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fields, to time scale calculus.
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1. Introduction

Multiplicative calculus was first introduced by Grossman and Katz [13], [14] in 1967. This type of

analysis is also called non-Newtonian analysis because of its difference from classical calculus of Newton

and Leibniz. There are four important operators for this analysis, such as gradient, derivative, average

and integral. Multiplicative calculus is a useful supplement to the usual calculus in that it is tailored

to situations involving exponential functions in the same sense that the usual calculus is tailored to

situations involving linear functions. While classical analysis works based on addition and subtraction

operations, multiplicative analysis works on multiplication and division. The multiplicative calculus

moves the roles of substraction and addition to division and multiplication. There are actually many

reasons to study multiplication analysis. It improves the work of additive calculations indirectly.

Problems that are difficult to solve in classical analysis can be solved with incredible ease in this

analysis.

Multiplicative calculus has a relatively restrictive area of applications than the classical calculus.

Only positive functions are concerned here. In fact, the following question may come to mind. Why

is the need to develop this new analysis when there is already an existing analysis that has been

developed in great detail and has many applications. This is actually the same as the answer to

the question of why polar coordinates are used when there is a cartesian coordinate system. Get to

know the point in the plane better. This analysis gives better results than classical analysis in many

fields such as finance, economics, biology and demography. A very limited number of studies have

been conducted on this analysis until the beginning of the 2000s. Recently, various studies have been

carried out on this subject and quality and effective results have been obtained (see [5], [6], [11], [12],

[15], [19]).

In this study, we will define the multiplicative derivative and its properties which has many appli-

cations in many fields on time scales. In this case, it will be seen that classical multiplicative analysis
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is a special case of time scale for T = R. Before explaining some important concepts of multiplicative

analysis on time scales, let’s briefly explain the concept of time scale and express its basic features.

A time scale T is an arbitrary, closed, non-empty subset of real numbers. This theory was first

studied by Hilger in 1988 in his doctoral dissertation [2], [17]. Hilger ’s aim was to gather discrete

and continuous states in mathematics under the same roof. Thus, difference equations and differential

equations would be combined and important results would be obtained. However, some concepts

such as ∆−derivative, ∆−integration and their various properties on T are explained in detail in
two important books written by Bohner and Peterson [7, 8]. Later, in the multivariable case, many

concepts with partial delta derivatives and their properties were given by Bohner and Svetlin [9].

Since its first study, this theory has been studied by many mathematicians in numerous fields (see [3],

[10]). We need firstly to mention on something about ∆−calculus of time scale theory.
Let  = inf T and  = supT. Since T is not necessarily connected, the forward-jump and backward-

jump operators   : T→ T are defined as

() = inf{ ∈ T :   } () = sup{ ∈ T :   },

respectively for  ∈ T such that        supT, inf  = supT, sup = inf T where  denotes

empty set. If T is bounded, one can write () =  The corresponding forward-step function  is

defined by

 : T → R+ () = ()− 

However,  ∈ T is left dense, left scattered, right dense, right scattered, isolated and dense iff () = 

()   () =  ()  , ()    () and () =  = (), respectively. We also should remind

∆−differentiability region T along with the set T to define ∆−derivative of a function. T = T\{}
if T is bounded above and  is left-scattered; otherwise T = T. Let  : T→ R be a function.  is

right continuous at  ∈ T if there is some   0 such that |()− ()|   for all  ∈ [  + ) and

  0 The set of all right continuous functions on T is denoted by (T).

One can define ∆() to be the value for  ∈ T, if one exists, such that for all   0 there is a

neighborhood 1 of  such that for all  ∈ 1¯̄
[()− ()]− ∆() (()− )

¯̄
  |()− | 

Here,  is ∆−differentiable on T if ∆() exists for all  ∈ T. We will refer to [7, 8] for detailed
information on ∆−derivative.

