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Abstract

This paper investigates the problem of H∞ state estimation of delayed recurrent memristive

neural networks (DRMNNs) with both continuous-time and discrete-time cases. By utilizing

Lyapunov-Krasovskii functional (LKF) and linear matrix inequalities (LMIs), two criterions are

provided to guarantee the asymptotically stable of the estimation error systems with a H∞ per-

formance. The connection weight parameters of DRMNNs are dealed with logical switching

signals, which greatly reduces the computational complexity. The given conditions can be easily

checked by solving LMIs, the obtained theoretical results are supported demonstrated by two

numerical examples.

Keywords: Recurrent memristive neural network; H∞ state estimation; Linear matrix
inequalities.

1. Introduction

Memristor, the fourth basic circuit elements, which was first proposed by Chua [1]. It is a

circuit device that represents the relationship between magnetic flux and charge. Unlike resis-

tance, memristor has the dimension of resistance, the resistance of memristor is determined by

the charge flowing through it. Thus, memristor is a kind of nonlinear resistance with memory

function because we can by measuring the resistance of the memristor. The resistance value can

be changed by controlling current. If the high resistance value is defined as 1 and the low one is

defined as 0, the function of data storage can be realized. Due to its small size and low energy
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consumption, memristors can store and process information well. Therefore, more and more

traditional resistors are replaced by memristors, and memristive neural networks (MNNs) have

been widely studied [2]-[5].

It is well known that time delay is inevitable in the implementation and application of neural

networks, which often leads to poor performance, such as oscillation, divergence. Thus many

good results have been obtained for the MNNs with time delays. For example, Zhao et al. [2]

described the memristor in detail and studied the finite-time synchronization of MNNs by using

LMIs and finite-time stability theory. In [3], the exponential synchronization of MNNs with

non-uniform time delay is discussed by using interval matrix method.

Moreover, it is often necessary to use the state information of neurons to achieve pinning

control, system modeling and state feedback control. Then it is very important to estimate the

state of neurons by available network outputs in practice. In general, it is difficult and expensive

to obtain the complete information of states of all neurons. Few results on state estimation for

MNNs are achieved. For example, the exponential state estimation for MNNs has been studied

by using multiobjective approach in [6], and Wei et al. [7] concerned the state estimation of

MNNs with time-varying delays by constructing LKF and combining Jensen integral inequality.

When investigated the state estimation of neural networks, a H∞ performance γ is unual-

ly considered. The H∞ state estimator guarantees that the energy-to-energy gain from external

disturbances to the estimation error is no more than a prescribed level γ. For the H∞ state es-

timation of MNNs, researchers focused on the discrete-time case, because this kinds of models

could perform better behaviors in some practical applications, for example, image processing op-

erations, higher brain functions and other fields. Among them, Shen et al. [10] investigated the

H∞ state estimation problem of Markov jump MNNs by virtue of the hidden Markov model ap-

proach. The H∞ state estimation in the discrete-time has been addressed under randomly mixed

time-delays and fading measurements in [12]. However, few results on H∞ state estimation for

continuous-time MNNs have been found. Thus, it is necessary to study H∞ state estimation of

continuous-time MNNs.

In addition, non-fragile means that the gain value (controller or observer) does not destroy

the stability of closed-loop system, which emphasizes the minimum precision in the controller

design. This kind of controller can achieve the goal of cost minimization and adjust the con-

trol parameters online, thus non-fragile control can meet the practical requirements, and it has
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important application value to design non-fragile controllers.

Based on the above consideration, this paper studied the problem of H∞ state estimation of

DRMNNs for continuous and discrete time cases. Since the MNNs are state-dependent system,

it is a difficult to overcome the problem of the parameter mismatch. For the continuous-time

model, differing from [10]-[12], the connection weight parameters of DRMNNs are dealed with

logical switching signals, which reduces the conservatism. The criterion of asymptotic stability

and H∞ performance of the estimation error system are obtained by non-fragile control. For

the discrete-time model, our models are more general than [10]-[11], and our theoretical result

reduce the control gain and cost effectively, it can be easily checked by solving LMIs.

The rest of this paper is organized as follows. In Section 2, some definitions, and lemmas are

given. The H∞ State Estimation of DRMNNs are studied with both continuous-time and discrete-

time cases in Section 3. Numerical simulation on several examples is illustrated in Section 4, and

the conclusions are drawn in Section 5.

Notation: Rn and Rn×n denote the n-dimensional Euclidean space and the set of n × n real

matrices, respectively. C([a, b],Rn) is the family of continuous function ϕ from [a, b] to Rn

with a ≤ b, ‖ · ‖ and ‖ · ‖2 represent l1- and l2- norms of the vector or matrix, respectively. ⊗

stands for the Kronecker protect of two matrices, In is the identity matrix of order n, and 0 means

zero matrix with proper dimension. ‘∗’ refers to the ellipsis in symmetric matrices expressions.

l2[0,∞) denotes the space of square-integrable vector functions defined on [0,∞).

2. Preliminaries

Before starting discuss, we introduce the following definitions and lemmas.

Definition 2.1. (Continuous-time) The error system is asymptotically stable and achieves a H∞

disturbance attenuation level γ, if the following conditions are satisfied:

(1) The estimation error system is asymptotically stable with the disturbance input ω(t) ≡ 0;

(2) The output r̄ under zero initial condition satisfies: ‖r̄‖2 ≤ γ‖ω(t)‖2 for any nonzero ω(t) ∈

l2[0,∞) for all t > 0.

