References
1. Thébaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia.Nat Rev Dis Primers. 2019;5(1):78.
2. Baker EK, Cheong JLY, Doyle LW. Short- and Long-Term Outcomes After Bronchopulmonary Dysplasia. In: Kallapur SG, Pryhuber GS, eds.Updates on Neonatal Chronic Lung Disease. Elsevier; 2020:291-305.
3. Chunxi L, Haiyue L, Yanxia L, Jianbing P, Jin S. The Gut Microbiota and Respiratory Diseases: New Evidence. J Immunol Res.2020;2020:2340670.
4. Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 2020;287(5):833-855.
5. Baeckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-Bacterial Mutualism in the Human Intestine. Science.2005;307(5717):1915-1920.
6. Thursby E, Juge N. Introduction to the human gut microbiota.Biochem J. 2017;474(11):1823-1836.
7. Sakkas H, Bozidis P, Touzios C, Kolios D, Gartzonika C. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina (Kaunas, Lithuania). 2020;56(2):88.
8. Becattini S, Taur Y, Pamer EG. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine.2016:S1471491416300077.
9. Yan J, Charles JF. Gut Microbiota and IGF-1. Calcif Tissue Int. 2018;102(4):406-414.
10. Belizário JE, Faintuch J, Garay-Malpartida M. Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of inflammation. 2018;2018:2037838.
11. McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142(1):24-31.
12. Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunology.2017;6(3):e133.
13. Moya A, Ferrer M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends in microbiology.2016:S0966842X16000263.
14. Nguyen TTB, Chung H-J, Kim H-J, Hong S-T. Establishment of an ideal gut microbiota to boost healthy growth of neonates. Critical reviews in microbiology. 2019;45(1):118-129.
15. Tirone C, Pezza L, Paladini A, et al. Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes. Front Immunol. 2019;10:2910.
16. Rodrguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. 2015.
17. Tauchi H, Yahagi K, Yamauchi T, et al. Gut microbiota development of preterm infants hospitalised in intensive care units. Benef Microbes. 2019;10(6):641-651.
18. La Rosa PS, Warner BB, Zhou Y, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA. 2014;111(34):12522-12527.
19. Grier A, Qiu X, Bandyopadhyay S, et al. Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth.Microbiome. 2017;5(1):158.
20. Stanisavljević S, Čepić A, Bojić S, et al. Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats. Scientific Reports. 2019;9(1).
21. Dierikx TH, Visser DH, Benninga MA, et al. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. The Journal of infection.2020;81(2):190-204.
22. Jia J, Xun P, Wang X, et al. Impact of Postnatal Antibiotics and Parenteral Nutrition on the Gut Microbiota in Preterm Infants During Early Life. JPEN Journal of parenteral and enteral nutrition.2020;44(4):639-654.
23. Vareille-Delarbre M, Miquel S, Garcin S, et al. Immunomodulatory Effects of Lactobacillus plantarum on Inflammatory Response Induced by Klebsiella pneumoniae. Infect Immun. 2019;87(11):e00570-00519.
24. Novitsky A, Tuttle D, Locke RG, Saiman L, Mackley A, Paul DA. Prolonged early antibiotic use and bronchopulmonary dysplasia in very low birth weight infants. American journal of perinatology.2015;32(1):43-48.
25. Lange K, Buerger M, Stallmach A, Bruns T. Effects of Antibiotics on Gut Microbiota. Digestive diseases (Basel, Switzerland).2016;34(3):260-268.
26. Yang K, Dong W. Perspectives on Probiotics and Bronchopulmonary Dysplasia. Frontiers in pediatrics. 2020;8:570247.
27. Miao Z, Cheng R, Zhang Y, et al. Antibiotics can cause weight loss by impairing gut microbiota in mice and the potent benefits of lactobacilli. Bioscience, biotechnology, and biochemistry.2020;84(2):411-420.
28. Klevebro S, Westin V, Stoltz Sjostrom E, et al. Early energy and protein intakes and associations with growth, BPD, and ROP in extremely preterm infants. Clinical Nutrition. 2019;38(3):1289-1295.
29. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.
30. Lohmann P, Luna RA, Hollister EB, et al. The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia. Pediatric Research. 2014;76(3):294-301.
31. Lal CV, Travers C, Aghai ZH, et al. The Airway Microbiome at Birth.Scientific Reports. 2016;6:31023.
32. Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol.2017;15(1):55-63.
33. Ryan FJ, Drew DP, Douglas C, et al. Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia.mSystems. 2019;4(5):e00484-00419.
34. Gallacher D, Mitchell E, Alber D, et al. Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants. European Respiratory Journal. 2020;55(5):1901909.
35. Chen S-M, Lin C-P, Jan M-S. Early Gut Microbiota Changes in Preterm Infants with Bronchopulmonary Dysplasia: A Pilot Case-Control Study.American journal of perinatology. 2020.