Before the details of multiplicative derivative on time scales, some definitions should be made that

will provide the infrastructure of this important concept. As is known, logarithms and exponential

functions have an important place in multiplicative analysis. For this reason, it is necessary to express

these concepts on T. The following important notions and conclusions are introduced by Anderson

and Bohner [1].
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Definition 1.1. For   0 the transformation  : C → C by

() =

(
1

log(1 + ) for  6= 0

 for  = 0


is called multi-valued cylinder transformation where C is the set of complex numbers, C =

½
 ∈ C :  6= −1



¾
and log is the multi-valued complex logarithm function.

Definition 1.2. [1] Let  : T→ C be a ∆−differentiable function for  6= 0 Then,

( ) =

Z


()

∙
∆()

()

¸
∆ :   ∈ T,

is multi-valued logarithm function on T. Here, if  ≡constant, ( ) = 0 for all   ∈ T. Thus, this
logarithm does not distinguish between either constants or constant multiples of functions. Now let’s

express some of the features of this function that are necessary for our proofs.

Lemma 1.3. [1] Let   : T→ C be a ∆−differentiable functions with   6= 0 Then,

( ) =  ( ) + ( )

and

 


( ) =  ( )− ( )

The proof of these properties can be easily demonstrated by definition.

Lemma 1.4. [1] Let  ∈ R and  : T→ C be a ∆−differentiable function with  6= 0 Then,

( ) = ( )

for all   ∈ T.
The derivative of this specially defined function on T is one of the critical concepts for our study.

This concept will have different representations as the time scale is changed. This situation will yield

very important results for multiplicative analysis.

Theorem 1.5. [1] Let  : T→ C be a ∆−differentiable function with  6= 0 Then,

∆ ( ) =

⎧⎨⎩
1

()
log
h
()

()

i
 for () 6= 0

∆()

()
 for () = 0



for all   ∈ T where ∆−derivative is respect to  All this will be necessary when bringing the concept
of ∆−derivative to multiplicative analysis on time scale.

The rest of the work is organized as follows: In the second chapter, some basic concepts in mul-

tiplicative analysis and the concept of derivative in multiplicative analysis will be given. In the next
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section, the multiplicative derivative will be defined on T and its properties will be proved. Some basic

theorems for usual calculus will be generalized to mutiplicative calculus on T.

2. Preliminaries on Multiplicative Calculus

Now, before moving on to the main topic, let’s express the notions and theorems that should be

given about multiplicative analysis. First of all, it is important to express the concept of derivative in

multiplicative analysis, which is the basis of our study, and to examine its properties. The operations

in the difference quotient in classical derivative. By way of contrast, the derivative in multiplicative

calculus for a function is based on the ratio.

Definition 2.1. [4], [18] Let  :  ⊂ R→ R be differentiable in usual case and ()  0 for all 

If the below limit exists and positive for

∗() = lim
→0

∙
(+ )

()

¸1

 (2.1.)

∗() is called ∗−derivative of  at  Since  is positive, the quantity in square brackets is positive,
and the power in (2.1.) is a well defined positive number for all arbitrary non-zero numbers  If ∗()

exists for all  on an open set Ω ⊂ R then  : → R is well defined.

In fact, there is a relationship we will use frequently between classical derivative and derivative in

multiplicative analysis. Let’s express this now.

Lemma 2.2. [4], [18] Let  : → R be positive and differentiable at 

∗() = (ln )
0()

Repeating this procedure  times, we can obtain the relation between the −th order classical deriv-
ative and −th multiplicative derivative as

∗()() = (ln )
()()

Similarly, −th order classical derivative can be expressed in terms of −th multiplicative derivative;

 ()() =

−1X
=0

(− 1)!
!(−  − 1)!

()()
³
ln ∗(−)

´
()  = 0 1 

Lemma 2.3. [4], [18] If a positive function  is differentiable in usual case at , it is also

∗−differentiable at  Similarly, If the positive function  is ∗−differentiable at  and ∗() 6= 0, it

is also usual differentiable at 

Let’s see the basic properties of the multiplicative derivative with the following theorem in order

to better understand the main part of our study.