Lemma 2.1. ([16]) For any constant matrix N ∈ Rn×n, N = NT , there exist a scalar ζ > 0,

such that

ζ

∫ ζ

0
χT (s)Nχ(s)ds ≥

( ∫ ζ

0
χ(s)ds

)T
N

( ∫ ζ

0
χ(s)ds

)
,
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where vector function χ : [0, ζ]→ Rn.

Lemma 2.2. (Schur Complement) Given constant matrices Φ1, Φ2, Φ3, where Φ1 = ΦT
1 and

Φ2 = ΦT
2 > 0, then

Φ1 + ΦT
3 Φ−1

2 Φ3 < 0,

if and only if (
Φ1 ΦT

3
Φ3 −Φ2

)
< 0.

Lemma 2.3. ([17]) For any vectors x, y ∈ Rn, scalar ε > 0, real matrices Φ,Ψ and U of

appropriate dimensions with UT U ≤ I, then

2xT ΦUΨy ≤ ε−1xT ΦΦT x + εyT ΨT Ψy.

3. Main results

In this section, we will derive the estimators for the continuous and discrete time DRMNN

by LKFs.

3.1. The continuous-time for DRMNNs

In this subsection, the state estimator for continuous-time DRMNNs shall be designed, and

some sufficient conditions for the asymptotical stability of its error system is derived by using

LKF technique.

Consider the following DRMNNs:{
ż(t) = −Cz(t) + A(z(t)) f (z(t)) + B(z(t)) f (z(t − τ(t))) + Lω(t),
r(t) = Ez(t), (1)

where z(t) = (z1(t), · · · , zn(t))T ∈ Rn is the neuron state vector, C = diag{c1, · · · , cn} with ci > 0

for i = 1, · · · , n, A(z(t)) = (ai j(zi(t)))n×n and B(z(t)) = (bi j(zi(t)))n×n represent the connection

weight matrices, r(t) is the output vector, the given weight E ∈ Rm×n, ω(t) ∈ l2[0,∞) is the

disturbance input, τ(t) is the time-varying delay, 0 ≤ τ(t) ≤ τ and τ̇(t) ≤ µ with τ and µ being

contants, and the activation function f (z(t)) = [ f1(z1(t)), · · · , fn(zn(t))]T .

Based on the feature of memristor, one has

ai j(zi(t)) =

{
ái j, zi(t) ≤ Ti,
ài j, zi(t) > Ti,

bi j(zi(t)) =

{
b́i j, zi(t) ≤ Ti,

b̀i j, zi(t) > Ti,
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where the switching jumps Ti ≥ 0 and ái j, ài j, b́i j, b̀i j are constants with ái j , ài j and b́i j , b̀i j.

The initial value of the system (1) is zi(s) = ϑi(s) ∈ C([−τ, 0],Rn) for i = 1, · · · , n.

Similar to [15], we set the logical switching signals as follows:

ρi(t) =

{
1, zi(t) ≤ Ti,
0, zi(t) > Ti.

Then the system (1) can be rewritten as:
ż(t) = −Cz(t) + ρ(t)[A∗ f (z(t)) + B∗ f (z(t − τ(t)))]

+(1 − ρ(t))[A∗∗ f (z(t)) + B∗∗ f (z(t − τ(t)))] + Lω(t),
r(t) = Ez(t),

(2)

where A∗ = (ái j)n×n, A∗∗ = (ài j)n×n, B∗ = (b́i j)n×n and B∗∗ = (b̀i j)n×n.

To develop some sufficient conditions for the H∞ state estimation, we consider the following

measurable network output for the system (2):

y(t) = Dz(t) + g(z(t)) + ω(t), (3)

where y(t) is the measurement output, D ∈ Rn×n is a given matrix, the nonlinear disturbances on

the network outputs g satisfies Lipschitz condition, i.e.:

|g(z) − g(z̃)| ≤ |G(z − z̃)|, (4)

with G ∈ Rn×n being a given matrix. Then we will consider the following non-fragile observer

to estimate the state of (2)
˙̃z(t) = −Cz̃(t) + ρ(t)[A∗(t) f (z̃(t)) + B∗(t) f (z̃(t − τ(t)))] + (1 − ρ(t))[A∗∗(t) f (z̃(t))

+B∗∗(t) f (z̃(t − τ(t)))] + (H + ∆H(t))[y(t) − ỹ(t)],
r̃(t) = Ez̃(t),
ỹ(t) = Dz̃(t) + g(z̃(t)),

(5)

where ∆H(t) = WF(t)N with W ∈ Rn×n2
, N ∈ Rn2×n and H is given matrix, FT (t)F(t) ≤ I, z̃(t),

r̃(t) and ỹ(t) are the estimations of z(t), r(t) and y(t), respectively.

Let e(t) = z(t) − z̃(t) and r̄(t) = r(t) − r̃(t) be the estimation error and output signal error,

respectively. Then
ė(t) = −Ce(t) + ρ(t)[A∗ϕ(e(t)) + B∗ϕ(e(t − τ(t)))] + (1 − ρ(t))[A∗∗ϕ(e(t)) + B∗∗ϕ(e(t − τ(t)))]

+ρ(t)[Ã∗(t) f (z̃(t)) + B̃∗(t) f (z̃(t − τ(t)))] + Lω(t) + (1 − ρ(t))[Ã∗∗(t) f (z̃(t))
+B̃∗∗(t) f (z̃(t − τ(t)))] + (H + ∆H(t))[De(t) + φ(t) + ω(t)],

r̄(t) = Ee(t),

(6)

where Ã∗(t) = A∗(t) − A∗, Ã∗∗(t) = A∗∗(t) − A∗∗, B̃∗(t) = B∗(t) − B∗, B̃∗∗(t) = B∗∗(t) − B∗∗,

ϕ(e(·)) = f (z(·)) − f (z̃(·)) and φ(·) = g(z(·)) − g(z̃(·)).
5



For the convenience of the later discussions, we need the following assumptions:

(A1) The activation function f j(·) is bounded, and there exist scalars F−j and F+
j , such that:

F−j ≤
f j(a) − f j(b)

a − b
≤ F+

j , | f j(·)| ≤ F j

for all a, b ∈ Rn, j = 1, · · · , n, F− = diag{F−1 , · · · ,F
−
n } and F+ = diag{F+

1 , · · · ,F
+
n }.

