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Abstract

In this paper, we developed and studied a stochastic HIV model with nonlinear perturbation. Through a
rigorous analysis, we firstly showed that the solution of the stochastic model is positive and global. Then, by
employing suitable stochastic Lyapunov functions, we prove that the stochastic model admit a unique ergodic
stationary distribution. In addition, sufficient conditions for the extinction of HIV infection are derived. Finally,
numerical simulations are employed to confirm our theoretical results.
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1. Introduction

HIV stands for human immunodeficiency virus, which attacks the body’s immune system by destroying
important cells, especially white blood cells named CD4% T cells [1]. If the person’s CD4™ T cell count falls
below 200, their immunity is severely compromised, leaving them more susceptible to infections. HIV continues
to be a major global public health issue, having claimed almost 33 million lives so far. According to the World
Health Organization, there were an estimated 38.0 million people living with HIV at the end of 2019 [2].

It is now well established from a variety of studies [3, 4, 5, 6, 7, 8] that mathematical modelling have been
essential tools to study the dynamics of infectious disease. The past thirty years have seen increasingly rapid
advances in the field of the pathogen dynamics. In 1999, Perelson and Nelson [3] have proposed different
mathematical models for understanding the dynamics of HIV-1 infection in vivo. Wang and Li [4] have studied
the global dynamics of HIV infection model with CD4% T cells. They proved that if the basic reproduction
number Ry < 1, the HIV infection is cleared from the T-cell population, otherwise the HIV infection persists.

In the real world, the dynamics of infectious diseases is inevitably perturbed by environmental noise [9]. For
modeling biological phenomenon, it is appropriate to use the stochastic differential equations due to its realistic
approach. Compared to deterministic models, the stochastic models can describe the disease transmission
progress exactly and generally result in more valuable conclusions [10]. Generally speaking, there are two ways
of stochastic differential equation to reflect the inclusion of random noise in the model approach. The first one is
the continuous-time Markov chain model [11, 12, 13], which is derived based on the theory of branching process.
The second one is the approach of parameter perturbation, which is widely used in mathematical modelling
recently. Researchers have shown an increased interest in stochastic models with parameter perturbations
[14, 15, 16, 17, 18]. For instance, Using stochastic Lyapunov method, Han et al. [14] investigated a stochastic
AIDS model with the corresponding staged treatment and second-order perturbation. Liu et al. [15] study the
dynamical behavior of a higher order stochastically perturbed HIV/AIDS model with differential infectivity and
amelioration. Meanwhile some researchers [19, 20, 21, 22] have paid attention to stochastic within-host HIV
infection models recently. Wang et al. [19] presented a stochastic HIV infection model with general nonlinear
incidence rate and obtained that model has a unique ergodic stationary distribution.
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So far, very little attention has been paid to within-host HIV infection model with nonlinear perturbation.
This paper attempts to show that the influence of nonlinear perturbation on dynamical behavior of a within-host
HIV infection model. The model consider the interaction of the HIV with two target cells, CD4T T cells and
macrophages. Firstly, by employing a novel combination of Lyapunov functions, we address the existence and
uniqueness of the global positive solution. Then, we derive the sufficient conditions for stationary distribution
and extinction of HIV infection. Furthermore, numerical simulations are find out with the help of Milstein’s
higher order method for supporting the theoretical results.

The remaining part of the paper proceeds as follows. In the next section, we derive a new stochastic HIV
model with nonlinear perturbation and present some necessary lemmas. In Section 3, we prove that there exists
a unique global positive solution of stochastic model (2.2). In Section 4, we get sufficient criteria such that there
is an ergodic stationary distribution of stochastic model. Sufficient conditions for the extinction of infected cells
and free virus particles are obtained in Section 5. Section 6 illustrates the theoretical results through numerical
simulations followed by conclusion in Section 7.

2. Models and preliminaries

2.1. Ordinary differential equation model

In [23], Elaiw investigated the global properties of the following nonlinear HIV infection model with CD4"
T cells and macrophages:

d
£ = /\1 — dlx — 613711,
dx
dftl = frzv — awy,
d
dfy = A2 — day — Payv, (2.1)
t
dy
— = -9
dz ﬁﬂﬂf Y1,
v
—— = P11 + Pay1 — Cv,

dt

where z(t) and z;(t) are the densities of uninfected and infected CD4™ T cells, respectively; y(t) and y; (t)
denote the densities of uninfected and infected macrophages, respectively; v(t) is the density of free virus
particles, at time ¢t > 0. All parameters and their definitions are summarized in Table 2.1.

Table 2.1: Parameters of model (2.1) and their interpretations.

Parameters Biological meaning
A1 Generation rate constant of new CD41 T cells
Ao Generation rate constant of new macrophages
dy Death rate constant of CD4T T cells
ds Death rate constant of macrophages
51 Transmission rate constant between CD4* T cells and HIV particles
Bo Transmission rate constant between CD4" T cells and macrophages
a Death rate constant of the infected CD4™ T cells
) Death rate constant of the infected macrophages
P1 The rate at which the infected CD4™ T cells produce HIV particles
P2 The rate at which the infected macrophages produce HIV particles
c Clear rate of HIV particles

There always exists a compact positively invariant set for model (2.1) as follows

p1L1 + p2Lo }

I, = {(m,xl,y,yl,u) eRi:ng;cl <L,0<y,y1 <L;,0<v < .

. _ A — A
with L1 = m and Ly = Wég,é}



In addition, the global behavior of model (2.1) crucially depends on the basic reproduction number given by

R P151200 + p2S2yoa
0=
coa

)
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where zg = T and yy = 22

E.
o If Ry <1, then Ey = (x0,0,y0,0,0) is globally asymptotically stable (GAS) in T';.
o If Ry > 1, then Ey = (xf, 27, y5,y7,v*) is GAS in T';.

