References
1. Patz, J. A. et al. Unhealthy landscapes: Policy
recommendations on land use change and infectious disease emergence.Environmental Health Perspectives 112 , 1092–1098
(2004).
2. Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R.
Anthropogenic land use change and infectious diseases: a review of the
evidence. EcoHealth 11 , 619–632 (2014).
3. Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization
and disease emergence: dynamics at the wildlife–livestock–human
interface. Trends in Ecology and Evolution 32 , 55–67
(2017).
4. McFarlane, R. O., Sleigh, A. & McMichael, T. Synanthropy of wild
mammals as a determinant of emerging infectious diseases in the
Asian–Australasian region. EcoHealth 9 , 24–35 (2012).
5. Bermúdez, S. E. et al. Distribution of spotted fever group
rickettsiae in hard ticks (Ixodida: Ixodidae) from Panamanian urban and
rural environments (2007–2013). EcoHealth 13 , 274–284
(2016).
6. Bermúdez, S. E. et al. Synanthropic mammals as potential hosts
of tick-borne pathogens in Panama. PLoS One 12 , e0169047
(2017).
7. Jones, K. E. et al. Global trends in emerging infectious
diseases. Nature 451 , 990–993 (2008).
8. Allen, T. et al. Global hotspots and correlates of emerging
zoonotic diseases. Nature Communications 8 , 1124 (2017).
9. Olival, K. J. et al. Host and viral traits predict zoonotic
spillover from mammals. Nature 1–9 (2017).
10. Kuzmin, I. V. et al. Bats, emerging infectious diseases, and
the rabies paradigm revisited. Emerging Health Threats Journal4 , 7159–7159 (2011).
11. Skinner, J. D. & Chimimba, C. T. The mammals of the southern
African sub-region . (Cambridge University Press, 2005).
12. Enright, J. B., Sadler, W. W., Moulton, J. E. & Constantine, D.
Isolation of rabies virus from an insectivorous bat (Tadarida mexicana)
in California. Proceedings of the Society for Experimental Biology
and Medicine 89 , 94–96 (1955).
13. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. &
Schountz, T. Bats: important reservoir hosts of emerging viruses.Clinical microbiology reviews 19 , 531–545 (2006).
14. Muller, M. A. et al. Coronavirus antibodies in African bat
species. Emerging Infectious Diseases 13 , 1367–1370
(2007).
15. Kading, R. C. & Schountz, T. Flavivirus infections of bats:
potential role in Zika virus ecology. The American journal of
tropical medicine and hygiene 95 , 993 (2016).
16. Waruhiu, C. et al. Molecular detection of viruses in Kenyan
bats and discovery of novel astroviruses, caliciviruses and rotaviruses.Virologica Sinica 32 , 101 (2017).
17. Kia, G. S., Tao, Y., Umoh, J. U., Kwaga, J. K. & Tong, S.
Identification of coronaviruses, paramyxoviruses, reoviruses, and
rotaviruses among bats in Nigeria. The American journal of
tropical medicine and hygiene 00 , 1–5 (2021).
18. Swanepoel, R. et al. Experimental inoculation of plants and
animals with Ebola virus. Emerging Infectious Diseases2 , 321 (1996).
19. De Nys, H. M. et al. Survey of Ebola viruses in frugivorous
and insectivorous bats in Guinea, Cameroon, and the Democratic Republic
of the Congo, 2015–2017. Emerging Infectious Diseases24 , 2228 (2018).
20. Edenborough, K. M. et al. Dendritic cells generated fromMops condylurus , a likely filovirus reservoir host, are
susceptible to and activated by Zaire ebolavirus infection.Frontiers in Immunology 10 , 2414 (2019).
21. Fenton, M. B. et al. Raptors and bats: threats and
opportunities. Animal Behaviour 48 , 9–18 (1994).
22. Tusting, L. S. et al. Mapping changes in housing in
sub-Saharan Africa from 2000 to 2015. Nature 568 ,
391–394 (2019).
23. Vivier, L. & Van Der Merwe, M. The incidence of torpor in winter
and summer in the Angolan free-tailed bat, Mops condylurus(Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga,
South Africa. Afr. Zool. 42 , 50–58 (2007).