(A2) There exist positive scalars α1, α2, β1 and β2 , such that:

|a∗i j(t) − a∗i j| ≤ α1, |a∗∗i j (t) − a∗∗i j | ≤ α2, |b∗i j(t) − b∗i j| ≤ β1, |b∗∗i j (t) − b∗∗i j | ≤ β2

where α1, α2, β1 and β2 are constants. for i, j = 1, · · · , n.

Theorem 3.1. Assume that (A1)-(A2) hold. Then the systems (6) will be asymptotically stable if

there exist diagonal matrices Λ1 > 0, Λ2 > 0, and K > 0 with

ki ≥ max
{
2

n∑
j=1

max{α1 + β1, α2 + β2}F j,mi

}
, (7)

where j = 1, . . . , n, positive definite matrices Q,Q1, R,R1,(
M1 M2
∗ M3

)
and

(
N1 N2
∗ N3

)
with proper dimension matrices Ms and Ns (s = 1, 2, 3), and positive constants ς, ς1, such that

Ω =


Ω1 Ω2 ςΩ3 Ω4 ς1Ω5
∗ −ςI 0 0 0
∗ ∗ −ςI 0 0
∗ ∗ ∗ −ς1I 0
∗ ∗ ∗ ∗ −ς1I

 < 0, (8)

where Ω2 = (W/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , Ω3 = (ND + N, 0, 0, 0, 0, 0,N, 0, 0, 0,N)T , Ω4 =

(0, 0, 0, 0, 0, 0, 0, JW/2, 0, 0, 0)T , Ω5 = (ND, 0, 0, 0, 0, 0,N, 0, 0, 0,N)T ,

Ω1 =



Ω11 HG 0 Ω14 Ω15 0 L + H 0 0 H
∗ Ω22 0 0 Ω25 0 0 0 0 0
∗ ∗ Ω33 0 0 −M2 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −M3 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2In 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

τ
Q1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 − 1
τ
Q1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



, (9)
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Ω11 = −C + HD + Q + R + M1 + N1 + τ2Q1 − F−Λ1F+ + Λ1(F− + F+) + GT G + ET E, Ω14 =

M2 + N2 + 1
2 (A∗ + A∗∗), Ω15 = 1

2 (B∗ + B∗∗), Ω22 = −(1 − µ)(R + N1) − F−Λ2F+ + Λ2(F− + F+),

Ω25 = −(1 − µ)N2, Ω33 = −R − M1,Ω44 = M3 + N3 −Λ1, Ω55 = −(1 − µ)N3 −Λ2. Moreover, the

non-fragile observer gain H = N−1X.

Proof. Consider the following LKF for the system (6):

V(t, e(t)) =

4∑
p=1

Vp(t, e(t)),

where

V1(t, e(t)) =
1
2

eT (t)e(t) +

∫ t

0
eT (s)Ksign(e(s))ds,

V2(t, e(t)) =

∫ t

t−τ

(
e(s)

ϕ(e(s))

)T (
M1 M2
∗ M3

) (
e(s)

ϕ(e(s))

)
ds

+

∫ t

t−τ(t)

(
e(s)

ϕ(e(s))

)T (
N1 N2
∗ N3

) (
e(s)

ϕ(e(s))

)
ds,

V3(t, e(t)) =

∫ t

t−τ
eT (s)Qe(s)ds +

∫ t

t−τ(t)
eT (s)Re(s)ds,

V4(t, e(t)) =τ

∫ 0

−τ

∫ t

t+θ
eT (s)Q1e(s)dsdθ.

Then

V̇(t, e(t)) =

4∑
p=1

V̇p(t, e(t)),

and

V̇1(t, e(t)) =eT (t)ė(t) − eT (t)Ksign(e(t))

=eT (t)
{
−Ce(t) + ρ(t)[A∗ϕ(e(t)) + B∗ϕ(e(t − τ(t)))]

+ (1 − ρ(t))[A∗∗ϕ(e(t)) + B∗∗ϕ(e(t − τ(t)))]

− Ksign(e(t)) + ρ(t)[Ã∗(t) f (z̃(t)) + B̃∗(t) f (z̃(t − τ(t)))]

+ (1 − ρ(t))[Ã∗∗(t) f (z̃(t)) + B̃∗∗(t) f (z̃(t − τ(t)))] + Lω(t)

+ (H + ∆H(t))[De(t) + φ(t) + ω(t)]
}

≤ −eT (t)(C + HD)e(t) + eT (t)(A∗ + A∗∗)ϕ(e(t))

+ eT (t)(B∗ + B∗∗)ϕ(e(t − τ(t))) + eT (t)(L + H)ω(t)

+ eT (t)∆H(t)De(t) + eT (t)∆H(t)ω(t) + eT (t)(H + ∆H(t))φ(t)

(10)
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where the last step follows by (7) and

eT (t)
{
ρ(t)[Ã∗(t) f (z̃(t)) + B̃∗(t) f (z̃(t − τ(t)))]

+ (1 − ρ(t))[Ã∗∗(t) f (z̃(t)) + B̃∗∗(t) f (z̃(t − τ(t)))]
}

≤

n∑
i=1

|ei(t)|
{
ρ(t)[|ã∗i j(t)| · | f j(z̃ j(t))| + |b̃∗i j(t)| · | f j(z̃ j(t − τ(t)))|]

+ (1 − ρ(t))[|ã∗∗i j (t)| · | f j(z̃ j(t))| + |b̃∗∗i j (t)| · | f j(z̃ j(t − τ(t)))|]
}

≤

n∑
i=1

|ei(t)|
{
[ρ(t)(α1 + β1) + (1 − ρ(t))(α2 + β2)]

n∑
j=1

F j

}
≤

n∑
i=1

ki|eT
i (t)| = eT (t)Ksign(e(t))

since ρ(t) = 0 or 1.