2.2. Stochastic differential equation model

Now we consider random perturbations, assuming the parameters —dy, —a, —ds, —0, —c appearing in model
(2.1) are not constants and they always fluctuated by the nonlinear Gaussian white noises:

— dl — 7d1 —+ (0'11 —+ Ulgx(t))Bl(t), —a— —a-+ (0'21 —+ Jggl’l(t))BQ(t),
— dy = —da + (031 + 032y(t)) Bs (1), — 6 = =0+ (041 + oazy1 (t)) Ba(t),
—c— —c+ (O’51 =+ U52U(t>>B5(t),
where B;(t) are independent standard Brownian motions with B;(0) = 0 and 03; > 0 denote the intensities of

the white noise, for i = 1,2,3,4,5 and j = 1,2. Therefore, model (2.1) with additional nonlinear perturbation
can be written as the following stochastic differential equation model:

dz(t) = (A — diz — Brav) dt + (011 + o122)2d By (t),
dz1(t) = (B1zv — azq) dt + (021 + 02221)x1dBa(t),

dy(t) = (A2 — day — B2yv) dt + (031 + 032y)yd B3 (1), (2.2)
dy1(t) = (Bayv — 6y1) dt + (041 + 042y1)y1dBa(t),

dv(t) = (p1w1 + pay1 — cv) dt + (051 + o520)vdBs(t).

The other parameters are the same as in model (2.1).

2.3. Preliminaries

Throughout this paper, let {Q2, F, {F;}+>0, P} be the complete probability space with filtration {F; }+> satis-
fying the normal conditions. Let R™ be an n-dimensional standard Euclidean space and R’j_ ={(z1,...,zK)|x; >
0,1 <i<k}. Denote a; VasV---Va, =max{ar,as,...,a,} and a3 Aag A -+ A a, = min{as,as,...,an}.

Considering a d-dimensional stochastic differential equation

dx(t) = F(2(8), )t + g(2(8), )AB(H), ¢ > to, (2.3)

with condition z(tg) = zo € RY, where B(t) denotes an m-dimensional usual Brownian motion. Define the
operator L related to (2.3) by

o d 9 1 d 0?
L=o+ z; Jilz )5~ + 3 ; [ (2, t)g(2,1)]

Zi . tj 82’182] '
K2
By operating £ on the function V', one gets

LV (2,1) = Vilz, 1) + Va2, 0 (1) + gtrace [g7 (2, )Veu 2, g (2,1)]

_ oV — (ov oV — (02%v
where V; = 5, V, = (821,..., aZd), V., = (Ozia%')dxd'

For the following dynamical investigation of stochastic model (2.2), we shall firstly introduce some important
lemmas.



Lemma 2.1. (see [1/])For x > 0, one gets
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Next, we shall introduce some results concerning the existence of a stationary distribution. Let X (¢) be a
regular time-homogeneous Markov process in R’} satisfying the stochastic equation

AX(t) = h(X())dt + Y om(X(t))dBm(t),

with the diffusion matrix:

For more details see [25, 26, 27].

Lemma 2.2. (see [25]) The Markov process X (t) has a unique ergodic stationary distribution u(-). if there
exists a bounded domain U C R! with regular boundary T such that

(i) there is a positive number M such that Zé,j:l aij(2)&& > MIE? forx € U and € € RY.
(ii) there exists a nonnegative C?-function V such that LV is negative for any x € RT\ U.

Then
T
]ID{TIEO;/O h[X’”(t)]dt:/Rd h(:c)u(dx)} —1,

for all x € RY, where h(-) is a function integrable with respect to the measure y.

Next, consider the following stochastic model with nonlinear perturbation
dX(t) = ()\1 - le(t))dt + (0’11 + O’ng)XdBl (t) (24)

Making the use of comparison theorem of 1-dimensional stochastic differential equations [28], one has the
following lemma.

Lemma 2.3. Let X(t) be the solution of model (2.4) with initial value X (0) = x(0) > 0, then X (t) is ergodic
and x(t) < X(t). System (2.4) has ergodic property and the invariant density is given by

2(\ +0%1‘J1X) >
o11X (011 +012X) )’

pux = QlX*2(1+ql)(g11 + 012X)*2(17q1) exp <

2\1012+d1011
o3

where q1 = and Q1 is a positive constant satisfying fooo pwxdX =1.

Similarly, for the stochastic model
dY(t) = ()\2 — de(t))dt + (0’31 + UggY)Yng(t). (25)

with the initial value Y (0) = y(0) > 0. Then Y (t) is ergodic and y(t) < Y (t). System (2.5) has ergodic property
and the invariant density is defined by

2
py = QoY ~2050) (g 4 500 Y) 20702 o <_ 2\ + 03,g2Y) > |

031Y (031 + 032Y)

2)\2032;rd2031

where qa = 2
31

and Q4 is a positive constant satisfying fooo puydY = 1.

The detailed proof of Lemma 2.3 is similar to Theorem 3.1 in literature [24]. We omit it here.

In the following lemma, to prove the extinction theorem in Section 5, we introduce the important exponential
martingale inequality.



Lemma 2.4. [29] (exponential martingale inequality) Let g = (g1,...,gm) € L2(R4;R>*™), and let T, o, B
be any positive constants. Then

P {02‘3& I g(s)aB(s) 2 / t s(o)fas] > 5} < e

3. The existence and uniqueness of global positive solution

Firstly, we give the following fundamental theorem with respect to a unique global positive solution of
stochastic model (2.2).

Theorem 3.1. For any initial value (x(0), 21(0), y(0),y1(0),v(0)) € RS, there exists a unique solution (x(t), z1(t),
y(t),y1(t),v(t)) € R of model (2.2) ont >0, and the solution will remain in R3. with probability 1.