36. Pintus MC, Lussu M, Dessì A, et al. Urinary H-NMR Metabolomics in the First Week of Life Can Anticipate BPD Diagnosis. Oxid Med Cell Longev. 2018;2018:7620671.
37. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature.2011;472(7341):57-63.
38. Willis KA, Siefker DT, Aziz MM, et al. Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia. American Journal of Physiology-lung Cellular and Molecular Physiology. 2020;318(2).
39. Chen C-M, Yang Y-CSH, Chou H-C. Maternal antibiotic exposure disrupts microbiota and exacerbates hyperoxia-induced lung injury in neonatal mice. Pediatric research. 2021.
40. Cantey JB, Huffman LW, Subramanian A, Marshall AS, Mallett LH. Antibiotic Exposure and Risk for Death or Bronchopulmonary Dysplasia in Very Low Birth Weight Infants. J Pediatr. 2016;181:289-293.
41. Althouse MH, Stewart C, Jiang W, Moorthy B, Lingappan K. Impact of Early Life Antibiotic Exposure and Neonatal Hyperoxia on the Murine Microbiome and Lung Injury. Scientific reports. 2019;9(1):14992.
42. Lauer T, Behnke J, Oehmke F, et al. Bacterial Colonization within the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants <1000 g. Journal of clinical medicine. 2020;9(7).
43. Wedgwood S, Gerard K, Halloran K, et al. Intestinal Dysbiosis and the Developing Lung: The Role of Toll-Like Receptor 4 in the Gut-Lung Axis. Front Immunol. 2020;11:357.
44. Lo Y-C, Chen K-Y, Chou H-C, Lin IH, Chen C-M. Neonatal hyperoxia induces gut dysbiosis and behavioral changes in adolescent mice. J Chin Med Assoc. 2021.
45. Xing Z, Li Y, Liu G, He Y, Tao Y, Chen M. Hyperoxia provokes gut dysbiosis in rats. Critical care (London, England).2020;24(1):517.
46. Ashley SL, Sjoding MW, Popova AP, et al. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Science translational medicine. 2020;12(556).
47. Dolma K, Freeman AE, Rezonzew G, et al. Effects of hyperoxia on alveolar and pulmonary vascular development in germ-free mice.American journal of physiology Lung cellular and molecular physiology. 2020;318(2):L421-L428.
48. Zhao M, Tang S, Xin J, Liu D. Influence of reactive oxygen species on secretory component in the intestinal epithelium during hyperoxia.Exp Ther Med. 2017;14(5):4033-4040.
49. Liu DY, Lou WJ, Zhang DY, Sun SY. ROS Plays a Role in the Neonatal Rat Intestinal Barrier Damages Induced by Hyperoxia. Biomed Res Int. 2020;2020:8819195.
50. Chou H-C, Chen C-M. Neonatal hyperoxia disrupts the intestinal barrier and impairs intestinal function in rats. Exp Mol Pathol.2017;102(3):415-421.
51. Chen C-M, Chou H-C, Yang Y-CSH, Su EC-Y, Liu Y-R. Predicting Hyperoxia-Induced Lung Injury from Associated Intestinal and Lung Dysbiosis in Neonatal Mice. Neonatology. 2021:106-116.
52. Zhao Q, Li Y, Chai X, et al. Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung. J Hazard Mater. 2019;369:512-520.
53. Fischäder G, Röder-Stolinski C, Wichmann G, Nieber K, Lehmann I. Release of MCP-1 and IL-8 from lung epithelial cells exposed to volatile organic compounds. Toxicol In Vitro. 2008;22(2):359-366.
54. Yoon HI, Hong YC, Cho SH, et al. Exposure to volatile organic compounds and loss of pulmonary function in the elderly. The European respiratory journal. 2010;36(6):1270-1276.
55. Wang F, Li C, Liu W, Jin Y. Modulation of microRNA expression by volatile organic compounds in mouse lung. Environ Toxicol.2014;29(6):679-689.
56. Cronin WA, Forbes AS, Wagner KL, et al. Exhaled Volatile Organic Compounds Precedes Pulmonary Injury in a Swine Pulmonary Oxygen Toxicity Model. Front Physiol. 2019;10:1297.
57. Bos LDJ. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. Ann Transl Med. 2018;6(2):33.
58. Wright H, Bannaga AS, Iriarte R, Mahmoud M, Arasaradnam RP. Utility of volatile organic compounds as a diagnostic tool in preterm infants.Pediatric research. 2021;89(2):263-268.
59. Syzdykova M, Morenko M, Gatauova M, Temirkhnova R, Shnaider K. Role of Fecal Volatile Organic Compounds in the Diagnosis of Bronchopulmonary Dysplasia. Georgian Med News. 2020(308):80-84.
60. Berkhout DJC, Niemarkt HJ, Benninga MA, et al. Development of severe bronchopulmonary dysplasia is associated with alterations in fecal volatile organic compounds. Pediatric Research.2018;83(2):412-419.