V̇2(t, e(t)) ≤
(

e(t)
ϕ(e(t))

)T (
N1 + M1 N2 + M2
∗ N3 + M3

) (
e(t)

ϕ(e(t))

)
−

(
e(t − τ)

ϕ(e(t − τ))

)T (
M1 M2
∗ M3

)
×

(
e(t − τ)

ϕ(e(t − τ))

)
− (1 − µ)

(
e(t − τ(t))

ϕ(e(t − τ(t)))

)T (
N1 N2
∗ N3

) (
e(t − τ(t))

ϕ(e(t − τ(t)))

)
,

(11)

V̇3(t, e(t)) ≤eT (t)(Q + R)e(t) − eT (t − τ)Re(t − τ) − (1 − µ)eT (t − τ(t))Re(t − τ(t)), (12)

V̇4(t, e(t)) =τ2eT (t)Q1e(t) − τ
∫ t

t−τ
eT (s)Q1e(s)ds (13)

According to Lemma 2.1, one has

−τ

∫ t

t−τ
eT (s)Q1e(s)ds = − τ

∫ t−τ(t)

t−τ
eT (s)Q1e(s)ds − τ

∫ t

t−τ(t)
eT (s)Q1e(s)ds

≤ −
τ

τ − τ(t)

( ∫ t−τ(t)

t−τ
e(s)ds

)T
Q1

( ∫ t−τ(t)

t−τ
e(s)ds

)
−

τ

τ(t)

( ∫ t

t−τ(t)
e(s)ds

)T
Q1

( ∫ t

t−τ(t)
e(s)ds

)
,

(14)

Thus,

V̇4(t, e(t)) ≤τ2eT (t)Q1e(t) −
τ

τ − τ(t)

( ∫ t−τ(t)

t−τ
e(s)ds

)T
Q1

( ∫ t−τ(t)

t−τ
e(s)ds

)
−

τ

τ(t)

( ∫ t

t−τ(t)
e(s)ds

)T
Q1

( ∫ t

t−τ(t)
e(s)ds

)
.

(15)
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According to (A1), one can read that for any positive diagonal matrix Λ1, Λ2, the following

inequalities are true:

eT (t)F−Λ1F+e(t) − eT (t)Λ1(F− + F+)e(t) + ϕ(eT (t))Λ1ϕ(e(t)) ≤ 0,

eT (t − τ(t))F−Λ2F+e(t − τ(t)) − eT (t − τ(t))Λ2(F− + F+)e(t − τ(t))

+ ϕ(eT (t − τ(t)))Λ2ϕ(e(t − τ(t))) ≤ 0.

(16)

Moreover, (4) future revealed that

φT (t)φ(t) = |g(z(t)) − g(z̃(t))|2 ≤ |Ge(t)|2 = eT (t)GT Ge(t). (17)

Combining (10)-(17) results in

V̇(t, e(t)) ≤ηT (t)Θη(t) + eT (t)∆H(t)De(t) + eT (t)4H(t)φ(t) + eT (t)∆H(t)ω(t)

+ 2ėT (t)J∆H(t)[De(t) + φ(t) + ω(t)]

=ηT (t)(Θ + Ω2F(t)Ω3 + ΩT
2 FT (t)ΩT

3 + Ω4F(t)Ω5 + ΩT
4 FT (t)ΩT

5 )η(t),

(18)

where ηT (t) = (eT (t), eT (t − τ(t)), eT (t − τ), ϕT (e(t)), ϕT (e(t − τ(t))), ϕT (e(t − τ)), ωT (t),∫ t−τ(t)
t−τ eT (s)ds,

∫ t
t−τ(t) eT (s)ds, φT (t)). Then, by using Lemma 2.2 and Lemma 2.3, it is readily

checked that there exist a positive constant ς, such that

Θ + Ω2F(t)Ω3 + ΩT
2 FT (t)ΩT

3 + Ω4F(t)Ω5 + ΩT
4 FT (t)ΩT

5

≤Θ + ς−1Ω2ΩT
2 + ςΩ3ΩT

3 + ς−1
1 Ω4ΩT

4 + ς1Ω5ΩT
5 < 0,

(19)

if and only if Ξ < 0, where

Ξ =


Θ Ω2 ςΩ3 Ω4 ς1Ω5
∗ −ςI 0 0 0
∗ ∗ −ςI 0 0
∗ ∗ ∗ −ς1I 0
∗ ∗ ∗ ∗ −ς1I

 (20)

with

Θ =



Ω̃11 Ω12 0 Ω14 Ω15 0 L + H 0 0 H
∗ Ω22 0 0 Ω25 0 0 0 0 0
∗ ∗ Ω33 0 0 −M2 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −M3 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

τ
Q1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 − 1
τ
Q1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



,

Ω̃11 = −C + HD + Q + R + M1 + N1 + τ2Q1 − F−Λ1F+ + Λ1(F− + F+) + GT G.
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Thus

V̇(t, e(t)) + r̄T (t)r̄(t) − γ2ωT (t)ω(t) ≤ ηT (t)Ωη(t) < 0, (21)

Integrating both sides of (21) yields ‖r̄(t)‖2 ≤ γ‖ω(t)‖2, for all nonzero ω(t) ∈ l2[0,∞), and the

H∞ performance is established under zero conditions.

