References
[1] S. Satarker, M. Nampoothiri, Structural Proteins in Severe Acute
Respiratory Syndrome Coronavirus-2, Arch. Med. Res. 51 (2020) 482–491.
https://doi.org/10.1016/j.arcmed.2020.05.012.
[2] M.J. Bakkers, Y. Lang, L.J. Feitsma, R.J. Hulswit, S.A. de Poot,
A.L. van Vliet, I. Margine, J.D. de Groot-Mijnes, F.J. van Kuppeveld,
M.A. Langereis, Betacoronavirus adaptation to humans involved
progressive loss of hemagglutinin-esterase lectin activity, Cell Host
Microbe. 21 (2017) 356–366.
[3] J. Rasheed, A.A. Hameed, C. Djeddi, A. Jamil, F. Al-Turjman, A
machine learning-based framework for diagnosis of COVID-19 from chest
X-ray images, Interdiscip. Sci. Comput. Life Sci. (2021).
https://doi.org/10.1007/s12539-020-00403-6.
[4] C. Yin, Genotyping coronavirus SARS-CoV-2_ methods and
implications, (2020) 9.
[5] S.M. Nur, Md.A. Hasan, M.A. Amin, M. Hossain, T. Sharmin, Design
of Potential RNAi (miRNA and siRNA) Molecules for Middle East
Respiratory Syndrome Coronavirus (MERS-CoV) Gene Silencing by
Computational Method, Interdiscip. Sci. Comput. Life Sci. 7 (2015)
257–265. https://doi.org/10.1007/s12539-015-0266-9.
[6] A.A.T. Naqvi, K. Fatima, T. Mohammad, U. Fatima, I.K. Singh, A.
Singh, S.M. Atif, G. Hariprasad, G.M. Hasan, Md.I. Hassan, Insights into
SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies:
Structural genomics approach, Biochim. Biophys. Acta BBA - Mol. Basis
Dis. 1866 (2020) 165878. https://doi.org/10.1016/j.bbadis.2020.165878.
[7] A. Khan, M. Tahir Khan, S. Saleem, M. Junaid, A. Ali, S. Shujait
Ali, M. Khan, D.-Q. Wei, Structural insights into the mechanism of RNA
recognition by the N-terminal RNA-binding domain of the SARS-CoV-2
nucleocapsid phosphoprotein, Comput. Struct. Biotechnol. J. 18 (2020)
2174–2184. https://doi.org/10.1016/j.csbj.2020.08.006.
[8] Y.-Z. Zhang, E.C. Holmes, A Genomic Perspective on the Origin
and Emergence of SARS-CoV-2, Cell. 181 (2020) 223–227.
https://doi.org/10.1016/j.cell.2020.03.035.
[9] Y.-R. Guo, Q.-D. Cao, Z.-S. Hong, Y.-Y. Tan, S.-D. Chen, H.-J.
Jin, K.-S. Tan, D.-Y. Wang, Y. Yan, The origin, transmission and
clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an
update on the status, Mil. Med. Res. 7 (2020) 1–10.
[10] M.T. Khan, A. Ali, Q. Wang, M. Irfan, A. Khan, M.T. Zeb, Y.-J.
Zhang, S. Chinnasamy, D.-Q. Wei, Marine natural compounds as potents
inhibitors against the main protease of SARS-CoV-2. A molecular dynamic
study, J. Biomol. Struct. Dyn. 0 (2020) 1–14.
https://doi.org/10.1080/07391102.2020.1769733.
[11] M.T. Khan, SARS-CoV-2 nucleocapsid and Nsp3 binding: an in
silico study, Arch. Microbiol. (n.d.) 8.
[12] S. Elbe, G. Buckland‐Merrett, Data, disease and diplomacy:
GISAID’s innovative contribution to global health, Glob. Chall. 1 (2017)
33–46. https://doi.org/10.1002/gch2.1018.
[13] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.
Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic
Acids Res. 28 (2000) 235–242.
[14] A. Roy, A. Kucukural, Y. Zhang, I-TASSER: a unified platform
for automated protein structure and function prediction., Nat. Protoc. 5
(2010) 725–38.
[15] Y. Zhang, I-TASSER server for protein 3D structure prediction,
BMC Bioinformatics. 9 (2008) 40–40.
https://doi.org/10.1186/1471-2105-9-40.
[16] C.H. Rodrigues, D.E. Pires, D.B. Ascher, DynaMut: predicting
the impact of mutations on protein conformation, flexibility and
stability, Nucleic Acids Res. 46 (2018) W350–W355.
https://doi.org/10.1093/nar/gky300.