61. El Manouni El Hassani S, Niemarkt HJ, Said H, et al. Fecal Volatile Organic Compounds in Preterm Infants Are Influenced by Enteral Feeding Composition. Sensors (Basel). 2018;18(9):3037.
62. Tan J-Y, Tang Y-C, Huang J. Gut Microbiota and Lung Injury.Advances in experimental medicine and biology. 2020;1238:55-72.
63. Brown RL, Sequeira RP, Clarke TB. The microbiota protects against respiratory infection via GM-CSF signaling. Nature communications. 2017;8(1):1512.
64. Gray J, Oehrle K, Worthen G, Alenghat T, Whitsett J, Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Science Translational Medicine. 2017;9(376):eaaf9412.
65. Grayson MH, Camarda LE, Hussain S-RA, et al. Intestinal Microbiota Disruption Reduces Regulatory T Cells and Increases Respiratory Viral Infection Mortality Through Increased IFNγ Production. Front Immunol. 2018;9:1587.
66. Lal CV, Kandasamy J, Dolma K, et al. Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L810-l815.
67. Pammi M, Lal CV, Wagner BD, et al. Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review.The Journal of Pediatrics. 2019;204:126-133 e122.
68. Speer CP. Inflammation and bronchopulmonary dysplasia. Paper presented at: Seminars in Neonatology2003.
69. Witkowski SM, de Castro EM, Nagashima S, et al. Analysis of interleukins 6, 8, 10 and 17 in the lungs of premature neonates with bronchopulmonary dysplasia. Cytokine. 2020;131:155118.
70. Mao X, Qiu J, Zhao L, et al. Vitamin D and IL-10 Deficiency in Preterm Neonates With Bronchopulmonary Dysplasia. Frontiers in pediatrics. 2018;6:246.
71. Rosser EC, Oleinika K, Tonon S, et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med. 2014;20(11):1334-1339.
72. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959-2977.
73. Jacobs MC, Lankelma JM, Wolff NS, et al. Effect of antibiotic gut microbiota disruption on LPS-induced acute lung inflammation. PLoS ONE. 2020;15(11):e0241748.
74. Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;65(4):575-583.
75. Zhang Q, Ran X, He Y, Ai Q, Shi Y. Acetate Downregulates the Activation of NLRP3 Inflammasomes and Attenuates Lung Injury in Neonatal Mice With Bronchopulmonary Dysplasia. Frontiers in pediatrics.2020;8:595157.
76. Li B, Yin G-F, Wang Y-L, Tan Y-M, Huang C-L, Fan X-M. Impact of fecal microbiota transplantation on TGF-β1/Smads/ERK signaling pathway of endotoxic acute lung injury in rats. 3 Biotech. 2020;10(2):52.
77. Nie X, Li L, Yi M, et al. The Intestinal Microbiota Plays as a Protective Regulator Against Radiation Pneumonitis. Radiat Res.2020;194(1):52-60.
78. Gong G-C, Song S-R, Su J. Pulmonary fibrosis alters gut microbiota and associated metabolites in mice: An integrated 16S and metabolomics analysis. Life sciences. 2020:118616.
79. Bhattacharyya S, Wang W, Qin W, et al. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight. 2018;3(13).
80. Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113.
81. Uberos J, Jimenez-Montilla S, Molina-Oya M, Garcia-Serrano JL. Early energy restriction in premature infants and bronchopulmonary dysplasia: a cohort study. Br J Nutr. 2020:1-8.
82. Underwood MA, Lakshminrusimha S, Steinhorn RH, Wedgwood S. Malnutrition, poor post-natal growth, intestinal dysbiosis and the developing lung. J Perinatol. 2020.
83. Blanton LV, Charbonneau MR, Salih T, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351(6275).
84. Gehrig JL, Venkatesh S, Chang H-W, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science (New York, NY). 2019;365(6449).
85. Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition.Science (New York, NY). 2016;351(6275):854-857.
86. Younge NE, Newgard CB, Cotten CM, et al. Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure. Sci Rep. 2019;9(1):8167.
87. Groer M, Miller EM, Sarkar A, et al. Predicted Metabolic Pathway Distributions in Stool Bacteria in Very-Low-Birth-Weight Infants: Potential Relationships with NICU Faltered Growth. Nutrients.2020;12(5).
88. Yee AL, Miller E, Dishaw LJ, et al. Longitudinal Microbiome Composition and Stability Correlate with Increased Weight and Length of Very-Low-Birth-Weight Infants. mSystems. 2019;4(1).
89. Arboleya S, Martinez-Camblor P, Solís G, et al. Intestinal Microbiota and Weight-Gain in Preterm Neonates. Front Microbiol.2017;8:183.
90. Kamng’ona AW, Young R, Arnold CD, et al. The association of gut microbiota characteristics in Malawian infants with growth and inflammation. Scientific reports. 2019;9(1):12893.
Figure 1 Factors affecting gut microbiota and dysbiosis of gut microbiota impact certain diseases
Figure 2 Possible mechanisms of gut microbiota influencing BPD
Figure 3 Lung microbiota-gut microbiota-BPD triangle