Following the similar analysis in [19], it can be shown that the estimation error system (6)

with ω ≡ 0 is asymptotically stable. This completes the proof. �

Remark 3.1. Considering that no literature has been found in H∞ state estimation systems with

the non-fragile control for the continuous-time case, this paper makes up for this gap. Moreover,

differing from [11], this paper employs logical switching signals to deal with the connection

weight parameters of system (1), which greatly reduces the computation.

It is worth emphasizing that the continuous-time models may not convenient for some en-

gineering applications, therefore, we will follow with interest of DRMNNs with discrete-time

case.

3.2. The discrete-time case

In some cases, we consider the following discrete-time DRMNNs:

z(h + 1) = Dz(h) + A(z(h)) f (z(h)) + B(z(h)) f (z(h − τ(h))) + Lω(h), (22)

where z(h) = [z1(h), · · · , zn(h)]T is the state vector with n neurons, D = diag{d1, · · · , dn} is the

state feedback positive matrix, f (z(h)), ω(h), A(z(h)), B(z(h)) and L as described in Theorem 3.1,

and τ(h) is the time-varying delay and satisfies τ1 ≤ τ(h) ≤ τ2, where τ1 and τ2 are positive

constants.

The initial condition of neural network (22) is z(s) = ψ(s), for s ∈ N[−τ2, 0]. Similar to [7],

the parameters ai j(zi(h)) and bi j(zi(h)) on memristors can be described as follows:

ai j(zi(h)) =

ǎi j, |(zi(h))| ≤ Ti,

âi j, |(zi(h))| > Ti,
bi j(zi(h)) =

b̌i j, |(zi(h))| ≤ Ti,

b̂i j, |(zi(h))| > Ti,

where the switching jumps Ti > 0. Furthermore, we define āi j = max{ǎij, âij}, ai j = min{ǎij, âij},

b̄i j = max{b̌ij, b̂ij}, bi j = min{b̌ij, b̂ij}, Ā = (āi j)n×n, A = (ai j)n×n, B̄ = (b̄i j)n×n, B = (bi j)n×n, and we

have A(z(h)) ∈ [A, Ā], B(z(h)) ∈ [B, B̄].

10



Then A(z(h)) and B(z(h)) can be rewritten by

A(z(h)) = Ă + ∆A1h, B(z(h)) = B̆ + ∆B1h,

where Ă = (ăi j)n×n, B̆ = (b̆i j)n×n, ăi j =
āi j+ai j

2 , b̆i j =
b̄i j+bi j

2 , ∆A1h =
n∑

i, j=1
eiε

a
i je

T
j and ∆B1h =

n∑
i, j=1

eiε
b
i je

T
j , εa

i j, ε
b
i j are unknown scalars and satisfy |εa

i j| ≤ δa
i j, |ε

b
i j| ≤ δb

i j with δa
i j =

āi j−ai j

2 , δb
i j =

b̄i j−bi j

2 and ei ∈ Rn is the identity column vector whose hth element is 1.

Then, ∆A1h, ∆Bh can be described as

∆A1h = NΓaEa, ∆B1h = NΓbEb,

where N = [N1, · · · ,Nn]T , Ea = [Ea
1, · · · , E

a
2]T , Eb = [Eb

1, · · · , E
b
2]T are real matrices with

N i = [ei, · · · , ei]T , Ea
i = [δa

i1eT
1 , · · · , δ

a
ineT

n ], Eb
i = [δb

i1eT
1 , · · · , δ

b
ineT

n ], Γa and Γb are known

matrices which are defined by Γa = diag{Γa1 , · · · ,Γan }, Γb = diag{Γb1 , · · · ,Γbn } with Γai =

diag{εa
i1(δa

i1)−1, · · · , εa
in(δa

in)−1} and Γbi = diag{εb
i1(δb

i1)−1, · · · , εb
in(δb

in)−1}, (Γa)T Γa ≤ I, (Γb)T Γb ≤ I.

In this paper, the network output of (22) is of the following form:y(h) = C1z(h) + C2ω(h),
u(h) = C3z(h),

(23)

where y(h) ∈ Rm is the measurement output, u(h) ∈ Rr is the output to be estimated, C1 ∈ Rm×n,

C2 ∈ Rm×l, C3 ∈ Rr×n are given matrices.

In order to estimate the neuron state z(h), the full-order state estimator can be proposed as:
ẑ(h + 1) = Dẑ(h) + A(ẑ(h)) f (ẑ(h)) + B(ẑ(h)) f (ẑ(h − τ(h))) + K[y(h) − ŷ(h)],
ŷ(h) = C1ẑ(h),
û(h) = C3ẑ(h),

(24)

where ẑ(h) and û(h) stand for the estimation of z(h) and u(h) respectively, K is the estimator gain

to be determined.

Similar to A(z(h)) and B(z(h)), A(ẑ(h)) and B(ẑ(h)) can be described by A(ẑ(h)) = Ă +

∆A2h, B(ẑ(h)) = B̆ + ∆B2h, where ∆A2h = NΓ̄aĒa, ∆B2h = NΓ̄bĒb.

The error state e(h) = z(h) − ẑ(h), based on (22)-(24), the error dynamical model can be

modified as:
e(h + 1) = (D − KC1)e(h) + Ăϕ(e(h)) + ∆A2hϕ(e(h)) + (∆A1h − ∆A2h) f (z(h)) + (L

−KC2)ω(h) + B̆ϕ(e(h − τ(h)) + ∆B2hϕ(e(h − τ(h))) + (∆B1h − ∆B2h) f (z(h − τ(h))),
ũ(h) = C3e(h),

(25)
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where ϕ(e(·)) = f (z(·)) − f (ẑ(·)), and ũ(h) is the estimation error.