Proof. Tt is noted that the coefficients of model (2.2) are locally Lipschitz continuous, so for any given initial
value (2(0),21(0),y(0),y1(0),v(0)) € R%, there is a unique maximal local solution (z(t), z1(t), y(t), y1(t), v(t))
ont € [0,7.), where 7. is the explosion time. Let ko be sufficiently large such that z(0), 21(0), y(0), y1(0) and
v(0) belong to the interval [1/ko, ko]. For each integer k > ko, define the stopping time

e =int {1 € 0,7) 5 2(0) € (a0 ¢ (LRW(O ¢ (G (0) ¢ (1100 (1) |

Clearly, 7 is non-decreasing as k — oo. We get 7o = limy_, o Tk, Whence 7o, < 7. a.s. In order to show local
solution (z(t), z1(t), y(t), y1(t),v(t)) is global, we only need to verify 7o, = 00 a.s..
Define the nonnegative C2-Lyapunov function as follows

X

Vi(z, z1,y,y1,v) = (x—p1 —p1ln ;) +(x1—1-Inzy)+(y—p2—p2In pi) + (1 —1—Iny) +ps(v —1—1nv),
1 2

where p; are positive constants which will be determined later, ¢ = 1,2,3. The nonnegativity of V; can be

obtained by the inequality  — p — pln% >0 for z,p > 0.
Applying 1t6’s formula to Vi, we have

1 1
»val = (1 — &) ()\1 — d1$ — ﬁlif’l]) + &(0'11 + 0'121')2 + 1-—— (51$U — axl) + *(0'21 + 0'221'1)2
X 2 T 2
P2 P2 2 1 1 2
+{1- m (A2 — day — Bayv) + 5(031 +o32y)" + | 1— " (B2yv — 6y1) + 5(041 + o4291)

1
+ p3 <1 - v) (P11 + pays — ev) + 22 (051 + 0520)>

2
<(psp1 — a)x1 + (psp2 — O)y1 + (p1S1 + p2B2 — p3c)v + A + Ao +a + 6 + pidy + pada + p3c
1 1
+ %1(011 + 01296)2 + 5(021 + ¢T22£I31)2 + %(031 + 0329)2 + 5(041 + 042111)2 + %3(051 + 0520)2-

Choose p; = z%’ p2 = 1% and p3 = M such that

pspr—a =0, pspa—30=0, p1S1+ p2P2—psc=0.
Therefore, one gets

ad od a a 1 )
LV <A\ +X+a+6+ pfl + 2 + & + @ + 7(011 +U12$)2 + 5(021 + 0221'1)2 + 7(031 +032y)2
1

P2 D1 P2 2p; 2po
1 Bia + p1520
+ 5(041 + 0423/1)2 + w(%l + 0521))2.
p1p2cC

(3.1)



Then define a nonnegative C2-Lyapunov function Va:

_ylle B e ) b ) b

2
. a+pr P1 0+ p2 D2
b —= — —Y1|
el [( a )x+axy+< 5 )y+6y4

where k € (0,1) is a variable, a; and b; will be determined in (3.2), i =1, 2.
Applying the It6’s formula to Va, one has

LV; —Zai{(ﬂﬁ +0)" (M = diw = Braw) + (1 + )" (Braw — azy) + (y + 0i)" (A2 — day — Bayv)
i=1

<a+p1> A+ (5+p2>)\2
a 1)

+ (1 + ;)" (Bayv — dy1) + (v + b)) Hprzy + payr — cv) + b

2
ai(l — K,) (0’11$ + 0'123?2)2 (0'21111‘1 + 0'2251,‘%)2
— Prav — v — P11 — —
B B2y P17 pzyll } FZI 9 (24 ;)2 (z1 + bs)2—*
(0319 + 03292)?  (ou1y + 04293)?  (0u1y + 042y3)?
(y+bi)>" (41 +bi)*" (v+b;)2"
2 2 4 3 2 .4
4 [@Qa+p)N (20 erg (1= kK) | 201101223 + o3y 209109215 + 05527
Szaz‘bf { o + Z 27" T r 2=k
i=1 i=1 (£+1) (5 +1)
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Making the use of (z + 1)? < 2(2? + 1) and inequalities in Lemma 2.1, we have

2 14k 3 3 3
4 [@Qa+pi)A (20 +p2)Ae a1b; ™ (1= K) | 011012 x 021022%1 (X1
< pr—1 ( _ 1 — Zalveenm (21
LV, < ;:1 a;b, { e 5 reiln) TErI s

N 031032y°> (y)d . 04104213 (2;1)3 n 05105203 <v>3 B agb3 (1 — k) 0%, <x>4
(£)2+1\b ()2 +1\ b ()2 +1\b 4 ()2 +1 \b
+ 0732 (ml>4 + 0% (y>4 I T3 (y1)4 n 03y <U)4
G i) e \e) T e) T e
2 1+k
4 [@Qa+pi)N (20 + arb;"™ " (1 -k z 1 T 1
S;azbf 1 l:( apl) p2 :| ) [011012 <b1 — 2) + 0921092 (bll — 2)
y 1 1 1 axb3 (1 — k) 3/2\° 1
3 (m\*_1 3(v)° %za2_1 3 (v} _1
1\ by 4 4\ by 4 4\ by 4

wet | (2a+p1)A 20 + p2)A abi (1 -k
<a1b] ! {( PN + ( P2) 2] + 2 ( )(011012 + 021022 + 031032 + 041042 + 051052)

2 2
+ 022 +J32 + 052

a ) 4
w1 [ (2a 4+ pi)A 25 + p2)A asb3 ™ (1 — K
+ axby ! [( ap1) -+ ( 5p2) 2} + 22 1; )(‘7%2‘*‘0524‘0?2)24"722"“7?2)
a1bf (1 — k)
— f(UuUlzx + 02102221 + 031032y + 041042Y1 + 0510520)
3asb5(1 — K
- 20 (52,02 4 03a0% + By + o} + 02,
choose
ar — 2 by — 9 (2(1 +p1)>\15 + (26 +p2))\2a
! bi(1—k)’ ! 6(1 — K)(011012 + 021022 + 031032 + 041042 + 051052) (3.2)
" 8 by — 98 (2a + p1)A16 4 (20 + p2)Aaa
2= ki1 _ o\ = :
305(1 — k) 5(1*“)(U%2+032+U§2+‘7£2+0§2)
In view of the arbitrariness of x € (0,1), letting k — 07, it leads to
LVy <r — (0110122 + 02102221 + 031032y + 0410421 + 0510520)
(3.3)