Theorem 2.4. [4], [18] Let   be ∗−differentiable at  and  be usual differentiable at  The

following expressions are provided for multiplicative derivative.
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 ()∗ () = ∗()  ∈ R
 ()∗ () = ∗()∗()

 ()∗ () = ∗()∗()

 ()∗ () = ∗()()()
0()

 ()∗ () = ∗ (())
0() 

 ( + )∗ () = ∗()
()

()+()∗()
()

()+() 

The proof of each of these items can be made using the multiplicative derivative definition. Here,

unlike the classical case, the multiplicative derivative of the sum or difference is more complicated.

Some important theorems related to derivative, which have very important applications in classical

analysis, can also be expressed in multiplicative analysis.

Theorem 2.5. (Multiplicative Rolle’s Theorem) [4], [18] Assume that  is continuous, posi-

tive on [ ] and ∗−differentiable on ( )  If () = () there exists      such that ∗() = 1

Theorem 2.6. (Multiplicative Mean Value Theorem) [4], [18] Assume that  is continuous,

positive on [ ] and ∗−differentiable on ( )  Then, there exists      such that

()

()
= ∗()−

As can be seen, although the multiplicative derivative will have some problems especially in the case

of addition and subtraction, it will have great benefits in practice. Now let’s move the multiplicative

derivative and its properties to the time scale, which is a more general case. There has not been any

study on the time scale regarding multiplicative analysis so far. In this respect, the proof and given

concepts will make important contributions to this theory.

3. Multiplicative derivative on time scales

In this section, ∗−derivative and its basic properties will be defined on T. Here, the concept of
∆−derivative on T will be carried to multiplicative calculus and important results will be obtained.
Then some theorems related to new derivative will be expressed and proved, and examples will be

given.

Definition 3.1. Let  : T→ C be a ∆−differentiable and ()  0 for all  ∈ T If the below limit
exists and positive for

∆
∗
() = lim

→

µ
()

()

¶ 1

()− 
 (3.1.)

∆
∗
() is called ∆∗− derivative of  at  To consolidate this definition and make it understandable,

we need to define one sided ∆∗− derivatives.
If ()  0 is defined on [0 ) ⊂ T, then the right side ∆∗− derivative of  at the point 0 is

defined to be

∆
∗

+ () = lim
→+0

µ
(0)

()

¶ 1

(0)− 
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Similarly, the left side ∆∗− derivative of  at the point 0 is defined to be

∆
∗

− () = lim
→−0

µ
(0)

()

¶ 1

(0)− 


while ()  0 is defined on ( 0] ⊂ T. We can easily draw the following conclusion from here.

()  0 is ∆∗− differentiable at 0 iff ∆
∗

+ (0) and ∆
∗

− (0) exist and

∆
∗
(0) = ∆

∗
+ (0) = ∆

∗
− (0)

Example 3.2. Consider the function

() =

(
+ 3  ∈ [−2 2)R
2 +   ∈ {2 4 8}



Let us evaluate ∆
∗
(2) Here, we will first examine the structure of one-sided ∆∗−derivatives. Since

∆
∗

− (2) = 2

and

∆
∗

+ (2) =

r
10
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 is not ∆∗−differentiable at  = 2

Lemma 3.3. Suppose that  : T→ C be ∆−differentiable and ()  0 for all  ∈ T. Then

∆
∗
() = 

∆
 ()

Proof: We use the formal definition of `∆ ( ). Firstly, Let’s make the proof for () 6= 0 as

∆
∗
() = 

1

()
log

()
()


= 

∆
 ()

Similarly, we get

∆
∗
() = 

lim
→

log

µ
()

()

¶
()−  = 

∆

()



for () = 0 So, from these two equations, the desired equality can be easily seen.

Similarly to the reduction of the ∆−derivative to usual derivative when T = R in particular,

∆∗−derivative is reduced to ∗−derivative.
Theorem 3.4. If  : T → C is ∆−differentiable and ()  0 for all  ∈ T, then it is also

∆∗−differentiable at 

Theorem 3.5. If  : T→ C is ∆∗−differentiable, ()  0 and ∆
∗
() 6= 0 for all  ∈ T, then it is

also ∆−differentiable at 
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Proof: The following equations are obtained from the basic concepts given earlier.