Furthermore, let η(h) = [z(h), e(h)]T , then:η(h + 1) = D̄η(h) + Āξ(η(h)) + B̄ξ(η(h − τ(h))) + K̄φ(η(h)) + (L̄ − C̄2)ω(h),
ũ(h) = C̄3η(h),

(26)

where

D̄ = D + ∆Dh, Ā = A + ∆Ah, B̄ = B + ∆Bh,

D = diag{D,D},A = diag{Ă, Ă},B = diag{B̆, B̆},

∆Dh =

(
0 0
0 −KC1

)
, ∆Ah =

(
∆A1h 0

∆A1h − ∆A2h ∆A2h

)
, ∆Bh =

(
∆B1h 0

∆B1h − ∆B2h ∆B2h

)
,

K̄ =

(
L 0
0 L − KC2

)
, C̄2 =

(
0 KC2

)T
, C̄3 =

(
0 C3

)T
, L̄ =

(
L L

)T
,

This part is to tackle the H∞ state estimator for DRMNNs (22) and look for the gain K such

that the following requirements are satisfied:

(1) The augmented system (26) is asymptotically stable with zero disturbance;

(2) Under zero-initial condition, the estimation error ũ(h) satisfies

J =

∞∑
h=0

[
ũT (h)ũ(h) − γ2ωT (h)ω(h)

]
< 0. (27)

Theorem 3.2. Under assumption (A1), given positive scalars λ1 and λ2, system (26) is asymptot-

ically stable with an H∞ disturbance attenuation level γ, if there exist positive definite matrices

P,K,M, positive diagonal matrices Γ, Γ1, Λ1 and Λ2 such that the following LMI hold:

Ξ =



Ξ̃11 0 Ξ̃13 D̄T PB̄ + τ2(D̄ − I)T MB̄ Ξ̃15 Ξ̃16

∗ Ξ̃22 0 Ξ̃24 0 0
∗ ∗ Ξ̃33 ĀT PB̄ + τ2ĀT MB̄ ĀT PK̄ + τ2ĀT MK̄ Ξ̃36

∗ ∗ ∗ B̄T PB̄ + τ2B̄T MB̄ − 2Γ1 B̄T PK̄ + τ2B̄T MK̄ Ξ̃46

∗ ∗ ∗ ∗ Ξ̃55 Ξ̃56

∗ ∗ ∗ ∗ ∗ Ξ̃66


< 0, (28)

where Ξ̃11 = D̄T PD̄ + C̄T
3 C̄3 + τ2(D̄ − I)T M(D̄ − I) − P + K + (τ2 − τ1)K − 2(I2 ⊗ F−)Γ(I2 ⊗ F+),

Ξ̃13 = D̄T PĀ + τ2(D̄ − I)T MĀ + (I2 ⊗ F−)Γ + Γ(I2 ⊗ F+), Ξ̃15 = D̄T PK̄ + 2τ2(D̄ − I)T MK̄,Ξ̃16 =

D̄T P(L̄−C̄2)+τ2(D̄−I)T M(L̄−C̄2), Ξ̃22 = −K−2(I2⊗F−)Γ1(I2⊗F+), Ξ̃24 = (I2⊗F−)Γ+Γ(I2⊗F+),

Ξ̃33 = ĀT PĀ + τ2ĀT MĀ − 2Γ,Ξ̃37 = ĀT P(L̄ − C̄2) + τ2ĀT M(L̄ − C̄2), Ξ̃55 = K̄T PK̄ + τ2K̄T MK̄,

Ξ̃46 = B̄T P(L̄−C̄2)+τ2B̄T M(L̄−C̄2), Ξ̃56 = K̄T P(L̄−C̄2)+τ2K̄T M(L̄−C̄2), Ξ̃66 = (L̄−C̄2)T P(L̄−

C̄2) + τ2(L̄ − C̄2)T M(L̄ − C̄2) − γ2, Moreover, the state estimator gain matrix can ba designed as

K = P−1X.
12



Proof. Consider the following LKF for the system (26):

V(η(h)) =

4∑
p=1

Vs(η(h)), (29)

where

V1(η(h)) = ηT (h)Pη(h), V2(η(h)) =

h−1∑
i=h−τ(h)

ηT (i)Kη(i),

V3(η(h)) =

h−τ1∑
j=h−τ2+1

h−1∑
i= j

ηT (i)Kη(i), V4(η(h)) =

−1∑
j=−τ2

h−1∑
i=h+ j

εT (i)Mε(i).

with ε(i) = η(i + 1) − η(i).

Let ∆V(h) = V(η(h + 1)) − V(η(h)), then

∆V1(h) =V1(η(h + 1)) − V1(η(h)) = ηT (h + 1)Pη(h + 1) − ηT (h)Pη(h)

=[D̄η(h) + Āξ(η(h)) + B̄ξ(η(h − τ(h))) + K̄φ(η(h)) + (L̄ − C̄2)ω(h)]T P[D̄η(h)

+ Āξ(η(h)) + B̄ξ(η(h − τ(h))) + K̄φ(η(h)) + (L̄ − C̄2)ω(h)] − ηT (h)Pη(h)

(30)

Similarly, we get

∆V2(h) =

h∑
i=h−τ(h+1)+1

ηT (i)Kη(i) −
h−1∑

i=h−τ(h)

ηT (i)Kη(i)