1
2 2, 2 2, 92 2, 9 2, 92 9
_5(01235 + 05077 + 032y + 04aY7 + 05007,

where

: :2\/[(261 toh (20 +6p2))\2
a

} (011012 + 021022 + 031032 + 041042 + 051052)

" 2§/[(2a +p1)M " (20 +6P2)>\2
a

2
} (0% + 0% + 0% + 0 + 02) > 0.
Finally, we define the nonnegative C>-Lyapunov function

V=Vi+pVa,



where p = max{-%, & p2B1atpiBad 11 Combining (3.1) and (3.3), one obtains

p1’ p2’ p1ip2c
ad a o2 ) o a+
LV <+ rgtator @i 0 pa BB a b on 0 0 oh mhatpfl s o
pr P2 1 P2 2; 2 2p 2 2p1pac

:=K is a positive constant.

A similar proof of Theorem 3 in literature [30] yields 7o = 00 a.s., thus (z(t),z1(t), y(t),y1(t),v(t)) € R% as.
for all ¢ > 0. This completes the proof. O

4. Existence of ergodic stationary distribution

In this section, using the theory of Khasminskii [25], we obtain the sufficient conditions such that model
(2.2) has a ergodic stationary distribution.

Theorem 4.1. Let (x(t), z1(t), y(t), y1(t), v(¢)) be a solution of model (2.2) with any initial value (x(0), 21(0), y(0),
1(0),v(0) € B3, If
_ p1B1A18d; + pafadaad -1

céad1d2 ’
then there exists a stationary distribution p(-) and the solution (x(t) a:l(t) y(t),y1(t),v(t)) to model (2 2) is
ergodic, where dy = di + %%1 + 2(012)\1)% 4%“ (012/\1) ,a=a+ 021 + 2(022)\1)% + 40321 (022)\1) d2 =

Rg =

1 2

do + %32’1 +2 (0’32)\2)% + 40331 (032)\2)%, =0+ 041 +2 (0’42)\2)§ 4%41 (042)\2)3 and ¢ = c+ 51 +2 (76521;0\1) +
1 1
s (o) e (P

Proof. In order to prove the existence of stationary distribution and ergodicity of model (2.2), it suffices to
verify conditions (i) and (ii) in Lemma 2.2. The diffusion matrix of model (2.2) is

(0’1133 + 012$2)2 0 0 0 0
0 (0’111’ + 012$2)2 0 0 0
0 0 (o31y + 032y%)? 0 0 )
0 0 0 (o41y + 0a2y?)? 0
0 0 0 0 (0'511] + 0'521)2)2

which is a positive definite matrix for any (x,z1,y,y1,v) € Ri. Hence, it is obvious that there exists a constant

Mo = min {(o112 + 0122%)?, (0117 + 0122%)%, (0319 + 0329%)%, (01y + 04297)?, (0510 + 0520%)?} > 0,
(z,21,y,y1,0) €U

with U = [%,k} X [l k} X [l k} X [l k} X [l k} and k > 1 is a sufficiently large integer, such that

k> k> k> k>
5
Z aij(z, 21,9, y1,v)§& =(onz + 012$2)2§% + (02171 + 0223?1) 52 (031y + 032y2)2£§
i,j=1

+ (041y + 04293)?EF + (0510 + 05207)2E2 > M€,

for (z,21,y,y1,v) € U and € = (&1, &2,&3,4,&5) € RY. This implies Lemma 2.2 (i) is satisfied.

To verify (A.2), we only to show that there exist a neighborhood U C Rf_ and a nonnegative C2-function V'
such that for any (z,z1,y,v1,v) € R} \ U, LV is negative.

Firstly, Define a C?-function @, as follows

Q1= gy BETE)"

K



where a3 = ﬁ, by =2 [ﬁ} v and k € (0,1) is a variable. Then applying It6’s formula, we have
LG =— % + frv+dy + %%1 + 0110122 + %%sz + as(x + b3)" (A — dyz — Biav)
- m(onx + o1227)?
ol > (1— k)ashy 202, (5)4

g
9 + 011012% + %12 + agbg_lAl — 5
1 [(5) +1]
3
3
(1= K)asbs 011012 (%)

2 [(;;)QH]

A
S*j+ﬂw+d1+

A o3 _ (1 —w)agbs 20ty (1 —rK)agbs or1000
< - — —11 K
< . + fiv+dy + 9 + a3b3 AL+ 16 1
1 —k)asgbs 1 1 — k)3asbh
+ [1—< 2> 2 3]011012$+ [2—< 1>6 2 3]0%2332
2 1
A 2 AM\E o4 A
:*i+ﬁ1v+d1+m+2 J1241 )7, 2011 (01244 ) 7
T 2 1—-k 3 11—k

In view of the arbitrariness of the x, it follows that if x — 0T, then

by _
LQ1 < =75+ frotdi, (4.1)

— 2
where dy = dy + 3+ 42 (012/\1)% + 40;,“ (012)\1)%-

Then we define C2-functions Q2, Q3 Q4 and Q5 as follows

b K
Q2= —Inzy +asbf 'z + aa(@1 1 ba)" ;

K
as(y + bs)"~
:—1 _9\J "9
Qs ny -+ - ,
- + b)"
Qi = —Iny +aght 'y + M
b K
Q5=—lnv+a7b§*1 [pl(x:xl)_'_l?z(y;‘yl)} +a7(v—|’€— 7) 7

1
3

1
_ 8 _ A 3 _ 8 _ A _ 8 _ A 3
Whefe%—mvb‘*—?[(il} v“%Wybf’—?[iZ} vaﬁ—mv%—?[m] ,

1-kK)o3, (1-k)o2,
1

ar = ma by =2 {A] *and k € (0,1) is a variable.