24. Microsoft. Kenya Nigeria Building Footprints. (2022).
25. Vaughan, T. A. Morphology and flight characteristics of molossid
bats. Journal of Mammalogy 47 , 249–260 (1966).
26. Tusting, L. S. et al. Housing improvements and malaria risk
in sub-Saharan Africa: a multi-country analysis of survey data.PLoS medicine 14 , e1002234 (2017).
27. Brown, B. & Carter, G. Do bats use scent cues from guano and urine
to find roosts? Animal Behavior and Cognition 9 , (2022).
28. Lima, S. L. & O’Keefe, J. M. Do predators influence the behaviour
of bats? Biological Reviews 88 , 626–644 (2013).
29. Heckel, G. & von Helversen, O. Male tactics and reproductive
success in the harem polygynous bat Saccopteryx bilineata.Behavioral Ecology 13 , 750–756 (2002).
30. Hahn, M. B. et al. The role of landscape composition and
configuration on Pteropus giganteus roosting ecology and Nipah
virus spillover risk in Bangladesh. The American journal of
tropical medicine and hygiene 90 , 247–255 (2014).
31. Eby, P. et al. Pathogen spillover driven by rapid changes in
bat ecology. Nature 613 , 340–344 (2023).
32. United Nations. World Population Prospects The 2015 Revision .
(2015).
33. Barclay, R. M., Thomas, D. W. & Fenton, M. B. Comparison of methods
used for controlling bats in buildings. The Journal of Wildlife
Management 502–506 (1980).
34. Sokolow, S. H. et al. Ecological interventions to prevent and
manage zoonotic pathogen spillover. Philosophical Transactions of
the Royal Society B 374 , 20180342 (2019).
35. Mtoto, J. S. & Nzengya, D. M. Birthday celebrations with tree
planting and impact on participants’ attitudes towards climate change:
The case of ACK Initiative in Taita, Kenya. in (ST. PAUL’S UNIVERSITY,
2017).
36. Clark, D. R. Bats and environmental contaminants: a review .
https://books.google.co.ke/books?hl=en&lr=&id=4s1FSz5hvvEC&oi=fnd&pg=PA1&dq=removal+of+bats+from+buildings+using+pesticide&ots=X3hUy8HyzV&sig=HI2T1aTtQPfaRZl9HBhyYRn-QS0&redir_esc=y#v=onepage&q=removal%20of%20bats%20from%20buildings%20using%20pesticide&f=false
(1981).
37. Frantz, S. C. & Trimarchi, C. V. Bats in human dwellings: health
concerns and management. (1983).
38. Amman, B. R. et al. Marburgvirus resurgence in Kitaka Mine
bat population after extermination attempts, Uganda. Emerging
Infectious Diseases 20 , 1761 (2014).
39. Edson, D. et al. Flying-fox roost disturbance and Hendra
virus spillover risk. PLoS ONE 10 , 16 (2015).
40. Pellikka, P. K. E. et al. Impact of land cover change on
aboveground carbon stocks in Afromontane landscape in Kenya.Applied Geography 94 , 178–189 (2018).
41. Forbes, K. M. et al. Bombali virus in Mops condylurusbat, Kenya. Emerging Infectious Diseases 25 , 955 (2019).
42. Kareinen, L. et al. Range expansion of Bombali virus inMops condylurus bats, Kenya, 2019. Emerging Infectious
Diseases 26 , 3007 (2020).
43. Kareinen, L. et al. No Substantial Histopathologic Changes in
Mops condylurus Bats Naturally Infected with Bombali Virus, Kenya.Emerging Infectious Diseases 29 , 1029 (2023).
44. Wood, S. N. Generalized additive models: an introduction with
R . (CRC press, 2017).
45. Diggle, P. A kernel method for smoothing point process data.Journal of the Royal Statistical Society: Series C (Applied
Statistics) 34 , 138–147 (1985).
46. Lunn, T. J. et al. Counterintuitive scaling between
population size and density: implications for modelling transmission of
infectious diseases in bat populations. Authorea Preprints 1–18
(2021) doi:10.22541/au.161801140.00632905/v1.
47. Baddeley, A. Analysing spatial point patterns in R . 1–232
(2010).