[17] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H.
Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou,
Z. Hu, W. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J. Yuan, Z.
Xie, J. Ma, W.J. Liu, D. Wang, W. Xu, E.C. Holmes, G.F. Gao, G. Wu, W.
Chen, W. Shi, W. Tan, Genomic characterisation and epidemiology of 2019
novel coronavirus: implications for virus origins and receptor binding,
The Lancet. 395 (2020) 565–574.
https://doi.org/10.1016/S0140-6736(20)30251-8.
[18] J.F.-W. Chan, K.-H. Kok, Z. Zhu, H. Chu, K.K.-W. To, S. Yuan,
K.-Y. Yuen, Genomic characterization of the 2019 novel human-pathogenic
coronavirus isolated from a patient with atypical pneumonia after
visiting Wuhan, Emerg. Microbes Infect. 9 (2020) 221–236.
[19] Y. Shu, J. McCauley, GISAID: Global initiative on sharing all
influenza data – from vision to reality, Eurosurveillance. 22 (2017).
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494.
[20] P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang,
H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H.
Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng,
K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang,
G.-F. Xiao, Z.-L. Shi, A pneumonia outbreak associated with a new
coronavirus of probable bat origin, Nature. 579 (2020) 270–273.
https://doi.org/10.1038/s41586-020-2012-7.
[21] S. Kumar, Drug and vaccine design against Novel Coronavirus
(2019-nCoV) spike protein through Computational approach, Prepr. Www
Prepr. OrgInternet. (2020).
[22] Y. Cai, J. Zhang, T. Xiao, H. Peng, S.M. Sterling, R.M.W. Jr,
S. Rawson, S. Rits-Volloch, B. Chen, Distinct conformational states of
SARS-CoV-2 spike protein, (2020) 8.
[23] D. Schoeman, B.C. Fielding, Coronavirus envelope protein:
current knowledge, Virol. J. 16 (2019) 1–22.
[24] A. Sternberg, C. Naujokat, Structural features of coronavirus
SARS-CoV-2 spike protein: Targets for vaccination, Life Sci. 257 (2020)
118056. https://doi.org/10.1016/j.lfs.2020.118056.
[25] Y. Wan, J. Shang, R. Graham, R.S. Baric, F. Li, Receptor
recognition by the novel coronavirus from Wuhan: an analysis based on
decade-long structural studies of SARS coronavirus, J. Virol. 94 (2020).
[26] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X.
Shi, Q. Wang, L. Zhang, X. Wang, Structure of the SARS-CoV-2 spike
receptor-binding domain bound to the ACE2 receptor, Nature. 581 (2020)
215–220. https://doi.org/10.1038/s41586-020-2180-5.
[27] Q. Wang, Y. Zhang, L. Wu, S. Niu, C. Song, Z. Zhang, G. Lu, C.
Qiao, Y. Hu, K.-Y. Yuen, Q. Wang, H. Zhou, J. Yan, J. Qi, Structural and
Functional Basis of SARS-CoV-2 Entry by Using Human ACE2, Cell. 181
(2020) 894-904.e9. https://doi.org/10.1016/j.cell.2020.03.045.
[28] B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G.
Seidah, E. Decroly, The spike glycoprotein of the new coronavirus
2019-nCoV contains a furin-like cleavage site absent in CoV of the same
clade, Antiviral Res. 176 (2020) 104742.
[29] Q. Li, J. Wu, J. Nie, L. Zhang, H. Hao, S. Liu, C. Zhao, Q.
Zhang, H. Liu, L. Nie, H. Qin, M. Wang, Q. Lu, X. Li, Q. Sun, J. Liu, L.
Zhang, X. Li, W. Huang, Y. Wang, The Impact of Mutations in SARS-CoV-2
Spike on Viral Infectivity and Antigenicity, Cell. 182 (2020)
1284-1294.e9. https://doi.org/10.1016/j.cell.2020.07.012.
[30] L. Zhang, C.B. Jackson, H. Mou, A. Ojha, H. Peng, B.D. Quinlan,
E.S. Rangarajan, A. Pan, A. Vanderheiden, M.S. Suthar, W. Li, T. Izard,
C. Rader, M. Farzan, H. Choe, SARS-CoV-2 spike-protein D614G mutation
increases virion spike density and infectivity, Nat. Commun. 11 (2020)
6013. https://doi.org/10.1038/s41467-020-19808-4.
[31] J.A. Plante, Y. Liu, J. Liu, H. Xia, B.A. Johnson, K.G.