∆
∗
= 

∆
 ()

and

log ∆
∗
= `∆ ( ) + 2  ∈ Z

If () = 0 we get

2+
∆()

()
= log ∆

∗ ⇒ ∆() = ()
n
log ∆

∗ − 2
o


Likewise,

2+
1

()
log

µ
()

()

¶
= log ∆

∗ ⇒ 2+
1

()
log

µ
1 + ()

∆()

()

¶
= log ∆

∗

⇒ log

µ
1 + ()

∆()

()

¶
= ∆

∗

⇒ ∆() =
()

()

½³
∆

∗´() − 1¾ 

It completes the proof.

Theorem 3.6. If  : T→ C is ∆∗−differentiable, ()  0 and ∆
∗
() 6= 0 for all  ∈ T, then it is

continuous at 

Proof: By the definition of∆∗−derivative of ()  0 and Theorem 3.4., it is also∆−differentiable
at  ∈ T. By [8], it is continuous at that point. It completes the proof.

Now let’s express and prove some important properties of the multiplicative delta derivative.

Theorem 3.7. Let   : T → C be ∆∗−differentiable functions for all  ∈ T where   6= 0.

Then,  

   +  are ∆∗−differentiable and

 ()∆
∗
() = ∆

∗
() ∆

∗
()


³



´∆∗
() =

∆
∗
()

∆
∗
()
for ∆

∗ 6= 0
 ()∆

∗
() = ∆

∗
() for  ∈ R

 ( + )∆
∗
() =

¡
∆

∗
()
¢ 

 + 
¡
∆

∗
()
¢ 

 +  

Proof: These proofs can be obtained directly using the definition as follows.

 ()∆
∗
() = 

∆
() = { ()+()}

∆

= 
∆
 ()

∆
 () = ∆

∗
() ∆

∗
()


³



´∆∗
() = 

∆


()

= { ()−()}
∆

=
∆
∗
()

∆
∗
()

 By the definition, we get ()∆
∗
() = 

∆
 () = 

∆
 ()

∆
 () Here we will continue the

proof for two different cases of . Firstly, let us assume that () = 0 For this case, it yields that

()∆
∗
() = ∆

∗
() since 

∆
 () = 1 Similarly, since 

1
()

log

1+() 

∆




= 1 for () 6= 0 we get

()∆
∗
() = ∆

∗
()
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 This proof will again be done for two cases of . If () = 0

( + )∆
∗
() = 

∆
+() = 

(+)∆

+ =

µ

∆



¶ 
+

µ

∆



¶ 
+

=
³
∆

∗
()
´ 
+

³
∆

∗
()
´ 
+



It completes the proof.

Example 3.8. Let us consider  : T→ C, () =  Then,

∆
∗
() = 

∆
  =

⎧⎨⎩ 
1

()
log

()




 for () 6= 0


1
  for () = 0



Example 3.9. If  : T→ C, () =  ∈ R ∆∗() = 1.

Lemma 3.10. Let   : T → C be ∆∗−differentiable functions for all  ∈ T where   6= 0 If
() = ()  ∈ R ∆∗() = ∆

∗
() for all 

Proof: We get ∆
∗
() = 

∆ = 
∆
 = ∆

∗
() with simple reasoning.

Lemma 3.11. If    : T → C are ∆∗−differentiable functions for all  ∈ T where    6= 0
then

()∆
∗
() = ∆

∗
()∆

∗
()∆

∗
()

Corollary 3.12. This result can be generalized as follows. Let  : T → C be ∆∗−differentiable
for all  ∈ T Then, ()∆∗ () = ¡∆∗()¢ for some  ∈ N.

Theorem 3.13. Let  be a constant and  ∈ N.
 If () = (− ) then

∆
∗
() =

⎧⎨⎩ 

()

log

()−
−


 for () 6= 0



−  for () = 0



 If  is defined by () =
1

(− )


∆
∗
() =

⎧⎨⎩ 
−
()

log

()−
−


 for () 6= 0



−  for () = 0



Example 3.14. Let () = 2 sin 
1+

on T =
¡
1
2

¢N0 ∪ {0}  Then, we have
∆

∗
() =

¡
2
¢∆∗

(sin )∆
∗

(1 + )∆
∗ 

If this derivative is calculated for a particular point  = 1 ∆
∗
(1) = cot 1 with () = 0 Furthermore,

