doi.org/10.20411/pai.v5i1.377.
[52] Y.-T. Tseng, S.-M. Wang, K.-J. Huang, A.I.-R. Lee, C.-C. Chiang, C.-T. Wang, Self-assembly of Severe Acute Respiratory Syndrome Coronavirus Membrane Protein, J. Biol. Chem. 285 (2010) 12862–12872. https://doi.org/10.1074/jbc.M109.030270.
[53] X. Fang, J. Gao, H. Zheng, B. Li, L. Kong, Y. Zhang, W. Wang, Y. Zeng, L. Ye, The membrane protein of SARS-CoV suppresses NF-κB activation, J. Med. Virol. 79 (2007) 1431–1439. https://doi.org/10.1002/jmv.20953.
[54] Y. Wang, L. Liu, The Membrane Protein of Severe Acute Respiratory Syndrome Coronavirus Functions as a Novel Cytosolic Pathogen-Associated Molecular Pattern To Promote Beta Interferon Induction via a Toll-Like-Receptor-Related TRAF3-Independent Mechanism, MBio. 7 (2016) e01872-15, /mbio/7/1/e01872-15.atom. https://doi.org/10.1128/mBio.01872-15.
[55] R. Arya, S. Kumari, B. Pandey, H. Mistry, S.C. Bihani, A. Das, V. Prashar, G.D. Gupta, L. Panicker, M. Kumar, Structural insights into SARS-CoV-2 proteins, J. Mol. Biol. 433 (2021) 166725. https://doi.org/10.1016/j.jmb.2020.11.024.
[56] N.K. Dutta, K. Mazumdar, J.T. Gordy, The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development, 94 (2020) 2.
[57] W. Zeng, Biochemical characterization of SARS-CoV-2 nucleocapsid protein, Biochem. Biophys. Res. Commun. (2020) 6.
[58] L.E. Gralinski, V.D. Menachery, Return of the Coronavirus: 2019-nCoV, Viruses. 12 (2020) 135.
[59] P. V’kovski, M. Gerber, J. Kelly, S. Pfaender, N. Ebert, S. Braga Lagache, C. Simillion, J. Portmann, H. Stalder, V. Gaschen, R. Bruggmann, M.H. Stoffel, M. Heller, R. Dijkman, V. Thiel, Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling, ELife. 8 (2019) e42037. https://doi.org/10.7554/eLife.42037.
[60] S. Kang, M. Yang, Z. Hong, L. Zhang, Z. Huang, X. Chen, S. He, Z. Zhou, Z. Zhou, Q. Chen, Y. Yan, C. Zhang, H. Shan, S. Chen, Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites, Acta Pharm. Sin. B. 10 (2020) 1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009.
[61] C. Chang, S.-C. Sue, T. Yu, C.-M. Hsieh, C.-K. Tsai, Y.-C. Chiang, S. Lee, H. Hsiao, W.-J. Wu, W.-L. Chang, C.-H. Lin, T. Huang, Modular organization of SARS coronavirus nucleocapsid protein, J. Biomed. Sci. 13 (2006) 59–72. https://doi.org/10.1007/s11373-005-9035-9.
[62] C.-K. Chang, Y.-L. Hsu, Y.-H. Chang, F.-A. Chao, M.-C. Wu, Y.-S. Huang, C.-K. Hu, T.-H. Huang, Multiple Nucleic Acid Binding Sites and Intrinsic Disorder of Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Implications for Ribonucleocapsid Protein Packaging, J. Virol. 83 (2009) 2255–2264. https://doi.org/10.1128/JVI.02001-08.
[63] H. Luo, F. Ye, K. Chen, X. Shen, H. Jiang, SR-Rich Motif Plays a Pivotal Role in Recombinant SARS Coronavirus Nucleocapsid Protein Multimerization, (n.d.) 8.
[64] C.-Y. Chen, C. Chang, Y.-W. Chang, S.-C. Sue, H.-I. Bai, L. Riang, C.-D. Hsiao, T. Huang, Structure of the SARS Coronavirus Nucleocapsid Protein RNA-binding Dimerization Domain Suggests a Mechanism for Helical Packaging of Viral RNA, J. Mol. Biol. 368 (2007) 1075–1086. https://doi.org/10.1016/j.jmb.2007.02.069.
[65] A. Savastano, A. Ibáñez de Opakua, M. Rankovic, M. Zweckstetter, Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates, Nat. Commun. 11 (2020) 6041. https://doi.org/10.1038/s41467-020-19843-1.
[66] M.S. Rahman, M.R. Islam, A.S.M.R.U. Alam, I. Islam, M.N. Hoque, S. Akter, Md.M. Rahaman, M. Sultana, M.A. Hossain, Evolutionary dynamics of SARS‐CoV‐2 nucleocapsid protein and its consequences, J. Med. Virol. (2020) jmv.26626. https://doi.org/10.1002/jmv.26626.
[67] H.Y.L. Tung, P. Limtung, Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein and structure model of sequestration by protein 14-3-3, Biochem. Biophys. Res. Commun. 532 (2020) 134–138. https://doi.org/10.1016/j.bbrc.2020.08.024.
[68] G.K. Azad, Identification and molecular characterization of mutations in nucleocapsid phosphoprotein of SARS-CoV-2, PeerJ. 9 (2021) e10666. https://doi.org/10.7717/peerj.10666.
Table 1. Number of mutations in structural protein of CoV-2