Lokugamage, X. Zhang, A.E. Muruato, J. Zou, C.R. Fontes-Garfias, D.
Mirchandani, D. Scharton, J.P. Bilello, Z. Ku, Z. An, B. Kalveram, A.N.
Freiberg, V.D. Menachery, X. Xie, K.S. Plante, S.C. Weaver, P.-Y. Shi,
Spike mutation D614G alters SARS-CoV-2 fitness, Nature. (2020).
https://doi.org/10.1038/s41586-020-2895-3.
[32] B. Korber, W.M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W.
Abfalterer, N. Hengartner, E.E. Giorgi, T. Bhattacharya, B. Foley, et
al., Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases
Infectivity of the COVID-19 Virus, Cell. 182 (2020) 812-827.e19.
https://doi.org/10.1016/j.cell.2020.06.043.
[33] E.B. Hodcroft, M. Zuber, S. Nadeau, K.H.D. Crawford, J.D.
Bloom, D. Veesler, T.G. Vaughan, I. Comas, F.G. Candelas, T. Stadler,
R.A. Neher, Emergence and spread of a SARS-CoV-2 variant through Europe
in the summer of 2020, MedRxiv. (2020).
https://doi.org/10.1101/2020.10.25.20219063.
[34] S. Fiorentini, S. Messali, A. Zani, F. Caccuri, M. Giovanetti,
M. Ciccozzi, A. Caruso, First detection of SARS-CoV-2 spike protein N501
mutation in Italy in August, 2020, Lancet Infect. Dis. 0 (2021).
https://doi.org/10.1016/S1473-3099(21)00007-4.
[35] P.K. Singh, U. Kulsum, S.B. Rufai, S.R. Mudliar, S. Singh,
Mutations in SARS-CoV-2 Leading to Antigenic Variations in Spike
Protein: A Challenge in Vaccine Development, J. Lab. Physicians. 12
(2020) 154–160. https://doi.org/10.1055/s-0040-1715790.
[36] B. Durmaz, O. Abdulmajed, R. Durmaz, Mutations Observed in the
SARS-CoV-2 Spike Glycoprotein and Their Effects in the Interaction of
Virus with ACE-2 Receptor, Medeni. Med. J. (2020).
https://doi.org/10.5222/MMJ.2020.98048.
[37] M.A. Tortorici, M. Beltramello, F.A. Lempp, D. Pinto, H.V.
Dang, L.E. Rosen, M. McCallum, J. Bowen, A. Minola, S. Jaconi, F. Zatta,
A.D. Marco, B. Guarino, S. Bianchi, E.J. Lauron, H. Tucker, J. Zhou, A.
Peter, C. Havenar-Daughton, J.A. Wojcechowskyj, J.B. Case, R.E. Chen, H.
Kaiser, M. Montiel-Ruiz, M. Meury, N. Czudnochowski, R. Spreafico, J.
Dillen, C. Ng, N. Sprugasci, K. Culap, F. Benigni, R. Abdelnabi, S.-Y.C.
Foo, M.A. Schmid, E. Cameroni, A. Riva, A. Gabrieli, M. Galli, M.S.
Pizzuto, J. Neyts, M.S. Diamond, H.W. Virgin, G. Snell, D. Corti, K.
Fink, D. Veesler, Ultrapotent human antibodies protect against
SARS-CoV-2 challenge via multiple mechanisms, Science. 370 (2020)
950–957. https://doi.org/10.1126/science.abe3354.
[38] G.B. Chand, A. Banerjee, G.K. Azad, Identification of
twenty-five mutations in surface glycoprotein (Spike) of SARS-CoV-2
among Indian isolates and their impact on protein dynamics, Gene Rep. 21
(2020) 100891. https://doi.org/10.1016/j.genrep.2020.100891.
[39] P. Pradhan, A.K. Pandey, A. Mishra, P. Gupta, P.K. Tripathi,
M.B. Menon, J. Gomes, P. Vivekanandan, B. Kundu, Uncanny similarity of
unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag,
Evolutionary Biology, 2020. https://doi.org/10.1101/2020.01.30.927871.
[40] D.X. Liu, Q. Yuan, Y. Liao, Coronavirus envelope protein: A
small membrane protein with multiple functions, Cell. Mol. Life Sci. 64
(2007) 2043–2048. https://doi.org/10.1007/s00018-007-7103-1.
[41] T.S. Fung, D.X. Liu, Post-translational modifications of
coronavirus proteins: roles and function, Future Virol. 13 (2018)
405–430. https://doi.org/10.2217/fvl-2018-0008.
