Mandy Sander

and 7 more

Environmental DNA (eDNA) extracted from water is routinely used in river biodiversity research, and via metabarcoding eDNA can provide comprehensive taxa lists with little effort and cost. However, eDNA-based species detection in streams and rivers may be influenced by sampling season, location, and other key factors such as water temperature and discharge. Research linking these factors and also informing on the potential of eDNA metabarcoding to detect shifts in ecological signatures, such as species phenology and functional feeding groups across seasons, is missing. To address this gap, we collected 102 water samples every two weeks for 15 months at a long-term ecological research (LTER) site and at three different positions in the river’s cross section, specifically the water surface, riverbed, and riverbank. We analyzed macroinvertebrate species and molecular Operational Taxonomic Unit (OTU) richness and temporal community turnover across seasons and sampling positions based on COI metabarcoding data. Using Generalized Additive Models, we found a significant influence of sampling season but not sampling position on community composition. Community turnover followed a cyclic pattern, reflecting the continuous change of the macroinvertebrate community throughout the year (‘seasonal clock’). Although water temperature had no influence on the inferred community composition, higher discharge reduced the number of Annelida and Ephemeroptera species detectable with eDNA. Most macroinvertebrate taxa showed the highest detection rates in spring, in particular merolimnic species with univoltine life cycles. Further, we detected an increase in proportion of shredders in winter and of parasites in summer. Our results show the usefulness of highly resolved eDNA metabarcoding time series data for ecological research and biodiversity monitoring in streams and rivers.

Kristine Bohmann

and 9 more

Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to detect plant and animal taxa in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. This enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and/or during ‘library preparation’, i.e. when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, the importance of ensuring that data generation is robust and fit for purpose should be at the forefront of practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms. Further, we distil the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.