References
1. Patz, J. A. et al. Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence.Environmental Health Perspectives 112 , 1092–1098 (2004).
2. Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11 , 619–632 (2014).
3. Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends in Ecology and Evolution 32 , 55–67 (2017).
4. McFarlane, R. O., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian–Australasian region. EcoHealth 9 , 24–35 (2012).
5. Bermúdez, S. E. et al. Distribution of spotted fever group rickettsiae in hard ticks (Ixodida: Ixodidae) from Panamanian urban and rural environments (2007–2013). EcoHealth 13 , 274–284 (2016).
6. Bermúdez, S. E. et al. Synanthropic mammals as potential hosts of tick-borne pathogens in Panama. PLoS One 12 , e0169047 (2017).
7. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451 , 990–993 (2008).
8. Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nature Communications 8 , 1124 (2017).
9. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 1–9 (2017).
10. Kuzmin, I. V. et al. Bats, emerging infectious diseases, and the rabies paradigm revisited. Emerging Health Threats Journal4 , 7159–7159 (2011).
11. Skinner, J. D. & Chimimba, C. T. The mammals of the southern African sub-region . (Cambridge University Press, 2005).
12. Enright, J. B., Sadler, W. W., Moulton, J. E. & Constantine, D. Isolation of rabies virus from an insectivorous bat (Tadarida mexicana) in California. Proceedings of the Society for Experimental Biology and Medicine 89 , 94–96 (1955).
13. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: important reservoir hosts of emerging viruses.Clinical microbiology reviews 19 , 531–545 (2006).
14. Muller, M. A. et al. Coronavirus antibodies in African bat species. Emerging Infectious Diseases 13 , 1367–1370 (2007).
15. Kading, R. C. & Schountz, T. Flavivirus infections of bats: potential role in Zika virus ecology. The American journal of tropical medicine and hygiene 95 , 993 (2016).
16. Waruhiu, C. et al. Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses.Virologica Sinica 32 , 101 (2017).
17. Kia, G. S., Tao, Y., Umoh, J. U., Kwaga, J. K. & Tong, S. Identification of coronaviruses, paramyxoviruses, reoviruses, and rotaviruses among bats in Nigeria. The American journal of tropical medicine and hygiene 00 , 1–5 (2021).
18. Swanepoel, R. et al. Experimental inoculation of plants and animals with Ebola virus. Emerging Infectious Diseases2 , 321 (1996).
19. De Nys, H. M. et al. Survey of Ebola viruses in frugivorous and insectivorous bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015–2017. Emerging Infectious Diseases24 , 2228 (2018).
20. Edenborough, K. M. et al. Dendritic cells generated fromMops condylurus , a likely filovirus reservoir host, are susceptible to and activated by Zaire ebolavirus infection.Frontiers in Immunology 10 , 2414 (2019).
21. Fenton, M. B. et al. Raptors and bats: threats and opportunities. Animal Behaviour 48 , 9–18 (1994).
22. Tusting, L. S. et al. Mapping changes in housing in sub-Saharan Africa from 2000 to 2015. Nature 568 , 391–394 (2019).
23. Vivier, L. & Van Der Merwe, M. The incidence of torpor in winter and summer in the Angolan free-tailed bat, Mops condylurus(Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa. Afr. Zool. 42 , 50–58 (2007).
24. Microsoft. Kenya Nigeria Building Footprints. (2022).
25. Vaughan, T. A. Morphology and flight characteristics of molossid bats. Journal of Mammalogy 47 , 249–260 (1966).
26. Tusting, L. S. et al. Housing improvements and malaria risk in sub-Saharan Africa: a multi-country analysis of survey data.PLoS medicine 14 , e1002234 (2017).
27. Brown, B. & Carter, G. Do bats use scent cues from guano and urine to find roosts? Animal Behavior and Cognition 9 , (2022).
28. Lima, S. L. & O’Keefe, J. M. Do predators influence the behaviour of bats? Biological Reviews 88 , 626–644 (2013).
29. Heckel, G. & von Helversen, O. Male tactics and reproductive success in the harem polygynous bat Saccopteryx bilineata.Behavioral Ecology 13 , 750–756 (2002).
30. Hahn, M. B. et al. The role of landscape composition and configuration on Pteropus giganteus roosting ecology and Nipah virus spillover risk in Bangladesh. The American journal of tropical medicine and hygiene 90 , 247–255 (2014).
31. Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613 , 340–344 (2023).
32. United Nations. World Population Prospects The 2015 Revision . (2015).
33. Barclay, R. M., Thomas, D. W. & Fenton, M. B. Comparison of methods used for controlling bats in buildings. The Journal of Wildlife Management 502–506 (1980).
34. Sokolow, S. H. et al. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B 374 , 20180342 (2019).
35. Mtoto, J. S. & Nzengya, D. M. Birthday celebrations with tree planting and impact on participants’ attitudes towards climate change: The case of ACK Initiative in Taita, Kenya. in (ST. PAUL’S UNIVERSITY, 2017).
36. Clark, D. R. Bats and environmental contaminants: a review . https://books.google.co.ke/books?hl=en&lr=&id=4s1FSz5hvvEC&oi=fnd&pg=PA1&dq=removal+of+bats+from+buildings+using+pesticide&ots=X3hUy8HyzV&sig=HI2T1aTtQPfaRZl9HBhyYRn-QS0&redir_esc=y#v=onepage&q=removal%20of%20bats%20from%20buildings%20using%20pesticide&f=false (1981).
37. Frantz, S. C. & Trimarchi, C. V. Bats in human dwellings: health concerns and management. (1983).
38. Amman, B. R. et al. Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerging Infectious Diseases 20 , 1761 (2014).
39. Edson, D. et al. Flying-fox roost disturbance and Hendra virus spillover risk. PLoS ONE 10 , 16 (2015).
40. Pellikka, P. K. E. et al. Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya.Applied Geography 94 , 178–189 (2018).
41. Forbes, K. M. et al. Bombali virus in Mops condylurusbat, Kenya. Emerging Infectious Diseases 25 , 955 (2019).
42. Kareinen, L. et al. Range expansion of Bombali virus inMops condylurus bats, Kenya, 2019. Emerging Infectious Diseases 26 , 3007 (2020).
43. Kareinen, L. et al. No Substantial Histopathologic Changes in Mops condylurus Bats Naturally Infected with Bombali Virus, Kenya.Emerging Infectious Diseases 29 , 1029 (2023).
44. Wood, S. N. Generalized additive models: an introduction with R . (CRC press, 2017).
45. Diggle, P. A kernel method for smoothing point process data.Journal of the Royal Statistical Society: Series C (Applied Statistics) 34 , 138–147 (1985).
46. Lunn, T. J. et al. Counterintuitive scaling between population size and density: implications for modelling transmission of infectious diseases in bat populations. Authorea Preprints 1–18 (2021) doi:10.22541/au.161801140.00632905/v1.
47. Baddeley, A. Analysing spatial point patterns in R . 1–232 (2010).