∆
∗
() = 

1

log

8(+1) cos 

2+1
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for () 6= 0

Definition 3.15. Assume that  : T→ C is ∆∗−differentiable for all  ∈ T ¡∆∗¢∆∗ : T2 → C

is second order ∆∗−derivative of  provided that ∆∗ is ∆∗−differentiable for  ∈ T2  Similarly, high
order ∆∗−derivative of  is defined by  (∆∗) : T → C  ∈ N. Let’s now write clearer statements for
the higher order ∆∗−derivative. We will do this using the definition of the first order ∆∗−derivative,
∆

∗
() = 

∆
  If the same logic continues to be used, we get³

∆
∗´∆∗

() = 
∆∆
 

When we generalize this situation, it yields

 (∆
∗)() = 

∆

 

Now, Rolle’s and mean value theorems, which have a very important place in multiplicative analy-

sis, will be defined on time scales.

Theorem 3.16. (∆∗−Rolle’s Theorem) Suppose that  has ∆∗−derivative at each point on
[ ]. If () = () then there exists some points 1 2 ∈ [ ] such that

∆
∗
(1) ≤ 1 ≤ ∆

∗
(2) for (1) (2)  0

∆
∗
(1) ≥ 1 ≥ ∆

∗
(2) for (1) (2)  0

Proof: Since  is ∆∗−differentiable at each point on [ ]  is also ∆−differentiable on [ ]
Therefore, by the assumption () = () there exists 1 2 ∈ [ ] such that

∆(1) ≤ 0 ≤ ∆(2)

Let () = 0

If (1)  0 ∆
∗
(1) = 

∆(1)

(1) ≥ 1
If (1)  0 ∆

∗
(1) = 

∆(1)

(1) ≤ 1
If (2)  0 ∆

∗
(2) = 

∆(2)

(2) ≤ 1
If (2)  0 ∆

∗
(2) = 

∆(2)

(2) ≥ 1
Consequently, we get

∆
∗
(1) ≤ 1 ≤ ∆

∗
(2) or 

∆∗(2) ≤ 1 ≤ ∆
∗
(1)

if (1)(2)  0 Let () 6= 0 Then,

∆
∗
() =

µ
1 + ()

∆()

()

¶ 1
()



Since ()  0 we get the same result. It completes the result.
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Example 3.17. Let T = Z and () = 2 Find 1 2 ∈ (−3 3) such that

∆
∗
(1) ≤ 1 ≤ ∆

∗
(2) for (1) (2)  0

Since T = Z, it yields () = + 1 () = 1 Additionally, we get

∆
∗
() =

(+ 1)2

2


Hence,

∆
∗
(1) =

(1 + 1)
2

21
≤ 1 and ∆

∗
(2) =

(2 + 1)
2

22
≥ 1

holds for 1 ∈ {−2−1} and 2 ∈ {1 2} 

Theorem 3.18. (∆∗−Mean Value Theorem) Suppose that  is continuous on [ ] and has
∆∗−derivative at each point on [ ) Then, there exists some 1 2 ∈ ( ) such thath

∆
∗
(1)

i−
≤ ()

()
≤
h
∆

∗
(2)

i−


for (1) (2)  0 and

h
∆

∗
(1)

i−
≥ ()

()
≥
h
∆

∗
(2)

i−


for (1) (2)  0

Proof: Let us consider  defined by

() =
()

()

∙
()

()

¸ −
−



Then,  is continuous on [ ] and has ∆−derivative at each point on [ ) Moreover, it yields
() = () = 1 Then, there exists 1 2 ∈ [ ) such that

∆
∗
(1) ≤ 1 ≤ ∆

∗
(2) for (1) (2)  0

∆
∗
(1) ≥ 1 ≥ ∆

∗
(2) for (1) (2)  0 (3.1.)

