
A REMARK ON ILL-POSEDNESS

HAIBO YANG, QIXIANG YANG, AND HUOXIONG WU

Abstract. In this paper, we construct an example to show that well-
posedness and norm inflation are compatible.

1. Introduction and main results

In this paper, we give a remark on the illposedness of the following in-
compressible Navier-Stokes equations

(1.1)


∂tu − ∆u + u · ∇u − ∇p = 0, in [0,T ) × Rn;
∇ · u = 0, in [0,T ) × Rn;
u|t=0 = u0, in Rn;

where u(t, x) and p(t, x) denote the velocity vector field and the pressure
of fluid at the point (t, x) ∈ [0,T ) × Rn respectively. While u0 is a given
initial velocity vector field. The wellposedness for different initial data s-
paces have been studied heavily. See Cannone [2], Iwabuchi-Nakamura [7],
Koch-Tataru [10], Li-Xiao-Yang [13], Yang-Yang [25]. The solutions of the
above Cauchy problem can be obtained via the integral equation:

(1.2) u(t, x) = et∆u0(x) − B(u, u)(t, x),

where

(1.3)

B(u, u)(t, x) ≡
∫ t

0
e(t−s)∆P∇(u ⊗ u)ds,

P∇(u ⊗ u) ≡
∑
l
∂xl(ulu) −

∑
l

∑
l′

(−∆)−1∂xl∂xl′∇(ulul′).

The equation (1.2) can be solved by a fixed-point method whenever the
convergence is suitably defined in certain function spaces. For u0 belongs
to some initial space Xn = (X(Rn))n, denote

(1.4)

u(0)(t, x) = et∆u0,

u(τ+1)(t, x) = u(0)(t, x) − B(u(τ), u(τ))(t, x),∀τ = 0, 1, 2, · · · ,
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where et∆u0 belongs to some space Yn = (Y([0,T ) × Rn))n.
The above iteration process convergence for ‖u0‖Xn small enough. Such

solutions of (1.2) are called mild solutions of (1.1). The notion of such a
mild solution was pioneered by Kato-Fujita [9] in 1960s. During the latest
decades, many important results about mild solutions to (1.1) have been
established. Given t ∈ [0,T ] and u(t, x) belongs to the Banach space Xn.
We know u(t, x) belongs to function space L∞([0,T ], Xn) means

(‖u(t, x)‖Xn)L∞([0,T ]) < ∞.

For initial data u0 ∈ Xn, most often, its solution u(t, x) belong to some solu-
tion spaces Y(Xn) which is a subspace of L∞([0,T ], Xn). See, for example,
Cannone [2, 3], Germin-Pavlovic-Staffilani [5], Giga-Miyakawa [6], Kato
[8], Lemarié [11, 12], Wu [19, 20, 21, 22] and some author’s collaboration
work [13, 14, 15, 24].

If a solution space Y(Xn) is not a subspace of L∞([0,T ], Xn), Bourgain-
Pavlović call such solution space have norm inflation phenomenon and the
equations are ill-posed in the corresponding initial value spaces. For the end
point Triebel-Lizorkin spaces (Ḟ−1,q

∞ )n(2 < q ≤ ∞), Bourgain-Pavlović [1]
and Yoneda [26] have shown the norm inflation in the end Triebel-Lizorkin
spaces L∞([0,T ], (Ḟ−1,q

∞ )n). Wang [18] has shown norm inflation in the end
point Besov spaces (Ḃ−1,q

∞ )n(2 < q ≤ ∞).
We know Ḟ−1,2

∞ = BMO−1. Let l(Q) denote the side length of cube Q. To
establish the wellposedness for initial data in (BMO−1)n, Koch-Tataru [10]
introduced the following solution space Y([0,T ], (BMO−1)n):

Definition 1.1. u(t, x) ∈ Y([0,T ], (BMO−1)n) if and only if the following
three conditions are satisfied:

(1.5) ∇u(t, x) = 0 in [0,T ] × Rn,

(1.6) sup
0<t≤T

t
1
2 ‖u(t, x)‖∞ < ∞,

(1.7) sup
cube |Q| with l2(Q)≤T

{|Q|−1
∫ l2(Q)

0

∫
Q
|u(t, x)|2dtdx}

1
2 < ∞.