=ηT (h)Kη(h) −
h−τ1∑

i=h−τ(h+1)+1

ηT (i)Kη(i) +

h−1∑
i=h−τ1+1

ηT (i)Kη(i)

− ηT (h − τ(h))Kη(h − τ(h)) −
h−1∑

i=h−τ(h)+1

ηT (i)Kη(i)

≤ ηT (h)Kη(h) − ηT (h − τ(h))Kη(h − τ(h)) +

h−τ1∑
i=h−τ2+1

ηT (i)Kη(i),

(31)

∆V3(h) =

h+1−τ1∑
j=h+2−τ2

h∑
i= j

ηT (i)Kη(i) −
h−τ1∑

j=h−τ2+1

h−1∑
i= j

ηT (i)Kη(i)

=

h−τ1∑
j=h+1−τ2

h∑
i= j+1

ηT (i)Kη(i) −
h−τ1∑

j=h−τ2+1

h−1∑
i= j

ηT (i)Kη(i)

=

h−τ1∑
j=h+1−τ2

[ηT (h)Kη(h) − ηT ( j)Kη( j)],

=(τ2 − τ1)ηT (h)Kη(h) −
h−τ1∑

i=h+1−τ2

ηT (i)Kη(i),

(32)
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and

∆V4(h) =

−1∑
j=−τ2

[
h∑

i=h+1+ j

εT (i)Mε(i) −
h−1∑

i=h+ j

εT (i)Mε(i)]

=

−1∑
j=−τ2

[εT (h)Mε(h) − εT (h + j)Mε(h + j)]

=τ2ε
T (h)Mε(h) −

h−1∑
i=h−τ2

εT (i)Mε(i).

(33)

while

ε(h) = η(h + 1) − η(h)

= (D̄ − I)η(h) + Āξ(η(h)) + B̄ξ(η(h − τ(h))) + K̄φ(η(h)) + (L̄ − C̄2)ω(h),
(34)

Thus

∆V4(h) ≤τ2[(D̄ − I)η(h) + Āξ(η(h)) + B̄ξ(η(h − τ(h))) + K̄φ(η(h))

+ (L̄ − C̄2)ω(h)]T M[(D̄ − I)η(h) + Āξ(η(h)) + B̄ξ(η(h − τ(h)))

+ K̄φ(η(h)) + (L̄ − C̄2)ω(h)].

(35)

According to (A1), the following inequalities hold:2[(I2 ⊗ F−)η(h) − ξ(η(h))]T Γ[(I2 ⊗ F+)η(h) − ξ(η(h))] ≤ 0,
2[(I2 ⊗ F−)η(h − τ(h)) − ξ(η(h − τ(h)))]T Γ1[(I2 ⊗ F+)η(h − τ(h)) − ξ(η(h − τ(h)))] ≤ 0.

(36)

Then, combining (29)-(36), we can obtain that

∆V(h) ≤ ζT (h)Ξ̄ζ(h), (37)

where

ζ(h) = [ηT (h), ηT (h − τ(h)), ξT (η(h)), ξT (η(h − τ(h))), φT (h), ωT (h)]T ,

Ξ̄ =



Ξ11 0 Ξ̃13 D̄T PB̄ + τ2(D̄ − I)T MB̄ Ξ̃15 Ξ̃16

∗ Ξ̃22 0 Ξ̃24 0 0
∗ ∗ Ξ̃33 ĀT PB̄ + τ2ĀT MB̄ ĀT PK̄ + τ2ĀT MK̄ Ξ̃36

∗ ∗ ∗ B̄T PB̄ + τ2B̄T MB̄ − 2Γ1 B̄T PK̄ + τ2B̄T MK̄ Ξ̃46

∗ ∗ ∗ ∗ Ξ̃55 Ξ̃56
∗ ∗ ∗ ∗ ∗ Ξ66


, (38)

where Ξ11 = D̄T PD̄ + τ2(D̄ − I)T M(D̄ − I) − P + K + (τ2 − τ1)K − 2(I2 ⊗ F−)Γ(I2 ⊗ F+),

Ξ66 = (L̄ − C̄2)T P(L̄ − C̄2) + τ2(L̄ − C̄2)T M(L̄ − C̄2).
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Considering (23) under zero initial condition, we get that J in (27) is equivalent to

J =

∞∑
h=0

[
ũT (h)ũ(h) − γ2ωT (h)ω(h)

]
=

∞∑
h=0

[
ũT (h)ũ(h) − γ2ωT (h)ω(h) + ∆V(h)

]
− V(∞) + V(0)

≤

∞∑
h=0

[
ẑT (h)CT

3 C3ẑ(h) − γ2ωT (h)ω(h) + ∆V(h)
]

≤

∞∑
h=0

ζT (h)Ξζ(h) < 0

(39)

by (28).

When ω ≡ 0, following the similar analysis in [11], the asymptotic stability of the system

(26) can be obtained. This completes the proof. �

Remark 3.2. The state estimation of system (24) with the fixed connection weights is studied in

[10] by LKFs and Jensen integral inequality, while Theorem 3.2 ensures the asymptotic stability

of the system (24), thus the obtained results are more general and practical.

4. Numerical examples

Two numerical simulations are given to illustrate the theoretical results.

Example 1. This example is used to illustrate the obtain results in Theorem 3.1. Consider a

two-neuron DRMNNs model as follows:ż1(t) = −z1(t) + a11(z1(t)) f1(z1(t)) + 8 f2(z2(t)) + b11(z1(t)) f1(z1(t − 1)) + 0.2 f2(z2(t − 1)),
ż2(t) = −z2(t) + 0.3 f1(z1(t)) + a22(z2(t)) f2(z2(t)) + 0.5 f1(z1(t − 1)) + b22(z2(t)) f2(z2(t − 1)),

where the unknown connection weights are assumed to be:

a11(z1(t)) =

−0.90, z1(t) ≤ 0,
−0.57, z1(t) > 0,

a22(z2(t)) =

−1.40, z2(t) ≤ 0,
−2.50, z2(t) > 0,

b11(z1(t)) =

−0.98, z1(t) ≤ 0,
−0.35, z1(t) > 0,

b22(z2(t)) =

0.62, z2(t) ≤ 0,
0.44, z2(t) > 0.