(1—k)o2,a



Applying Ito’s formula to Q2, Q3, Q4 and Qs5, respectively, one gets

2 2

LQ2 = — frzv +a+ % + 09102271 + %l‘% + a4b2_1()\1 — diz — Brav)
+ aq(x1 + b4)ﬁ_1(ﬁ1ﬂ] —axy) — M(Uzlﬁ + 02295%)2
2(.231 + ()4)2_"i
Brzv 03 _1 (1 —r)azb§ 2oy (1 —rK)agbs ™ o11000
< - —== DETA
< o +a—+ 9 + asbs 1+ 16 1
(1 — Kk)asbf 1 (1—k)3asbf
+ {1—23 0110127 + §—T3 o2y x?
2 1
Brav 03, o221\ ? | 4021 [(022A1 3
_ 92 49
1 tat 2 + 1—k + 3 1—xk/) "’
_ & L?%l §2 2 rk—1 _ _
LQ3 = y + Bav +do + 9 + 031032y + - Y +as(x +05)" (A2 — dax — Bayv)
(1—-k)as

o (e + o

A 2 1— bK+ 1— prtl
<— 24 Bv+dy+ % +asht A + ( )16 o5 (1= K)as . 731952
Y

(1 - k)asbf 1 (1-—k)3asbf
+ [1 - fs 031032y + 5" 1765 039y
2 1
A2 o32X2 \* | 4oz [(032M2) 7
== d 2
y+BQUJr 2+ 2 S <1—/1 + 3 1-k& ’
ﬁQZ/U 2 K—
LQy=— +46 -|- 2 -‘r 041042Y1 + Tyl + agb ()\2 —doy — ﬂgyv)
_ 1 —K)ag
be )t 1 Y _ (7
+ae(y1 +b6)" (B2yv — 6z1) 3y F bo)> —(o41y1 + 0a2y3)?
<- Payv +a+ L?‘l + agby A2 + (= mac§ ol (1= mashi" onow
Y1 2 16 4
(1 — k)agb 1 (1—k)3agbg
o[ E g ooy + |5 - C P ot
__ Py L4 oh I o422\ ? n doy1 ((042)2 é’
Y1 2 1-kK 3 1-k&
2 2 A= diz — No —doy — &
£Qy = PXELEPYL 08 T +anbil pi(\ — diz — axy) N p2(X2 — day — 0y1)
v 2 2 a 1)
+a7(v+ b)) (pray + payr — cv) — 7(1 — K)az (0510 + o520%)?
2(v 4+ by)2—"
< _hn + P21 et a3 +aghs! P11 n P22 (1 —w)arbs 202, (1 —kK)agbi ™ os1050
v 2 1) 16 4
(1 —K)ardh 1 (1-—k)3arb¥
+|:1—27 0510520 + §_T7 gg 2
2 1 1
__Phmtpan o3 os52p1A1 |® | dosy [ osopiAi |7 Apado 0350 :
v 2 (1—-kK)a 3 |[(1-kK)a 30 [pmM(1—r)?2] 7
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In view of the arbitrariness of the x, it follows that if x — 0T, then we have

Brav
T

A _
LQ3 < —?2 + fov + do,

LQ2 < —

+a,

. (4.2)
£Qs< 28 45,
1
r1 +
L£Os < it - P21 +e,
where @ = a + 021 +2(02M)? + g (022M)%, dy = da + 6731 +2(o3de) ¥+ o (03222)%, § = 6+ %31 +
2 1 1
2 (042ho)’ + 21 (U42>\2)% and ¢ = c + ”51 +2 ("5”’“1) ® 4 dom (szm) ®  fozde (Zlgi?) i

Denote the following C?-function Vi:

Vi =c1Q1 + c2Q2 + c3Q3 + caQa + Qs,

and ¢; will be determined in (4.3), ¢ = 1,2,3,4. Then making use of It6’s formula to V3 and combining
T +y+z>3xyz for x,y,z > 0, one has

Pz ad firv payr cshe caPayv
X X1 v y yl

< =3¢/ crcop1Bid — 3%/ cacapafada + crdy + ca@ + cada + 48 + ¢+ (11 + c3fBa)v.

LV3 =— +clci1 —l—Cg(i-i—CgCZQ+C4S+E+(Clﬂ1+63ﬂ2)1}

Choose
¢ = P11 A1 g = P11 cg = p2B2X2 s = p2_52_>\2 (4 3)
d(JZlQ 7 a2d1 ’ SJQQ , 62dy '

Therefore, it leads to

P1fiAL p2fals

£V, < 2L P2
3= odsy

+ e+ (c1fr + c3Be)v = —¢(Ry — 1) + (c1f1 + c3B2)v, (4.4)

cdadids
Next, we define a C?-function Vj : Rﬁr — R as follows:

where R§ = P1812\10d2+p2Badaddy

Vi=—Inz—Inzy —Iny —Iny; +2Vo + M V3,

where M is a sufficiently large constant such that

2 2 2 2
—ME(R3—1)+d1+7+a+7+d o+ 2t 2 Lis+ §1+2r< —2. (4.5)

It is clear that Vj has a minimum value point (z,z1,y,y1,v). Therefore, we define the nonnegative C?-function

as follows _
Vi=Vy— Vi(z, 21,4, y1,0).

Then making the use of It6’s formula and combining (3.3), (4.4), one gets

_ A by 2 2 2 2
v Bire D Bayv g gy g p T g T2 gy B sy Ty

T T1 Y U1 2 2 2 2 (4.6)

1
+[(1+ Mer)Bi + (14 Mez)Bo] v — 5 (0%00% + 05527 + 03y” + 0dayf + 030%).

2
Next, we will construct a bounded set U C Ri’_ such that

‘C’V(xv'xhyayhv) < _1a for any (x7x17y7ylav) € Rj— \ U.