On the other hand,

∆
∗
(1) = ∆

∗
(1)

h

−
−
i∆∗
=1

  =
()

()


Here, if the second multiplier on the right is calculated for different cases of  In both cases of

() 6= 0 () = 0 we get
h

−
−
i∆∗
=1

= 
1

−  Hence we get,

∆
∗
(1) = ∆

∗
(1)

∙
()

()

¸ 1
−



If the same process is run similarly, we get

∆
∗
(2) = ∆

∗
(2)

∙
()

()

¸ 1
−
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By considering these equalities and (3.1.),

∆
∗
(1)

∙
()

()

¸ 1
−
≤ 1 ≤ ∆

∗
(2)

∙
()

()

¸ 1
−

 for (1) (2)  0

Namely, h
∆

∗
(1)

i−
≤ ()

()
≤
h
∆

∗
(2)

i−


Similarly, it yields that h
∆

∗
(1)

i−
≥ ()

()
≥
h
∆

∗
(2)

i−


for (1) (2)  0 This completes the proof.

Example 3.19. Consider () = 4 on T = Z. Let us find the values of 1 2 ∈ (−2 4) such thath
∆

∗
(1)

i−
≤ ()

()
≤
h
∆

∗
(2)

i−
 for (1) (2)  0

on [ ] = [−2 4] From the structure of the given time scale and the definition of the function, we

get () = + 1, () = 1 on T = Z and (−2) = 16 (4) = 256 Then,

∆
∗
() =

(+ 1)4

4


Hence, we have "
(1 + 1)

4

41

#6
≤ 256
16
≤
"
(2 + 1)

4

42

#6


i.e,

(1 + 1)
6

61
≤ 2 and 2 ≤ (2 + 1)

6

62


The values of 1 2 which satisfy above inequalities are 1 = −1 and 2 ∈ {1 2 3} for T = Z.
Corollary 3.20. Let  be a continuous function on [ ] that has a ∆∗−derivative at each point

on [ ). If ∆
∗
() = 1 for all  ∈ [ ) then  is a constant function.

Proof: By using ∆∗−mean value theorem, there exists some 1 2 ∈ [ ) such that

1 =
h
∆

∗
(1)

i−
≤ ()

()
≤
h
∆

∗
(2)

i−
= 1

i.e., () = () for all  ∈ [ )

Theorem 3.21. Let  be continuous on [ ] and be ∆∗−differentiable at each point on [ )
Here are the following situations.

 If ∆
∗
()  1 for every  ∈ [ ) then  is increasing on [ ]

 If ∆
∗
()  1 for every  ∈ [ ) then  is decreasing on [ ]

 If ∆
∗
() ≥ 1 for every  ∈ [ ) then  is non-decreasing on [ ]

 If ∆
∗
() ≤ 1 for every  ∈ [ ) then  is non-increasing on [ ]

Proof: We will only prove the provincial situation. The proof of other cases is similar.
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 Assume that ∆
∗
()  1 for every  ∈ [ ] Then, for any 1 2 ∈ [ ] and 1  2 there exists

 ∈ (1 2) such that
(2)

(1)
≤
h
∆

∗
()
i2−1

 1

i.e. (1)  (2) So,  is decreasing.on [ ] It completes the proof.

Example 3.22. Let us determine the intervals where () = 3−22− is increasing or decreasing
on T = Z. By using the concept for ∆∗−derivative, we get

∆
∗
() =

3 + 2 − 2− 2
3 − 22 − 



Let’s identify the critical points by the relation ∆
∗
() = 1 to determine the sign of the function.

Therefore,

∆
∗
() ≥ 1 for  ∈

∙
−2
3
 1−

√
2

¶
∪ (0 1] ∪

³
1 +
√
2∞

´


∆
∗
() ≤ 1 for  ∈

µ
−∞−2

3

¸
∪
³
1−
√
2 0
´
∪ [1∞) 

On T = Z,  is decreasing on (−∞−1] ∪ {2} and increasing on [3∞) 

4. Conclusion

In this study, the concept of ∆−derivative, which is one of the basic concepts of time scale theory,
has been redefined using the principles of multiplicative analysis. The basic properties and basic

theorems of ∆−derivative, which has many applications in many fields, are given in multiplicative
analysis. We hope that this work will open up a new field for mathematicians and will be the basis

for many different fields in applied mathematics.
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