[42] T.R. Ruch, C.E. Machamer, The Hydrophobic Domain of Infectious
Bronchitis Virus E Protein Alters the Host Secretory Pathway and Is
Important for Release of Infectious Virus, J. Virol. 85 (2011) 675–685.
https://doi.org/10.1128/JVI.01570-10.
[43] C. Verdiá-Báguena, J.L. Nieto-Torres, A. Alcaraz, M.L. DeDiego,
L. Enjuanes, V.M. Aguilella, Analysis of SARS-CoV E protein ion channel
activity by tuning the protein and lipid charge, Biochim. Biophys. Acta
BBA - Biomembr. 1828 (2013) 2026–2031.
https://doi.org/10.1016/j.bbamem.2013.05.008.
[44] W. Surya, Y. Li, J. Torres, Structural model of the SARS
coronavirus E channel in LMPG micelles, Biochim. Biophys. Acta BBA -
Biomembr. 1860 (2018) 1309–1317.
https://doi.org/10.1016/j.bbamem.2018.02.017.
[45] M.K. Gupta, S. Vemula, R. Donde, G. Gouda, L. Behera, R. Vadde,In-silico approaches to detect inhibitors of the human severe
acute respiratory syndrome coronavirus envelope protein ion channel, J.
Biomol. Struct. Dyn. (2020) 1–11.
https://doi.org/10.1080/07391102.2020.1751300.
[46] M. Bianchi, D. Benvenuto, M. Giovanetti, S. Angeletti, M.
Ciccozzi, S. Pascarella, Sars-CoV-2 Envelope and Membrane Proteins:
Structural Differences Linked to Virus Characteristics?, BioMed Res.
Int. 2020 (2020) 1–6. https://doi.org/10.1155/2020/4389089.
[47] M.S. Rahman, M.N. Hoque, M.R. Islam, I. Islam, I.D. Mishu,
Md.M. Rahaman, M. Sultana, M.A. Hossain, Mutational insights into the
envelope protein of SARS-CoV-2, Gene Rep. 22 (2021) 100997.
https://doi.org/10.1016/j.genrep.2020.100997.
[48] Y. Ye, B.G. Hogue, Role of the Coronavirus E Viroporin Protein
Transmembrane Domain in Virus Assembly, J. Virol. 81 (2007) 3597–3607.
https://doi.org/10.1128/JVI.01472-06.
[49] E.A. J Alsaadi, I.M. Jones, Membrane binding proteins of
coronaviruses, Future Virol. 14 (2019) 275–286.
https://doi.org/10.2217/fvl-2018-0144.
[50] A.L. Arndt, B.J. Larson, B.G. Hogue, A Conserved Domain in the
Coronavirus Membrane Protein Tail Is Important for Virus Assembly, J.
Virol. 84 (2010) 11418–11428. https://doi.org/10.1128/JVI.01131-10.
[51] S. Thomas, The Structure of the Membrane Protein of SARS-CoV-2
Resembles the Sugar Transporter SemiSWEET, Pathog. Immun. 5 (2020) 342.
https://doi.org/10.20411/pai.v5i1.377.
[52] Y.-T. Tseng, S.-M. Wang, K.-J. Huang, A.I.-R. Lee, C.-C.
Chiang, C.-T. Wang, Self-assembly of Severe Acute Respiratory Syndrome
Coronavirus Membrane Protein, J. Biol. Chem. 285 (2010) 12862–12872.
https://doi.org/10.1074/jbc.M109.030270.
[53] X. Fang, J. Gao, H. Zheng, B. Li, L. Kong, Y. Zhang, W. Wang,
Y. Zeng, L. Ye, The membrane protein of SARS-CoV suppresses NF-κB
activation, J. Med. Virol. 79 (2007) 1431–1439.
https://doi.org/10.1002/jmv.20953.
[54] Y. Wang, L. Liu, The Membrane Protein of Severe Acute
Respiratory Syndrome Coronavirus Functions as a Novel Cytosolic
Pathogen-Associated Molecular Pattern To Promote Beta Interferon
Induction via a Toll-Like-Receptor-Related TRAF3-Independent Mechanism,
MBio. 7 (2016) e01872-15, /mbio/7/1/e01872-15.atom.
https://doi.org/10.1128/mBio.01872-15.
[55] R. Arya, S. Kumari, B. Pandey, H. Mistry, S.C. Bihani, A. Das,
V. Prashar, G.D. Gupta, L. Panicker, M. Kumar, Structural insights into
SARS-CoV-2 proteins, J. Mol. Biol. 433 (2021) 166725.
https://doi.org/10.1016/j.jmb.2020.11.024.