11



Denote
1
?7

1
e <a < e<y<-, s?’gylsg—s, e<v<

)

U{sgxg

m | =
m | =

where € is a sufficiently small positive constant satisfying the following inequalities
1

(1+ Me1)Br+ (1 + Mes) B’
~ min{Ay, 81, A2, Bo} 4

e <

2
sup {[(1 + MCl)ﬁl + (1 =+ MCg)ﬁg]U — %’U} S —1,

€ ve(0,00) ( )
4.7
2 2 2 2 2
O1a N0 N 039 N0y 052
T (0t £3013) + UES(ISEO) {[(1 + Mecy)p1 + (14 Mes)B2]v — ?U} <-1,
02, ol
— Lo+ + sup {[(1+Mcl)ﬁ1+(1+M03)ﬁ2]v—71)} < —1.

v€(0,00)
For convenience, we divide R% \ U into ten domains
Uy = {(x,xl,y,yl,v) € Ri| 0<v< 5}, Us = {(x,xl,y,yl,v) € Ri\ 0<z< 8},
Us = {(z,21,9,91,0) € RL[ 0 <21 <&}, Uf = {(z,21,9,91,0) €RL| 0 <y <&},
Uc_ RS 3 UC_ R5 1
5_{(x7x17y7y17v)€ +|O<y1<5}7 6 — (33,55171/71/1,1))6 +|U>g )
ve = yeR x> b, o= JERY |21 > —
7T z,xr1,Y,Y1,Vv +| T c ) 8 — z,r1,Y,Y1,v +1 1 23 3
UC* RS 1 Uc . RS 1
9 — (I7x17y7ylav)€ +|y>g ) 10 — (Iaxlvyayhv)e +‘y1>§ .
Obviously, R \ U = Ugl U¢. Thus we shall verify £V (z,21,y,y1,v) < —1 for any (z,z1,y,y1,v) € R\ U.

Therefore, from (4.5), (4.6) and (4.7), it is not difficult to verify that

10
‘C/V(x7x17yay1;1}) S _1a for(xamhyaylav) S Ri— \ U= U Ulc

i=1

Case 1. If (z,z1,y,y1,v) € Uf, from (4.5), (4.6) and (4.7), we have

0.2 0.2 0_2 0_2
LV <= Me(Rg —1) i+t hat 0t +dy+ =5+ 2 4 2r

+[(1+ Mcy)Br + (14 Mes)Bs] v
<=24+[14+ Mc1)B1+ (1 4+ Mcs)pole
< -1

Case 2. In domain Ug,

2

A
LV < — ?1 +[(1+ Mey)pr + (1+ Mes)Bo] v — %zﬂ

2

A
<-2 4 sup {[(1+Mcl)ﬂl+(1+M03)B2]v7@v}
€ v€(0,00) 2

<-1

12



Case 3. In domain Us,

2
LVg—leU—i— 1+ Mecy)B1+ (1 + Mes)ps v—@vz
x 2
1
2
S—&-i- sup {[(1+Mcl)61+(1+M03)62]v—@v}
€ vE(0,00) 2
<-1.

Case 4. In domain Uy,

A 2
LV < — ;2 (14 Mer)By + (1 + Mes)Ba) v — 22242

2

A |4
<-224 sup {[(1+M01)51+(1+MC3)52]”_ Udzv}
£ v€(0,00) 2
< —1.
Case 5. In domain Ug,
ﬁ2yv 0%2 2
LV < — +[(L+ Mer)Br + (1 + Mes)Bo] v — —2v

Y1 2
2
g—&—i— sup {[(1+M01)B1+(1+M03)62]v—@v}
€ v€(0,00) 2

<-1

Case 6. In domain U,

LV <[(1+ Mey)Br + (1+ Me3)Ba]v — "i?vz

2
ng 2 0%2
S——4 v° + sup {[(1+Mcl),61+(1+M03)ﬁ2]v— e v}
v€(0,00)
2 2
052 052
<— gt Sw {[(1 + Mey)By + (14 Meg) oo — 222 v}

IA

- 1.

Case 7. In domain U¥,

2 2
LV < — %ﬁ (1 + Me)By + (1+ Mes)Ba] v — %02

2 2

012 o2,
=7 906+l + UES(I(;I;O) {[(1 + Meqp)B1 + (14 Mces)Balv — 7@}

-1

IA

Case 8. In domain Ug,

2 2
£V <= P23 4 [(14+ Me)Bu+ (1+ Meg)Bo] v — T2
g3 052)2
ST om04s T ves'(%f)o) {[(1 + Mcr)Br + (1+ Mes)Ba]v — 70}

<-1

13



Case 9. In domain Uy,

02 0’2
LV < — %gf +[(1+ Mc)By + (14 Mes) o] v — —2242
_ 93,
- 2g0+1

+ sup : {[(1 + Me)By 4 (1+ Mes)Bolv — @v}

v€E (0,00
<-1

Case 10. In domain Uy,

0'2 0'2
LV < — %y% +[(1+ Me1)Br + (1+ Mes)Ba] v — %UQ

2 2
T4 { O59 }
<——=-4 s 1+ M +(1+M - —=
S T 503018 U;&P : [( c1)Br + ( c3)PBalv 5 v

< -1
Consequently,
[’V(xv'xhyayhv) < _1a for any (x7x17y7ylav) € Rj— \ U.

Therefore, the condition (ii) in Lemma 2.2 is verified. We have verified conditions (i) and (ii) in Lemaa 2.2.
Therefore, model (2.2) is ergodic and admits a unique stationary distribution. This completes the proof. O

5. Extinction

In this section, we will give sufficient conditions for the extinction of the infected cells and the free virus
particles in model (2.2).

