Current research on wax-based oleogels indicates wax esters to be the key component in many natural waxes. This necessitates understanding the properties of pure wax esters to unravel the gelling mechanism in wax-based oleogels. Therefore, wax esters with different carbon numbers and symmetries were studied and characterized regarding their thermal (DSC) and viscoelastic (oscillatory rheology) behavior. Pure wax esters and binary mixtures of wax esters were studied as such and in oleogels formed in combination with medium chained triglyceride oil at WE-inclusion levels of 10 % (w/w). Interpretation of the observations was based on detailed analysis of pre-existing data on crystallographic (SAXS) and thermal properties. It is found that all observations concerning single pure WE’s obey a systematic framework linking molecular make up, crystal structure and behavior. The study on the gelling of four different binary mixtures of wax esters revealed that substantial chain length differences do have the expected consequence of separate crystallization. Mixtures of wax esters with only limited chain length difference reconfirmed earlier speculations on mixing and crystal structure. Applying mixtures of wax esters only differing in their position of the ester bond indicated ideal mixing behavior in the solid phase of the gels. Actually, the data revealed that despite these expected observations in both systems, additional thermal events occur at specific mixing ratios. Their supposed relation to compound formation certainly needs further confirmation. Rheological analysis confirmed that sequential crystallization results in highest firmness values for the systems studied.

Maria Scharfe

and 2 more

Maria Scharfe

and 2 more

The role of solvent composition, in particular, minor oil components on sterol/sterol ester oleogels, has been studied recently [1]. Reportedly, deterioration products hamper network formation and modify the gel’s macroscopic properties, probably due to alterations of the scaffolding elements’ interactions. However, the role of the FA composition of TAGs has not yet been addressed. In this study, minor oil components of three vegetable oils with varying degrees of unsaturation (iodine values) were removed, and the oils were chemically and physically characterized before and after the treatment. Consequently, β sitostero/γ-oryzanol oleogels were produced, and the gel-sol (DSC) and sol-gel (rheology) transitions were monitored. Moreover, large and small deformation tests were performed, and the results were linked to oil parameters. In contrast to minor oil components, the FA composition has little impact on oleogel properties. The decline in gel hardness with IV is possibly linked to a lower solvent viscosity. However, a considerable drop in gel-sol transition temperature was observed with increasing IV indicating fewer elements of scaffolding. That was linked to the rapid formation of primary oxidation products in purified flaxseed oil during oleogel preparation, impairing tube formation. Similar to previous results on deterioration products, these minor components seem to aid network strength at low concentrations resulting in similar transition enthalpies and G’. That might be due to shifted network interactions in the presence of molecular species with functional groups. In the second part of this study, these modified interactions in the presence of selected minor components will be discussed.