For initial data in (BMO−1)n, Koch-Tataru [10] have established well-
posedness in solution space Y([0,T ], (BMO−1)n). We find Koch-Tataru’s
space allow norm inflation in L∞([0,T ], (BMO−1)n). In fact, we prove that
Koch-Tataru’s space Y([0,T ], (BMO−1)n) is not a subspace of L∞([0,T ),
(BMO−1)n). That is to say, wellposedness and norm inflation are compati-
ble. To simplify the notations, we take T = 1.
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Theorem 1.2. Koch-Tataru’s space Y([0, 1], (BMO−1)n) is not a subspace
of L∞([0, 1], (BMO−1)n). That is to say, there exists u(t, x) ∈ Y([0, 1], (BMO−1)n)
but ‖u(t, x)‖L∞([0,1],(BMO−1)n) = ∞.

Remark 1.3. According to the above Theorem 1.2, norm inflation and well-
posedness are not incompatible. Bourgain-Pavlović and Yoneda’s illposed-
ness results mean only the norm inflation in L∞([0,T ], Xn), not real ill-
posedness. This supports Chemin and Gallagher’s point in [4]: the well-
posedness need not the boundedness in L∞([0,T ], Xn).

The rest of this paper is organized as follows: In section 2, we will present
some preliminaries about Meyer wavelets, then we present wavelet charac-
terization for end point Triebel-Lizorkin spaces and Koch-Tataru’s solution
space. In section 3, we use Meyer wavelets to construct some functions in
Koch-Tataru’s space and prove Theorems 1.2.

2. Wavelets and function spaces

In this section, we recall first some auxiliary knowledge on wavelets. We
indicate that we will use tensorial product real valued orthogonal Meyer
wavelets. We refer the reader to [16, 17, 23] for further information. Let Ψ0

be an even function in C∞0 ([−4π
3 ,

4π
3 ]) with

0 ≤ Ψ0(ξ) ≤ 1;

Ψ0(ξ) = 1 for |ξ| ≤
2π
3
.

Write

Ω(ξ) =

√
(Ψ0(

ξ

2
))2 − (Ψ0(ξ))2.

Then Ω(ξ) is an even function in C∞0 ([−8π
3 ,

8π
3 ]). Clearly,


Ω(ξ) = 0 for |ξ| ≤

2π
3

;

Ω2(ξ) + Ω2(2ξ) = 1 = Ω2(ξ) + Ω2(2π − ξ) for ξ ∈ [
2π
3
,

4π
3

].

Let Ψ1(ξ) = Ω(ξ)e−
iξ
2 . For any ε = (ε1, · · · , εn) ∈ {0, 1}n, define Φε(x)

by Φ̂ε(ξ) =
n∏

i=1
Ψεi(ξi). For j ∈ Z and k ∈ Zn, let Φε

j,k(x) = 2
n j
2 Φε(2 jx − k).

∀ε ∈ {0, 1}n, j ∈ Z, k ∈ Zn and distribution f (x), denote f εj,k = 〈 f ,Φε
j,k〉.

Furthermore, we put

Λn = {(ε, j, k), ε ∈ {0, 1}n\{0}, j ∈ Z, k ∈ Zn}.
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Sobolev space Ḣ
n
2−1 = Ḟ

n
2−1,2
2 , Lebesgue space Ln = Ḟ0,2

n , Besov spaces

Ḃ
n
p−1,p
p = Ḟ

n
p−1,p
p and BMO−1 = Ḟ−1,2

∞ are all Triebel-Lizorkin spaces. For
an overview of function spaces, we refer to Li-Xiao-Yang [13], Lin-Yang
[15],Yang [23] and Yuan-Sickel-Yang [27]. Denote D = {Q j,k = 2− jk +

2− j[0, 1]n,∀ j ∈ Z, k ∈ Zn}. We recall then the wavelet characterization of
end-point Triebel-Lizorkin spaces Ḟγ,q

∞ (Rn) (see [13, 15, 27]).