Theorem 5.1. Let (z(t), z1(t), y(t), y1(t),v(t)) be a solution of model (2.2) with any initial value (x(0),x1(0),
4(0),41(0),v(0)) € Ri, Then

. 1 D1 D2 1
limsup — 1 t t —o(t) ] < .S.
fmsup n(acmxl()+ y1()+cv() <n, as.,

t—00 dev/Ro

where 8 - \ 5 . \

p161 1 D252 2

= X = 24 pydX + Y - 22| uydy
K av'Ro Jo ‘ dr | v Ro Jo ‘ dy |
1
+ [(“A‘SAC)I{ms1} +(GV5VC)I{\/RT>1}} (VR —=1) = ——————,
2o+ k)

with 1, denotes the indicator function with respect to set w. Moreover, if n < 0, it leads to

lim z;(t) =0, lim y;(¢)=0, limv(t)=0, a.s,

t—o0 t—o0 t—o0

which means the infected CDAY T cells x1, the infected macrophages y1 and the free virus particles v will
exponentially go to extinction in a long term.

Proof. Consider
VRo(wi,wa, 1) = (wi,wa, 1) A4,

where

P1 _ P2

C RO) wz_C\/R()’

wp = A=

G‘EO o
oS o o
)

D
>
b

Define a C*-function P: R} — R, as follows
w1 wo 1
P=—x+ -y +-v.
a ) c

14



Applying the It6’s formula to In P, we have
1 w1 w2 1
d(ln P) =L4 5 |~ (Brav —az) + —=(Bayv — dy1) + —(pro1 + pays — cv)

1 w? w2 1
~ 553 %(0211‘1 + 0'221'%)2 + ; (041y1 + 042yf)2 + 7(051U + 0'52’02)2 dt (5'1)
2P a ) c
1 w1 2 w2 2 1 2
+ B ;(021301 + o20x7)dBs(t) + 7(0411/1 + 040y7)dBy(t) + 5(05111 + 0520%)dBs(t) | ,
where
= (L (uro — az) + 2 (Baye — 62) + (11 + pays — e0)
P\ 1TV — axq 5 2Yv U1 c pP1T1 T P2y — CU
v [wif Al w232 A2 1 {/p D2 wifiA1 | wafade
- A _ 22 i N Pz 1
P[ a (“T d1>+ 5 (y )| TP (% ) ot ( —w) ot ( ady | ods )e

cw1 By A cwa Ba A2 1 T T
< P I*dfl + 5 yidj +F(W1,w2’1) [A(%,yuU) — (%1, y1,v) ]
cw1P1 Ar| | cwafBo A2 1
<— X - — - — — -1
= 4 + 5 4 + P(\/ Ry — 1) (w11 + wayr +v)
cw B A1 cwa Bo A2 \/

Integrating (5.1) from 0 to ¢ and dividing by ¢ on both sides, it leads to

InP(t) —In P(0) _cwifh /t A1 cwa 2 /t A2
< X(s)— —|d Y(s) — —|d
¢ S o XE g st 5 )|V - g |4
L3 (5.2)
+ {(aAéAC)I{mgl} + (avde)I{m>1}} (VRo = 1)+ 3 > (Mi(t) = Ni(t).
i=1
where u (t) B /t w1(021$1 + 0‘2237%)dB (S) N (t) B /t w%(o'glxl + 0’223;'%)2(18
e 0 aP(s) 20 e 0 2a2P2(s)
¢ 2 ¢t 2 2)2
wa(o41y1 + 0427) / w3 (04191 + 04297)
2(1) /0 5p(sy Bl M= ) e
¢ 2 ¢ 22
(0’51U-|-O’527) ) / (0’51’()4-0’527) )
M;s(t) = ———dB N3(t) = ————————ds.
3() /0 cP(s) 5(8), 3(t) 0 2¢2P2(s) 8

Applying the exponential martingale inequality in Lemma 2.4, we choose T'=n, a = ¢ and § = 21% such that

21 1
1@( sup (M;(t) — eN(t)) > “”) <=, i=1,23
0<t<n € n

From Borel-Cantelli lemma [29], one obtains that for almost all w; € €, there exists an integer ko = ko(w;) such
that for all t € (k — 1, k), k > ko,

21
Mi(t) < eNi(t) + 2 i =1,2,3.
€

Since

(w1x1 e 3)2 < o3wiz] " ohwiy? " o510% (1 + L + L
a ) c) = a? 52 c? o3 oYy  o% )’
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we have

1< —e 61nn
EZ (M;(t) — Ni(1)) ZNZ
i=1
_ t ‘721‘*’1 2 041“’2 L{%l 2
< 1= oa(e) + T () + vl _Glun (5.3)
tJo 2 [Lay(s) + Tyl(s) + 1u(s)] e(n—1)
B (I1—2¢) 6lnn
- 2(0%2+Ui2+0%> e(n—1)
21 41 51

Making the use of Lemma 2.3 and considering the ergodicity property of X (¢) and Y (¢), we have

1! A1
lim — X(s)— —|ds = ,uXdX
t—oo t 1
t (5.4)
lim 1 Y (s) Al [Ty A day.
t—oo t do 0 do Y

Combining (5.3), (5.4) and taking the superior limit of ¢ on both sides of (5.2), which implies n — oco. This
leads to

. I P) _ pih oc‘ A1 D232 ‘ A2
| < X - — dX + Y- — dY
P T T avRe Jo di | " T 5 VR Jo d |
(1-9)
—|—{(aA&Ac)I{mgl}—|—(a\/5\/c)I{\/R—O>1}}(\/Ro—l)—2 ’ - @S
(h++ k)

In view of the arbitrariness of € € (0,1), let ¢ — 0T, it leads to

I P@t) _ p1b y_ 22

. D22
lim su < dX + dY
ol ¢ av/Ro Hx dvRo Jo ’ dy |1
1
+ {(aAéAc)I{mél}+(aV5VC)I{m>1}} (\/Ro—l)— n n 1
2( )

=7, a.s.
Furthermore, if 7 < 0, then lim;_, o, P(t) = 0 a.s., in the other word,

lim z1(t) =0, lim y;(t) =0, limv(t)=0, a.s.

t—o0 t—o0 t—o0

That is to say, the infected CD4™ T cells z1, the infected macrophages y; and the free virus particles v will
exponentially go to extinction in a long term. The proof is completed. O