[56] N.K. Dutta, K. Mazumdar, J.T. Gordy, The Nucleocapsid Protein
of SARS–CoV-2: a Target for Vaccine Development, 94 (2020) 2.
[57] W. Zeng, Biochemical characterization of SARS-CoV-2
nucleocapsid protein, Biochem. Biophys. Res. Commun. (2020) 6.
[58] L.E. Gralinski, V.D. Menachery, Return of the Coronavirus:
2019-nCoV, Viruses. 12 (2020) 135.
[59] P. V’kovski, M. Gerber, J. Kelly, S. Pfaender, N. Ebert, S.
Braga Lagache, C. Simillion, J. Portmann, H. Stalder, V. Gaschen, R.
Bruggmann, M.H. Stoffel, M. Heller, R. Dijkman, V. Thiel, Determination
of host proteins composing the microenvironment of coronavirus replicase
complexes by proximity-labeling, ELife. 8 (2019) e42037.
https://doi.org/10.7554/eLife.42037.
[60] S. Kang, M. Yang, Z. Hong, L. Zhang, Z. Huang, X. Chen, S. He,
Z. Zhou, Z. Zhou, Q. Chen, Y. Yan, C. Zhang, H. Shan, S. Chen, Crystal
structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals
potential unique drug targeting sites, Acta Pharm. Sin. B. 10 (2020)
1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009.
[61] C. Chang, S.-C. Sue, T. Yu, C.-M. Hsieh, C.-K. Tsai, Y.-C.
Chiang, S. Lee, H. Hsiao, W.-J. Wu, W.-L. Chang, C.-H. Lin, T. Huang,
Modular organization of SARS coronavirus nucleocapsid protein, J.
Biomed. Sci. 13 (2006) 59–72.
https://doi.org/10.1007/s11373-005-9035-9.
[62] C.-K. Chang, Y.-L. Hsu, Y.-H. Chang, F.-A. Chao, M.-C. Wu,
Y.-S. Huang, C.-K. Hu, T.-H. Huang, Multiple Nucleic Acid Binding Sites
and Intrinsic Disorder of Severe Acute Respiratory Syndrome Coronavirus
Nucleocapsid Protein: Implications for Ribonucleocapsid Protein
Packaging, J. Virol. 83 (2009) 2255–2264.
https://doi.org/10.1128/JVI.02001-08.
[63] H. Luo, F. Ye, K. Chen, X. Shen, H. Jiang, SR-Rich Motif Plays
a Pivotal Role in Recombinant SARS Coronavirus Nucleocapsid Protein
Multimerization, (n.d.) 8.
[64] C.-Y. Chen, C. Chang, Y.-W. Chang, S.-C. Sue, H.-I. Bai, L.
Riang, C.-D. Hsiao, T. Huang, Structure of the SARS Coronavirus
Nucleocapsid Protein RNA-binding Dimerization Domain Suggests a
Mechanism for Helical Packaging of Viral RNA, J. Mol. Biol. 368 (2007)
1075–1086. https://doi.org/10.1016/j.jmb.2007.02.069.
[65] A. Savastano, A. Ibáñez de Opakua, M. Rankovic, M.
Zweckstetter, Nucleocapsid protein of SARS-CoV-2 phase separates into
RNA-rich polymerase-containing condensates, Nat. Commun. 11 (2020) 6041.
https://doi.org/10.1038/s41467-020-19843-1.
[66] M.S. Rahman, M.R. Islam, A.S.M.R.U. Alam, I. Islam, M.N. Hoque,
S. Akter, Md.M. Rahaman, M. Sultana, M.A. Hossain, Evolutionary dynamics
of SARS‐CoV‐2 nucleocapsid protein and its consequences, J. Med. Virol.
(2020) jmv.26626. https://doi.org/10.1002/jmv.26626.
[67] H.Y.L. Tung, P. Limtung, Mutations in the phosphorylation sites
of SARS-CoV-2 encoded nucleocapsid protein and structure model of
sequestration by protein 14-3-3, Biochem. Biophys. Res. Commun. 532
(2020) 134–138. https://doi.org/10.1016/j.bbrc.2020.08.024.
[68] G.K. Azad, Identification and molecular characterization of
mutations in nucleocapsid phosphoprotein of SARS-CoV-2, PeerJ. 9 (2021)
e10666. https://doi.org/10.7717/peerj.10666.
Table 1. Number of mutations in structural protein of CoV-2