And the parameters of system (1) and (3) are chosen as: L = [0.1, 0.2]T , E = [0.35, 0.3],

C =

(
1 0
0 1

)
, D =

(
−0.75 0.255
0.135 0.28

)
.

15



0 2 4 6 8 10

t

-0.06

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de

0 1 2 3 4 5 6 7 8 9 10

t

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de

Fig. 1. State trajectories of z(t), ẑ(t) in (1) and (5), respectively.

The activation function f j(s) = tanh(0.5s), j = 1, 2. The time-varying delay is chosen as τ(t) =

2 + sin( t
2 ), the noise input and the nonlinear disturbance are taken by ω(t) = 1/(0.8 + 1.2t)

and g(t, z(t)) = [0.14cos(2z1), 0.25sin(z2)]T , respectively. For system (1), the logical switching

signals ρi(t) are defined as

ρ1(t) =

1, z1(t) ≤ 0,
0, z1(t) > 0,

ρ2(t) =

1, z2(t) ≤ 0,
0, z2(t) > 0.

Then, it is easy to verify that τ = 3, µ = 0.5, F− = 0, F+ = 0.5I2, and

A =

(
−1.36 −0.92
−0.67 −0.752

)
, B =

(
−0.75 0.255
0.135 0.28

)
.

Taking ς = 0.35, we can verify by Matlab toolbox that the LMI is solved and the feasible solution

are given below:

K =

(
0.5323 0.8944
0.4854 0.8718

)
, X =

(
0.2757 0

0 0.8944

)
.

Thus, the corresponding state estimator gain is found as

H = K−1X =

(
8.0340 −26.7387
−4.4731 15.9135

)
.

Therefore, from Theorem 3.1, system (2) becomes an asymptotic state estimator of (1) with the

given H∞ performance index, which is further verified by the simulation results given by Figs.

1-2. Fig. 1 depicts the behaviors of z1(t), ẑ1(t), and z2(t), ẑ2(t), respectively. Fig. 2 shows that the

error states asymptotically converge to zero.
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Example 2. Consider the DRMNNs (22) in Theorem 3.2 with the following parameters:

a11(z1(t)) =

−0.90, z1(t) ≤ 0,
−0.57, z1(t) > 0,

a12(z2(t)) =

−1.40, z2(t) ≤ 0,
−2.50, z2(t) > 0,

a21(z1(t)) =

−0.98, z1(t) ≤ 0,
−0.35, z1(t) > 0,

a22(z2(t)) =

0.62, z2(t) ≤ 0,
0.44, z2(t) > 0,

b11(z1(t)) =

−0.46, z1(t) ≤ 0,
−0.76, z1(t) > 0,

b12(z2(t)) =

−1.73, z2(t) ≤ 0,
−2.14, z2(t) > 0,

b21(z1(t)) =

−0.28, z1(t) ≤ 0,
−0.94, z1(t) > 0,

b22(z2(t)) =

0.32, z2(t) ≤ 0,
0.67, z2(t) > 0.

and

L =

(
1

1.5

)
, C1 =

(
1 0
0 0

)
, C2 =

(
1
1

)
,D = C3 = I2.

Take the activation functions f j(s) = tanh(0.5s), j = 1, 2, which satisfy the assumption (A1) with:

F− = 0 and F+ = 0.5I. The discrete time-varying delay is chosen as τ(h) = 10+2sin( hπ
2 ), then, it

can be verified that the upper bound and the lower bound of the time varying delays are τ1 = 8,

τ2 = 12, respectively. Choose the disturbance input ω(h) = cos(h − 1), and λ1 = 0.5, λ2 = 0.5,

then by the LMI toolbox, we solve LMI and obtain the matrices P and X as follows:

P =

(
0.2847 0.1947
0.3759 0.9238

)
, X =

(
0.3606 0

0 0.4472

)
,

Then, according to K = P−1X, the parameter of the desired state estimator are derived:

K =

(
1.7550 −0.4587
−0.7141 0.6707

)
.

Under the obtained estimator gain, the simulation results are shown in Figs. 3 and 4. Fig. 3 plots

the states zi(k) of original system and their estimations ẑi(k), i = 1, 2, respectively. Fig. 4 depicts

the error states ei(k) between zi(k) and estimated states ẑi(k), which shows that the estimation

errors asymptotically converge to zeros.

5. Conclusion

By constructing appropriate LKFs and LMI strategy, two sufficient conditions had been estab-

lished to warrant that the estimation error systems is asymptotically stable with a prescribed H∞

performance. The H∞ state estimation of DRMNNs with both of continuous-time and discrete-

time case are analyzed in this paper. We considered the non-fragile control in H∞ state estimation
17
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Fig. 2. The behaviors of ‖x(t)‖1 of the drive system in Example 2.
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Fig. 3. State trajectories zi(t) and their estimations ẑi(t), for i = 1, 2.
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Fig. 4. Estimation error behaviors ei(h) of the discrete time case, for i = 1, 2.
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system in continuous-time case, the key skill is to introduce a series of measurable logic switch

signals to establish the switching system, which is helpful to reduce the computational cost.

The given conditions can be easily examined by solving LMIs, the effectiveness of the obtained

results are demonstrated by two numerical examples.
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