6. Numerical simulations

In this section, to verify the theoretical results obtained in this paper, we present numerical simulations for
stochastic model (2.2). Employing Milstein’s higher order method [31], we derive the discretization equation as
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follows,
g+ =z 4 ()\1 —dyz® — ﬁlx(i)v(i))At + (011 + 012m(i))x(i)vAt§§Z)
(@)
x

t5 (0'%1 + 30110127 + 20,%2(1,(1'))2) (At(di)y - At) ,

xgiﬂ) :acgi) + (le(i)v(i) - ax(li))At + (091 + Jggmgi))x(li)vAtgéi)
(4)

+ ? (031 + 309100001 + 2052(9351))2) (At(ﬁéz))z - Af) ,

y ) =y 4 (>\2 — day — ﬂzy(i)v(i)) At + (031 + 0329 )y D VAL
Y

+5 (051 + 3031039y + 2032)2(:(!(1'))2) (At(fy(,i))Q - At) ,

D =40+ (a9 — 5 ) Atk (o + VT
(@)

+ % (021 + 30410009 + 2022(y§i))2) (At(gff))Q - At) ,

Pt =) 4 (plx(li) +p2y§i) — cv(i))At + (051 + 0527;@))@“)\/&5;“
N0
2

where At > 0 is the time increment and & are N (0, 1)-distributed eight independent Gaussian random variables,
k=1,...,8.
Example 5.1. For the stochastic model (2.2), we choose the parameters value as

+ <U§1 + 30510520 + 20?2(11(“)2) (At(gf(f))2 — At) ,

M =10, dy =0.12, B; = 0.015, a = 0.2, Ao =8, dp = 0.1, B = 0.01, & = 0.24,

6.1
p1 =08, pp=0.7, c =24, 5,1 = 0.01, 5o =0.001, i=1,234,5, (6.1)

the initial condition (z(0),z1(0),y(0),y1(0),v(0)) = (2,0.1,0.2,0.1,0.1). Then compute

R = p1ﬁ1>\15fi727-|:p7252/\2ad1 10367 > 1,
C(Sadldg

Theorem 4.1 claims that there exists an ergodic stationary distribution of stochastic model (2.2). The simulation
results can be seen in Fig. 6.1, which clearly supports these results.
Example 5.2. In this example, to show the extinction of infected cells and free virus, we let

dl = 0.6, 61 = 0.0015, d2 = 0.7, 52 = 0.001, 011 — 031 = 051 — 0.2,

012 = 032 = 052 — 0027 021 = 041 = 01, 09292 = 042 = 0.01.

The other parameters and initial value are similar to Example 5.1. Then we compute

pif [T A p2fe [ A2
— X = 24 xdX + Y - 22| uydy
7 av Ry Jo ‘ dy Hx 0V Ro Jo ‘ do uy

+ [(aAéAc)I{\/R—OSH + (aVéVa)I{%>1}} (VRy—1)— 2(

= —0.0070 < 0.
Therefore, in view of Theorem 5.1, one can obtain that the infected CD4T T cells x1, the infected macrophages

y1 and the free virus particles v will exponentially go to extinction in a long term. The simulation result is
displayed in Fig. 6.2.
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Figure 6.1: The stochastic model (2.2) has ergodic property. The picture on the left and right are the populations size over time
and the density functions of z1(t), y1(t) and v(t), respectively.
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Figure 6.2: The infected cells z1, y1 and free virus particles v of stochastic model (2.2) extinct. The picture on the left and right
are the populations size over time and the density functions of z1(t), y1(¢) and v(t), respectively.
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7. Conclusion

The purpose of the current study was to determine the effect of nonlinear perturbation on stochastic HIV
model, which describes the interaction of the HIV virus with CD4™" T cells and macrophages. The results of this
investigation show that the global positive solution of stochastic model (2.2) exists and is unique. According to
the ergodic property, we obtain the sufficient conditions for the ergodic stationary distribution of this model.
Then, using stochastic comparison theorem and exponential martingales inequality, the sufficient conditions
for the extinction of model (2.2) are derived. More precisely, the following conclusions can be drawn from the
present study

o Let (z(t),z1(t), y(t),y1(t),v(t)) be a solution of model (2.2) with any initial value (x(0),z1(0),y(0),
y1(0),v(0)) € RS, If
p1B1A10dy + pafadsad;
N C(Sadldg

then there exists a stationary distribution u(-) and the solution (z(t), 1 (t),

— 2 2
is ergodic, where d; = dy + % + 2(012M\1 )g 4“311 (012)\1)l, a=a-+ % 2 (o92A1)
— 2 2 2 1
do = do + % + 2 (0.32)\2)§ + 40331 (0’32)\2) 5=26 + 041 + 2 (0‘42)\2)3 4 (0‘42)\2)3

2 1 1
os2p1 A1\ 8 4051 [ os2p1 M1 ) 3 4pada (02,03
2 < a ) + 3 ( a + 30 P11 '

o Let (z(t), z1(t), y(t), y1(t), v(t)) be the solution of model (2.2) with any initial value (2:(0), 21(0),y(0), y1(0),
v(0)) € R%.. Then

Ry =

> 1,

y(t),y1(t), vgt)) to model (2.2)
54 4 E (022>\1)
and ¢ =c+ 051 +

ol

-

1 D2 1
I ] ¢ O+ 2o <
o i (g0 g+ o) <o
where
b [ 1 p2fa [ A2
= dx + Y - —= dY
a-/ Ro ‘ dl px (5\/ Ro d2 i

+ [(a/\éAc)I{\/R—Ogl} +(av6Vc)I{\/R—O>1}}( Ry—1)—

Moreover, if n < 0, it leads to

lim x1(¢) =0, lim y;(¢) =0, limv(¢)=0, a.s.,

t—o0 t—o00 t—o00

which means the infected CD4% T cells x1, the infected macrophages y; and the free virus particles v will
exponentially go to extinction in a long term.
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