Lemma 2.1. Given 1 ≤ q ≤ ∞ and γ ∈ R. f (x) =
∑
ε, j,k

aεj,kΦ
ε
j,k(x) ∈

Ḟγ,q
∞ (Rn)⇔

(2.1) sup
Q∈D

{
|Q|−1 ∑

(ε, j,k):Q j,k⊂Q
2 jq(γ1+ n

2−
n
q )
|aεj,k|

q
} 1

q
< +∞.

At the end of this section, we present one lemma on Koch-Tataru’s solu-
tion space. Let u(t, x) = (u1(t, x), u2(t, x), . . . , un(t, x))t. For i = 1, 2, · · · , n,
denote ui(t, x) =

∑
(ε, j,k)∈Λn

ai,ε
j,k(t)Φ

ε
j,k(x). The following lemma is a direct

corollary of the wavelet characterization in Lemma 2.1.

Lemma 2.2. (i) u(t, x) satisfies (1.7) if and only if

(2.2) sup
i, j0≥0,k0∈Zn

2n j0

∫ 2−2 j0

0

∑
Q j,k⊂Q j0 ,k0

|ai,ε
j,k(t)|

2dt < ∞.

(ii) u(t, x) ∈ L∞([0, 1], (BMO−1)n) if and only if

(2.3) sup
i,0<t≤1,k0∈Zn

2n j0
∑

Q j,k⊂Q j0 ,k0

2−2 j|ai,ε
j,k(t)|

2 < ∞.

3. Proof of Theorem 1.2

Now we come to prove Theorem 1.2.

Proof. Denote Λ = {(e, j, k) ∈ Λn, e = (1, · · · , 1), j ≥ 0, k ∈ Zn}. Take
0 < a < 1

2 and n
2 + 2a − 1 < b < n

2 and take u1(t, x) =
∑

(e, j,k)∈Λ
ae

j,k(t)Φ
e
j,k(x)

where ae
j,k(t) satisfies

ae
j,k(t) =

{
t−a2−b j, 1 ≤ j ≤ −1

2 log2 t, k ∈ Zn;
0, j > −1

2 log2 t or t ≥ 1; k ∈ Zn.

We know, if 0 < b < n
2 and b ≥ n

2 +2a−1, then u1(t, x) satisfies the following
equation:

t
1
2 ‖u1(t, x)‖∞ < ∞.
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The number of k satisfying Q j,k ⊂ Q j0,k0 is 2n( j− j0). Hence for j0 ≥ 0,

2n j0
∫ 2−2 j0

0

∑
Q j,k⊂Q j0 ,k0

|ae
j,k(t)|

2dt

≤ 2n j0
∫ 2−2 j0

0
t−2a ∑

j≥ j0,1≤ j≤− 1
2 log2 t

2−2b j2n( j− j0)dt

=
∫ 2−2 j0

0
t−2a ∑

max( j0,1)≤ j≤− 1
2 log2 t

2(n−2b) jdt

≤ C
∫ 2−2 j0

0
tb− n

2−2adt.

If b > n
2 + 2a − 1, then u1(t, x) satisfies equation (2.2).

If a < 1
2 and n

2 + 2a − 1 < b < n
2 , then

ct, j0 = 2n j0
∑

Q j,k⊂Q j0 ,k0

2−2 j|ae
j,k(t)|

2

≤ 2n j0t−2a ∑
j≥ j0,1≤ j≤− 1

2 log2 t
2−2 j−2b j2n( j− j0)

= t−2a ∑
max( j0,1)≤ j≤− 1

2 log2 t
2(n−2b−2) j.

Take j0 = 0, b > n
2 − 1 and a > 0, then ct,0 > ct−2a, hence sup

0<t<1
ct,0 = +∞.

Hence u1(t, x) does satisfy equation (2.3).
Take u2(t, x) = − 1

∂2
∂1u1(t, x). It is easy to see that u2(t, x) satisfies the

same properties as u1(t, x) does.
For i = 3, · · · , n, take ui(t, x) = 0. By construction, we know that u(t, x) =

(u1(t, x), u2(t, x), · · · , un(t, x))t satisfies

∇u(t, x) = 0 in [0, 1] × Rn.

That is to say, u(t, x) satisfies all the conditions in Theorem 1.2. �
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